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Abstract

This paper gives an overview of some basic results on Hermitian Clifford analysis. It
discusses, among other results, the Fischer decomposition, the Cauchy-Kowalewskaya exten-
sion problem, the axiomatic radial algebra and also some algebraic analysis of the system
associated to Hermitian monogenic functions.

1 Introduction

Hermitian Clifford analysis is a refinement of classical Clifford analysis which is nowadays a
very rich and well established field of research. It deals with functions with values in a complex
Clifford algebra or a complex spinor space in the kernel of two mutually adjoint Dirac operators
invariant under the action of the unitary group. Classical Clifford analysis, see [27, 37] deals
with functions in the kernel of the Dirac operator, which is invariant under the action of the
special orthogonal group and for this reason it may be called orthogonal Clifford analysis. It
is important to point out that by restricting the values of a Hermitian monogenic function one
obtains functions holomorphic in several complex variables.
The results available in the literature are numerous and it is not possible to mention all of them
in this survey whose contents just reflects some basics facts and the authors’ taste.
Although the systems presented in [45] are related, the study of the Hermitian monogenic systems
in its present form began in [46] and the fundamentals of the theory have been further developed
in [8, 9, 25]. Then, just to give an overview of the results, one has to mention that the Cauchy
formula with several questions related to it has been studied in [1, 3, 5, 13], while the Hilbert
transform has been treated in [2, 10, 12]. The Cauchy-Kovalevskaya (or CK) extension theorem
has been considered in [16, 35], but the complete treatment of the CK-extension problem requires
the introduction of a weaker system called the submonogenic system (see [36]). Papers dealing
with wavelets are [16, 22, 24]. The important topic of the Fischer decomposition and related
questions has been addressed in [25, 26, 38, 40]. Questions related to polynomial bases can be
found in [17, 21] and Taylor series expansion are in [42]. The algebraic analysis of h -hermitian
functions has been done in [46, 28, 32, 33] and some duality theorems are proved in [7, 29].
To conclude this introduction, it is worthwhile to mention a generalization of Hermitian Clifford
analysis over the quaternions, see [44]. This generalization is introduced and studied with a
different approach in [39] and an algebraic analysis of the system has been performed in [34].

The plan of this survey is as follows. Section 2 provides the preliminaries which are necessary
to introduce the Witt basis, then in Section 3 the Hermitian vector variables, the Dirac operators
and the notion of Hermitian monogenic functions are defined. The CK-extension problem is
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treated in Section 3. Section 4 discusses the Fischer decomposition, while Section 5 deals
with some integral formulae, among which the Cauchy integral formula. Section 6 contains
the axiomatic definition of the hermitian radial algebra and the survey ends by presenting, in
Section 7, the algebraic analysis of the module associated to h -hermitian functions.

2 The Clifford algebra setting

Consider the real orthogonal space R2n = spanR(e1, · · · , e2n) endowed with the symmetric real-
bilinear form BR(·, ·) of signature (0, 2n) , for which BR(ei, ej) = −δij . At the same time, one
also considers the complex vector space C2n and its associated Clifford algebra C2n , generated
by eiej +ejei = −2δij . A basis for C2n can be constructed by considering, for any set of indices
A = {j1, . . . , jh} ⊂ {1, . . . , 2n} = M , ordered by 1 ≤ j1 < j2 < . . . < jh ≤ 2n , the element
eA = ej1 . . . ejh

where e∅ = 1, the identity element. Any Clifford number λ ∈ C2n may thus be
written as

λ =
∑

A⊂M

λAeA, λA ∈ C.

One can also write λ =
∑2n

k=0 [λ]k where [λ]k =
∑
|A|=k λAeA is the so–called k –vector part of

λ (k = 0, . . . , 2n ).
Denoting by Ck

2n the subspace of all k –vectors in C2n , then C can be identified with the
subspace of complex scalars C0

2n , while R2n can be identified with the subspace of real Clifford
vectors R1

0,2n = {v =
∑2n

j=1 vjej , vj ∈ R} ⊂ C1
2n. It is also important to note that all

real Clifford algebras Rp,q with signature (p, q) (p + q = 2n ) are contained in C2n as special
subalgebras.

In C2n there automorphisms which leave the multivector structure invariant:

1. the main involution

λ̃µ = λ̃ µ̃ ; µ̃AeA = µA ẽA ; ẽj = −ej (j = 1, . . . , 2n)

2. the reversion

(λµ)∗ = µ∗λ∗; (µAeA)∗ = µAe∗A (A ⊂ M); e∗j = ej (j = 1, . . . , 2n)

3. the Hermitian conjugation (or h -conjugation)

(λµ)† = µ†λ†; (µAeA)† = µc
Ae†A (A ⊂ M); e†j = −ej (j = 1, . . . , 2n)

where µc
A stands for the complex conjugate of the complex number µA .

By restricting the h–conjugation to the real subalgebra R0,2n (p = 0, q = 2n ) one gets

e†j = −ej , j = 1, . . . , 2n

and
(aAeA)† = aAe†A, aA ∈ R,

so this restriction coincides with the conjugation on R0,2n i.e.

(ab) = ba; ej = −ej , j = 1, . . . , 2n.
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For the real subalgebras Rp,q , p 6= 0, the situation is different since for j = 1, . . . , p it is
ε†j = (iej)† = iej = εj . Since C2n may be regarded as the complexification of the real Clifford
algebra R0,2n , namely

C2n = C⊗ R0,2n = R0,2n ⊕ iR0,2n

any element λ ∈ C2n can be written as λ = a + ib , a ∈ R0,2n , b ∈ R0,2n . Moreover

λ† = (a + ib)† = a† − ib† = a− ib

Using the h–conjugation one can define an Hermitian inner product, called h–inner product,
whose associated h–norm on C2n is

(λ, µ) = [λ†µ]0, |λ| =
√

[λ†λ]0.

Note that for complex Clifford vectors α =
∑2n

j=1 αjej and β =
∑2n

j=1 βjej their h–inner
product reduces to

(α, β) =
m∑

j=1

αc
jβj

and |α|2 = (α, α) =
∑2n

j=1 |αj |2 .

A main tool in Hermitian Clifford analysis, namely the Witt basis, is defined below.

Definition 1. Let us consider in C2n the elements

fj =
1
2
(ej − i en+j), j = 1, . . . , n

f
†
j = −1

2
(ej + i en+j), j = 1, . . . , n.

These elements form the so-called Witt basis of C2n ; they satisfy the Grassmann and duality
identities

(i) fjfk + fkfj = 0 ,

(ii) f
†
jf
†
k + f

†
kf
†
j = 0 ,

(iii) fjf
†
k + f

†
kfj = δjk ,

for j, k = 1, . . . , n .

Remark 1. From these relations one obtains:

f2j = (f†j)
2 = 0.

Note also that f
†
j is the h–conjugate of fj , j = 1, . . . , n .

The above relations may be refined in a series of properties for their dot and wedge products,
and their h–inner product, see [25].

The above construction can be done in an alternative way, see [9], [8]. Consider the real
orthogonal space R2n = spanR(e1, · · · , e2n) equipped with the symmetric real-bilinear form
BR(·, ·) of signature (0, 2n) , for which BR(ei, ej) = −δij . Then consider the complex vector
space C2n and its associated Clifford algebra C2n , generated by eiej + ejei = −2δij . It
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is immediate that, as a vector space, C2n is isomorphic to a Grassmann algebra and hence
inherits a Z -grading into subspaces C(k)

2n of k -vectors. On the other hand, C2n is Z2 -graded
with respect to the main involution, acting on arbitrary Clifford numbers as (̃ab) = ãb̃ . As a
consequence one can decompose C2n = C+

2n ⊕ C−2n into a direct sum of even and odd elements.
Within C+

2n , one can define the (real or complex) spin group Spin(2n) which yields a double
cover for the (real or complex) group SO(2n) . The real spin group Spin(2n,R) can be realized
within the Clifford algebra as

Spin(2n,R) = {s =
2k∏

j=1

ωj : ωj ∈ S2n−1 , k ∈ N},

where S2n−1 ⊂ R2n denotes the unit sphere containing unit vectors ωj for which ω2
j = −1 .

The double cover between both Lie groups is then defined by the mapping h : Spin(2n,R) 7→
SO(2n,R) for which h(s)[X] = sXs̄ where the main conjugation acts on arbitrary Clifford
numbers by ab = b̄ā .

Definition 2. A complex structure J on R2n can be defined as an automorphism J ∈ SO(2n,R)
satisfying J2 = −12n .

Remark 2. In terms of the basis (e1, · · · , e2n) one may put J [ej ] = −ej+n and J [ej+n] = +ej .
By means of the complex structure J , one can decompose C2n , endowed with the complex-
bilinear form BC , into a direct sum of two maximally isotropic subspaces W+ and W− . Put

12n =
1
2
(12n + iJ) +

1
2
(12n − iJ) = π+ + π− ,

and define W± = π±(R2n) . The spaces W± are isotropic, in the sense that the restrictions of
BC to W+ ×W+ and W− ×W− are identically zero, and that W± are eigenspaces for the
complex-linear map JC ∈ SO(2n) with eigenvalues ∓i .
The Witt basis for C2n is then defined by

fj = +π+[ej ], f†j = −π−[ej ], 1 ≤ j ≤ n.

Using the Witt basis elements (f1, . . . , fn) and (f†1, . . . , f
†
n) of C2n , one can introduce the

complex Grassmann algebras CΛn and CΛ+
n defined by:

CΛn = AlgC{f1, . . . , fn} and CΛ†n = AlgC{f†1, . . . , f†n}.
In particular, set

CΛk
n = Ck

2n ∩ CΛn, CΛ†n
k

= Ck
2n ∩ CΛ†n.

Let us now introduce, for all j = 1, . . . , n , the elements

Ij = fjf
†
j =

1
2

(1 + i en+jej) =
1
2
(1− i ejen+j).

The Ij ’s are mutually commuting idempotents, i.e. I2
j = Ij and IjIk = IkIj , moreover I†j = Ij .

Now put
I = I1 . . . In.

Then I† = I and

ejI = i en+jI = −f
†
jI, fj I = 0, j = 1, . . . , n

Iej = −i I en+j = Ifj , If
†
j = 0, j = 1, . . . , n.

One also has
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Proposition 1. A vector α ∈ C2n belongs to CΛ1
n if and only if αI = 0 , while it belongs to

CΛ†n
1

if and only if Iα = 0 .

Definition 3. The complex spinor space CSn is defined as

CSn ≡ C2nI ∼= CnI ∼= CΛ†nI

and its homogeneous parts are

CSk
n ≡ Ck

nI ∼= CΛ†n
k
I (6= Ck

2nI).

Finally, note that by the isomorphisms established above, for any a ∈ C2n (or Rn,n ), there
exists a unique element â ∈ Cn (or R0,n ) such that aI = âI , and thus also

IaI = IâI = I[â]0I = [â]0I2 = [â]0I

since for all k –vector parts of â one has that I[â]kI = 0, k = 1, . . . , n .

2.1 The spin group

Definition 4. Let us define the complex spin group in the Clifford algebra C2n as

Spin(2n,C) = C⊗ Spin(2n,R),

where
Spin(2n,R) ⊆ {s ∈ R0,2n | ss = ss = 1}.

As it is well known that any element s of Spin(2n,R) may be written as

s = ω1. . . . .ω2l, ωj ∈ R1
0,2n, ω2

j = −1, j = 1, . . . , 2l, l ∈ N

It is of interest the subgroup Ũ(n) , given by

Ũ(n) = {s ∈ Spin(2n) | ∃θ ≥ 0 : sI = exp(−iθ)I} (2.1)

which is a representation of the unitary group U(n) . It is important to note that for any
s ∈ Spin(2n) it is ss = ss = 1, and since s† = s = s−1 , one deduces the relation Is = exp(iθ)I
for s ∈ Ũ(n) (this relation is the h–conjugate of the one contained in (2.1)).

Since Spin(2n,R) is a double covering of SO(2n,R) , denote by sJ the element in Spin(2n,R)
corresponding to the complex structure J and define

SpinJ(2n,R) = {s ∈ Spin(2n,R) : ssJ = sJs}.

Then the following result holds (see [9]):

Proposition 2. The groups SpinJ(2n,R) and Ũ(n) coincide.
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3 The Hermitian operators

3.1 Hermitian vector variables and Dirac operators

Let us introduce the Hermitian vector variables, also called h–vector variables for short. First of
all, the vector (X1, . . . , X2n) = (x1, . . . , xn, y1, . . . , yn) can be identified with the Clifford vector

X =
n∑

j=1

ejXj =
n∑

j=1

(ejxj + en+jyj).

In terms of the Witt basis it can be written as

X =
n∑

j=1

(
(xj + iyj)fj − (xj − iyj)f

†
j

)
=

n∑

j=1

fjzj −
n∑

j=1

f
†
jz

c
j

where zj = xj + iyj are complex variables and their complex conjugates are zc
j = xj − iyj ,

j = 1, . . . , n . The Hermitian vector variable, also called h–vector variables, are defined as

z =
n∑

j=1

fjzj

with h–conjugate

z† =
n∑

j=1

f
†
jz

c
j .

Thus the Clifford vector X can be written as

X = z − z†

Another Clifford vector (which is called the twist of X ) is defined as

X| = 1
i
(z + z†) =

1
i

n∑

j=1

(zjfj + zc
j f
†
j) =

n∑

j=1

(yjej − xjen+j);

note that X and X| are orthogonal:

(X,X|) =
n∑

j=1

xjyj +
n∑

j=1

yj(−xj) = 0.

Remark 3. Observe that the equalities z2 = (z†)2 = 0 hold. For other relations on the
h–vector variables, see [25].

Let us now introduce suitable differential operators. The Dirac operator associated to X is:

∂X =
n∑

j=1

(
ej∂xj + en+j∂yj

)
=

n∑

j=1

(
fj(∂xj + i∂yj )− f

†
j(∂xj − i∂yj )

)
,

and the Cauchy–Riemann operators (and their conjugates) in the complex variables zj , ( j =
1, . . . , n ) are:

∂zj =
1
2
(∂xj − i∂yj ) and ∂zc

j
=

1
2
(∂xj + i∂yj ).

Then the Dirac operator can be written as

∂X = 2
n∑

j=1

(
fj∂zc

j
− f

†
j∂zj

)
= 2(∂†z − ∂z).
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Definition 5. The Hermitian (or h–)Dirac operator, also called h–Dirac operator and its
h–conjugate are defined by

∂z =
n∑

j=1

f
†
j∂zj and ∂†z = (∂z)† =

n∑

j=1

fj∂zc
j
.

Remark 4. Note that ∂†z = ∂z† and both the notations are used in the literature.

To the Clifford vector variable X| one can associate the following operator

∂X| =
n∑

j=1

(
ej∂yj − en+j∂xj

)
=

2
i

n∑

j=1

(
fj∂zc

j
+ f

†
j∂zj

)
=

2
i

(∂†z + ∂z)

Remark 5. With the notation introduced in Remark 2 one has

2∂†z = +π+[∂X ] = 2
n∑

j=1

fj∂zc
j

2∂z = −π−[∂X ] = 2
n∑

j=1

f†j∂zj .

In order to give the definition of Hermitian monogenic functions, recall that the functions g
defined on R2n , may be written as

g(x1, . . . , xn, y1, . . . , yn), g(z1, . . . , zn, zc
1, . . . , z

c
n) or, in short g(z, z†)

and taking values in the complex Clifford algebra C2n .

Definition 6. Let Ω be an open region in R2n and let f : Ω → C2n be a continuously differen-
tiable function. We say that g is Hermitian monogenic, or h–monogenic for short, if and only
if

∂Xg = 0 = ∂X|g

or, equivalently,
∂zg = 0 = ∂†zg.

Example 1. Any function of the form gj = f
†
jFj(zj) , j = 1, . . . , n , with Fj holomorphic in the

open region Ωj of the complex zj plane, is h–monogenic in Ω = R2×. . .×R2×Ωj×R2×. . .×R2 .
In fact

∂zgj = f
†
jf
†
j∂zjFj(zj) = 0

since (f†j)
2 = 0 , while

∂†zgj = fjf
†
j∂zc

j
Fj(zj) = 0.

Any function of the form g̃j = fjF̃j(zc
j) , j = 1, . . . , n , with F̃j anti–holomorphic in the open

region Ωj , is h–monogenic in Ω .

Remark 6. If a function g has values in Cn , the above system may be written, equivalently,
by considering the spinor valued function gI which has values in CnI ∼= C2nI = CSn :

∂X(gI) = 0 = ∂X|(gI) or, equivalently, ∂z(gI) = 0 = ∂†z(gI).
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Since εjgI = g̃ejI , j = 1, . . . , n ,

∂X(gI) =
n∑

j=1

(ej∂xj − iεj∂yj )(gI)

=
n∑

j=1

ej(∂xjg)I − i

n∑

j=1

(∂yj g̃)ejI = (∂xg − ig̃∂y)I

where ∂x =
∑n

j=1 ej∂xj and ∂y =
∑n

j=1 ej∂yj . Similarly,

∂X|(gI) = (g∂x − i∂yg̃)I.

This gives an alternative formulation of the condition of h–monogenicity for the subclass of
functions having values in Cn :

Proposition 3. A function g : R2n → Cn is h–monogenic if and only if

∂x g − i g̃ ∂y = 0 = g ∂x − i ∂y g̃

If a function gk : R2n → Ck
n is pure k –vector valued, then gk is h–monogenic if and only if

∂X(gkI) = 0

since for such a function ∂X(gkI) = 0 implies ∂X|(gkI) = 0 by Proposition 3.
Conversely:

Proposition 4. A function g : R2n → Cn is h–monogenic if and only if

∂X([g]kI) = 0, k = 0, . . . , n

where [g]k denotes the projection of g onto the space of k –vectors.

Remark 7. There is a relation between the h–Dirac operators and the Laplace operator,
specifically:

−∆2n = ∂2
X = 4(∂†z − ∂z)2 = (−4)(∂†z∂z + ∂z∂

†
z)

since ∂z∂z = ∂†z∂†z = 0. Analogously:

−∆2n = ∂2
X| = (−4)(∂†z + ∂z)2.

It follows that h–monogenicity implies harmonicity. Moreover

∂z · ∂†z = ∂†z · ∂z =
1
2
∆2n and ∂z∂

†
z − ∂†z∂z = 2 ∂z ∧ ∂†z

An important consequence of the above is the following (see [8]):

Proposition 5. Let g = (g0, . . . , gn) be the decomposition of g : C2n → CSn into its homoge-
neous spinor parts, i.e. gj ∈ CSj

n , j = 0, . . . , n . Then the system ∂zg = 0 is equivalent to the
systems ∂zgj = 0 , j = 0, . . . , n . The system ∂†zg = 0 is equivalent to the systems ∂†zgj = 0 ,
j = 0, . . . , n .
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3.2 Action of the unitary group

To investigate the invariance of the h–Dirac operators under the action of the unitary group
Ũ(n) one needs the following result, see Lemma 11 in [25]. It turns out that the h–Dirac
operators ∂z and ∂†z are the appropriate operators to work with in the Hermitian setting.

Lemma 1. Let s ∈ Ũ(n) and consider the corresponding transformation h(s) acting on the
Clifford vector variable X , i.e. h(s) : X −→ sX s = sX s† . Then this transformation preserves
the Hermitian decomposition of X , i.e. h(s)[z] = s z s† ∈ CΛn and h(s)[z†] = s z† s† ∈ CΛ†n .

In order to recall that the h–representation of a spin group leads to associated operator
actions on functions, one defines

H(s)[g(X)] = s g(sX s) s

and
L(s)[g(X)] = s g(sX s).

As it is proved in [25], if s ∈ Ũ(n) then the h–Dirac operators ∂z and ∂†z commute with the
operators L(s) and H(s) , thus they are invariant under the unitary group action. Since the
action of H(s) on a Cn -valued function g may be converted into the action of L(s) on gI , it
is enough to study L(s) .

Theorem 1. For s ∈ Ũ(n) one has
[
∂z, L(s)

]
= 0 =

[
∂†z , L(s)

]

where [·, ·] denotes the commutator of the two involved operators.

3.3 The Cauchy-Kowalewskaya extension and the h -submonogenic system

To study the Cauchy-Kowalewskaya problem for the h -monogenic system, it is most convenient
to consider the system in Cn+1 with variables (z0, z1, . . . , zn) = (z0, z) , i.e.:

{
(∂z0f

†
0 + ∂z)f = 0

(∂zc
0
f0 + ∂z†)f = 0

where ∂z =
∑n

j=1 ∂zj f
†
j , ∂z† =

∑n
j=1 ∂zc

j
fj are the h -Dirac operators in Cn . The Cauchy-

Kowalewskaya extension problem (in short CK-extension problem) arises naturally when looking
to solutions in the form of a double power series

f(z0, z
c
o, z, z†) =

+∞∑

k,`=0

zk
0 (zc

0)
`fk`(z, z†)

and the solution is fully determined by its restriction to the boundary k = 0, ` = 0. But the
Cauchy data have to satisfy extra constraints in order to admit a CK-extension, and even the
initial term f00 has to. To obtain more clarity on the CK-extension problem first studied in
[16, 35], in the paper [36] the authors considered a subsystem of the h -monogenic system that
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imposes no constraints on the initial term f00 . It is easily obtained as follows. Since one has
that f0f

†
0 + f

†
0f0 = 1 and

f0f
†
0(∂z0f

†
0 + ∂z) = f0f

†
0∂z

f
†
0f0(∂z0f

†
0 + ∂z) = ∂z0f

†
0 + f

†
0f0∂z

f
†
0f0(∂zc

0
f
†
0 + ∂z†) = f

†
0f0∂z†

f0f
†
0(∂zc

0
f
†
0 + ∂z†) = ∂zc

0
f0 + f0f

†
0∂z†

the h -monogenic system is clearly equivalent to what is called the h -submonogenic system in
[36]

(∂z0f
†
0 + f

†
0f0∂z)f = 0

(∂zc
0
f0 + f0f

†
0∂z†)f = 0

together with the constraints f0f
†
0∂zf = f

†
0f0∂z†f = 0. Since these constraints may be restricted

to k = 0, ` = 0 they are also satisfied by the Cauchy data (in fact by every term fk` in the
series of f ) and for the initial term f00 these constraints are necessary and sufficient for the h -
monogenic extension to exist.
To study the h -submonogenic system one has to write the solution into the form

f = A + f0B + f
†
0C + f0f

†
0D

where A,B, C,D take values in the Clifford subalgebra with generators f1, f
†
1, . . . , fn, f†n . The

h -submonogenic system may be written in the form

∂z0(A + D)− ∂zC = 0
∂z0B + ∂zA = 0
∂zc

0
B − ∂z†B = 0

∂zc
0
C + ∂z†(A + D) = 0

where the elements f0 , f
†
0 are being eliminated. To solve this system one again writes the

solutions A,B, C, D into the form of a double series solution f =
∑+∞

k,`=0 zk
o (zc

0)
`fk` and the

CK-extension problem may be solved by plugging these series into the system. The CK-extension
problem discussed in [36] is quite involved but the initial term A00 has no constraints. So A00

may be any real analytic function and the CK-extension for the h -submonogenic system will
be h -monogenic if and only if the initial conditions, and in particular the initial term A00

satisfy the constraints f0f
†
0∂zf = f

†
0f0∂z†f = 0. For the initial term A00 these constraints are

equivalent to the h -monogenic system ∂zA00 = ∂z†A00 in one dimension less. In other words,
the CK-extension problem as discussed in [16] is part of the CK-extension problem of the more
general h -submonogenic system. In [36] several new special solutions of the h -submonogenic
system were constructed, involving Bessel functions, hypergeometric functions and Laguerre
polynomials; these were obtained by choosing the initial term A00 in a special way and the
obtained special solutions are h -submonogenic but not h -monogenic.

4 Hermitian spherical monogenics and Fischer decomposition

Definition 7. A polynomial Rk,l(z, z†) is said to be homogeneous of degree (k, l) ∈ N2 if, for
all η ∈ C \ {0} ,

Rk,l(ηz, ηcz†) = ηk(ηc)lRk,l(z, z†)

10



An h -monogenic homogeneous polynomial Pk,l(z, z†) of degree (k, l) is called h -spherical mono-
genic of degree (k, l) .

Let us introduce the Euler and Gamma operators in the present setting. Define the Hermitian
Gamma operators, or h -Gamma operators, as

Γz = 2z ∧ ∂z, Γz† = 2z† ∧ ∂†z ,

and the Hermitian Euler operators, or h -Euler operators

Ez =
n∑

j=1

zj∂zj = z · ∂z, Ez† =
n∑

j=1

zc
j∂zc

j
= z† · ∂†z .

Recall that, in the affine setting, the traditional Euler and Gamma (or angular Dirac) operators
are easily seen to commute, since the former is a purely radial operator, while the latter is
angular. Although we will see that the angular character of the Gamma operator is not preserved
in the present Hermitian setting, the commuting property remains.

Proposition 6. The h–Euler operators Ez , Ez† commute with the h–Gamma operators Γz ,
Γz† .

Moreover the homogeneous polynomials are eigenfunctions of the h -Euler operators:

Proposition 7. Let Rk,l(z, z†) be an homogeneous polynomial of degree (k, l) . Then

Ez[Rk,l] = kRk,l, Ez† [Rk,l] = lRk,l.

Moreover, define a spherical monogenic of degree (k, l) to be a homogeneous polynomial of
degree (k, l) which is h -monogenic; then

Proposition 8. Let Pk,l be a spherical monogenic of degree (k, l) then it is an eigenfunction
of the h -Gamma operators, i.e.

Γz[Rk,l] = −kRk,l, Γz† [Rk,l] = −lRk,l.

4.1 The Fischer decomposition

On the space Pk,l(C2n) of all C2n valued homogeneous polynomials of degree (k, l) one defines
the so–called Fischer inner product as follows:

Definition 8. Let Rk,l(z, z†) and Sk,l(z, z†) be homogeneous polynomials of degree (k, l) . We
define

(Rk,l; Sk,l) =
[
R†

k,l(2∂†z , 2∂z) Sk,l(z, z†)|z=0

]
0
.

Note that in the above definition, it is in fact superfluous to take the restriction to z = 0 at the
right hand side, since the action of the differential operator corresponding to R†

k,l on the poly-
nomial Sk,l is a constant. However, this inner product may be extended to polynomials showing
different degrees of homogeneity, where taking the restriction to z = 0 becomes necessary. The
differential operator appearing in this definition originates from the given polynomial Rk,l by
Fischer duality. This Fischer duality is induced by the substitutions fj → f

†
j , f

†
j → fj , i → −i ,

xj → ∂xj , yj → ∂yj , namely

z =
n∑

j=1

zjfj =
n∑

j=1

(xj + iyj)fj →
n∑

j=1

(∂xj − i∂yj )f
†
j = 2

n∑

j=1

∂zj f
†
j = 2∂z

11



and

z† =
n∑

j=1

zc
j f
†
j =

n∑

j=1

(xj − iyj)f
†
j →

n∑

j=1

(∂xj + i∂yj )fj = 2
n∑

j=1

∂zc
j
fj = 2∂†z

such that an arbitrary polynomial Rk,l(z, z†) indeed is converted into R†
k,l(2∂†z , 2∂z) . One may

easily prove

Lemma 2. The Fischer inner product is a positive definite and Hermitian inner product on the
space Pk,l(C2n) of C2n valued homogeneous polynomials of degree (k, l) .

A first result is then obtained concerning the decomposition of an arbitrary homogeneous
polynomial into a Hermitian spherical monogenic part and remaining terms.

Theorem 2 (Little Fischer decomposition). The space Pk,l of homogeneous polynomials of
degree (k, l) admits the orthogonal decomposition

Pk,l = M+
k,l ⊕ {zPk−1,l + z†Pk,l−1}

Thus, for each homogeneous polynomial Rk,l of degree (k, l) , there exists a unique h–spherical
monogenic Pk,l of degree (k, l) and homogeneous polynomials R

(1)
k−1,l and R

(2)
k,l−1 , such that

Rk,l = Pk,l + (z R
(1)
k−1,l + z†R

(2)
k,l−1) (4.2)

Note that, in the orthogonal decomposition above, the spherical monogenic Pk,l is unique, since
so is

R̃k,l = zR
(1)
k−1,l + z†R(2)

k,l−1,

however, the polynomials R
(1)
k−1,l and R

(2)
k,l−1 are not uniquely determined, since zR

(1)
k−1,l +

z†R(2)
k,l−1 = 0 does not imply that R

(1)
k−1,l = R

(2)
k,l−1 = 0.

Invoking the little Fischer decomposition, together with the above lemmata, one eventually
arrives at the following important result.

Theorem 3 (Orthogonal Fischer decomposition).

(i) For each homogeneous polynomial of degree (k, l) Rk,l , there exist a unique spherical
monogenic Pk,l , unique homogeneous polynomials z P̃k−1,l and z† P̃k,l−1 , and, for p =
1, 2, . . . , unique homogeneous polynomials z† Pk−p,l−p , z P̃k−p,l−p , z† Pk−p,l−p−1 , z P̃k−p−1,l−p ,
such that

Rk,l = Pk,l + z P̃k−1,l + z†P̃k,l−1 +
∑

p

|z|2p−2(z z†Pk−p,l−p + z†z P̃k−p,l−p)

+
∑

p

|z|2p−2(z†z z†Pk−p,l−p−1 + z z†z P̃k−p−1,l−p)

where P̃k−1,l , P̃k,l−1 , Pk−p,l−p , P̃k−p,l−p , Pk−p,l−p−1 and finally P̃k−p−1,l−p are spherical
monogenics of the indicated degrees.

(ii) One has the following orthogonal decomposition of the space Pk,l of homogeneous polyno-
mials of degree (k, l) :

Pk,l = M+
k,l ⊕ {zM+

k−1,l + z†M+
k,l−1}

⊕ {zz†M+
k−1,l−1 + z†zM+

k−1,l−1}
⊕ {zz†zM+

k−2,l−1 + z†zz†M+
k−1,l−2}

⊕ {zz†zz†M+
k−2,l−2 + z†zz†zM+

k−2,l−2} ⊕ . . .

12



In [38] the author observes that, as in the classical case, the Fischer decomposition is com-
pletely determined by the Fischer decomposition of the reproducing kernel

Rk,l(z, z†;u, u†) =
{z†, u}{z, u†}

k! l!

in term of which any homogeneous polynomial Rk,l can be written via the Fischer inner product.
All the building blocks for Rk,l can all be expressed in terms of the spin Euler polynomials Pk(β)
and Pk(n− β) with explicit formulae, see [38].

5 Some integral formulae

The material in this section is mainly taken from [13] to which the reader is referred for more
information. In that paper the authors obtain the Cauchy and the Bochner-Martinelli formulae
for h -monogenic functions using a matrix approach. First of all, let us introduce some useful
differential forms:

dσz =
n∑

j=1

(
f
†
j(dz1 ∧ dzc

1) ∧ . . . (d̂zj ∧ dzc
j) ∧ . . . ∧ (dzn ∧ dzc

n)
)

and

dσz† =
n∑

j=1

(
fj(dz1 ∧ dzc

1) ∧ . . . (dzj ∧ d̂zc
j) ∧ . . . ∧ (dzn ∧ dzc

n)
)

where ̂ denotes that the element underneath is omitted, and the volume form

dW (z, z†) = (dz1 ∧ dzc
1) ∧ . . . ∧ (dzn ∧ dzc

n).

The following result holds:

Theorem 4 (Hermitian Clifford-Stokes theorems). Let Ω be an open set in R2n . Let f, g be
functions in C1(Ω,C2n) and let Γ be a 2n -dimensional differentiable, compact and oriented
manifold with smooth boundary ∂Γ . Then

∫

∂Γ
f(z, z†) dσzg(z, z†) =

∫

Γ
[(f∂z)g + f(∂zg)]dW (z, z†)

∫

∂Γ
f(z, z†) (−dσz†)g(z, z†) =

∫

Γ
[(f∂z†)g + f(∂z†g)]dW (z, z†)

Theorem 5 (Hermitian Cauchy theorems). Let Ω be an open set in R2n . Let g be a h -
monogenic function in Ω and let Γ be a 2n -dimensional differentiable, compact and oriented
manifold with smooth boundary ∂Γ . Then

∫

∂Γ
dσzg(z, z†) = 0

∫

∂Γ
dσz†g(z, z†) = 0.

To prove the analogue of the Cauchy formula it is better to reformulate the notion of Her-
mitian monogenic functions by using suitable matrices (see [45]). To this end, one defines the
set of the so-called circulant matrices of dimension 2× 2 , i.e. the set

M =
{[

m1 m2

m2 m1

]
, m1,m2 ∈ C2n

}
.
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To each pair of continuously differentiable functions g1, g2 it is possible to associate the matrix

G =
[
g1 g2

g2 g1

]
, (5.3)

while to the pair of operators ∂z , ∂z† , one associates the matrix (see also [45]):

D =
[

∂z ∂z†

∂z† ∂z

]
.

In particular, the following matrices will play a crucial role:

E =
1

(2i)n

[ E E†
E† E

]
dΣ =

[
dσz −dσz†

−dσz† dσz

]

where

E(z) =
2

a2n

z

|z|2n
, E†(z) =

2
a2n

z†

|z|2n
,

and a2n is the area of the unit sphere in R2n . Note that E , E† are not the fundamental solutions
for the operator ∂z or ∂z† .

Definition 9. We say that the matrix of functions G defined on Ω is left Hermitian monogenic,
or H -monogenic for short, on Ω if and only if

DG = O,

where O denote the zero 2× 2 matrix.

Remark 8. It is easy to verify that matrices of the form
[
g 0
0 g

]
(5.4)

are H -monogenic if and only if g is h -monogenic. Thus any H -monogenic matrix of the above
form can be identified with its element g , and conversely any h -monogenic function g can be
identified with a H -monogenic matrix of the above form.

To state the analogue of the Cauchy formula some more notations are needed: let Y be a
vector in R2n and let Y | be its twist; denote by v, v† the corresponding h–variables

v =
1
2
(Y + iY |) v† = −1

2
(Y − iY |).

Theorem 6 (Cauchy formula). Let Ω be an open set in R2n , g1, g2 ∈ C1(Ω,C2n) and let G be
the corresponding matrix as in (5.3). Let Γ ⊂ Ω be a 2n -dimensional compact, differentiable,
oriented manifold with smooth boundary ∂Γ and let Y in the interior of Γ . If G is H -
monogenic in Ω then

G(v, v†) =
∫

∂Γ
E(z − v)dΣ(z,z†)G(z, z†).

Remark 9. The theorem holds in particular when G is of the form (5.4). Let us now restrict
the attention to functions taking values in the complex spinor space CS = C2nI ∼= CnI . Let
us set CSj = (CΛ†n)(j)I for j = 1, . . . , n so that CS decomposes as CS = ⊕n

j=1CSj and let
g be a CSn -valued function. Since CSn is generated by f1 . . . fnI , a CSn -valued function has
the form g(z1, . . . , zn) = gn(z1, . . . , zn)f1 . . . fnI where gn is a smooth function. The fact that
g is h -monogenic translates into the fact that gn is holomorphic in z1, . . . , zn , see proposition
5. The Cauchy integral formula gives precisely the well known Bochner -Martinelli formula.
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6 Hermitian Radial Algebra

To define the so-called Hermitian radial algebra one starts from a basic set S of abstract complex
vector variables Z,U, . . . , which are merely symbols. As multiplication rules, we assume that

(A1) ZU = −UZ, Z2 = 0, Z, U ∈ S

and we hence know that the associative algebra Alg(S) generated by S over the field of complex
numbers is a generalized Grassmann algebra (a usual Grassmann algebra in case S is finite).
Then, consider another set S† of symbols, disjoint from S , which is in one-to-one correspondence
with S , i.e. there exists a bijective map

† : S → S†.

One also assumes the axiom

(A†1) Z†U † = −U †Z†, Z†
2

= 0, Z, U ∈ S

so that Alg(S†) is a copy of Alg(S) and also one assumes that ZU † + U †Z is scalar for all
Z ∈ S , U † ∈ S† which is equivalent to assume the identity

(A2) [V, {Z,U †}] = 0, [V †, {Z, U †}] = 0, V, Z ∈ S, U †, V † ∈ S†.

Under these assumptions the complete associative algebra R(S, †) , generated by the whole set
S ∪ S† with the previous axioms is a ”radial algebra” in the sense of [47]. With the notation

(U,Z) = (Z†, U †) = {U †, Z},

it follows that
|Z|2 = (Z,Z) = (Z†, Z†) = |Z†|2

(U,Z†) = (Z†, U) = 0.

together with the constraints

(C1) |Z|2 is real valued

(C2) (U,Z) is the complex conjugate of (Z, U).

The radial algebra R(S, †) can be represented in terms of a Clifford algebra. To that end,
choose a dimension m and introduce the Clifford algebra C2n with a Witt basis f1, ..., fn ;
f
†
1, ..., f

†
n . For any variable Z ∈ S , select a t–uple of complex variables (X1, ..., Xn; Y1, ..., Yn)

with no intersection for two different variables Z,U ∈ S . Then the Witt basis together with the
collection of all the complex variables taken together generate the Clifford polynomial algebra
P (n, S) determined by the dimension n and the set of labels S . Then consider a representation

. : R(S, †) → P (n, S)

which is determined by

Z → Z =
∑

fjZj , Z† → Z† =
∑

f
†
jZ

†
j

with Zj = Xj + iYj , Z†j = Xj − iYj . Then, following [47], it is possible to prove the following
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Theorem 7. In case S is finite with cardinality ` ; then for any n ≥ ` the representation
. : R(S, †) → P (n, S) is an isomorphism.

The representation ” . ” hence leads to the possibility to replace abstract vector variables like
Z, U,Z†, U †, ... by Clifford vector variables Z,U,Z†, U †, ..., so that in order to verify whether a
certain identity holds on the abstract level (i.e. follows from the axioms) it suffices to verify the
property in a Clifford algebra of sufficiently high dimension. The Hermitian vector derivatives
∂Z and ∂†Z are introduces as follows. They can be defined as endomorphisms on the algebra
R(S, †) . Both operators ∂Z , ∂†Z can act from both sides on elements F ∈ R(S, †) . Small letters
f are used to denote scalar valued elements i.e. elements belonging to the center ZR(S, †) , which
is generated by the inner products {v, w} , for v, w ∈ S ∪S† . The axioms to define ∂Z , ∂†Z are
similar to those used to define ∂x in [47]:

(D1) ∂Z [fF ] = ∂Z [f ]F + f∂Z [F ], ∂†Z [fF ] = ∂†Z [f ]F + f∂†Z [F ]

[fF ]∂Z = F∂Z [f ] + f [F ]∂Z , [fF ]∂†Z = F∂†Z [f ] + f [F ]∂†Z
(D2) ∂Z [G] = [G]∂Z = 0 for G ∈ Alg((S \ Z) ∪ S†)

∂†Z [G] = [G]∂†Z = 0 for G ∈ Alg(S ∪ (S† \ Z†)).

These are the basic derivation axioms which allow one to reduce the problem of evaluation of
∂Z [F ] (resp. [F ]∂Z , ∂†Z [F ], [F ]∂†Z) to the evaluation of scalar valued objects and the objects
∂Z [Z] , [Z]∂Z , ∂†Z [Z†] , [Z†]∂†Z . Indeed, any F ∈ R(S, †) consists of a sum of products of
elements v1...vt , vj ∈ S ∪ S† . In case Z is not among the vectors vj then by (D2) the
evaluation vanishes and otherwise one can bring all the Z ’s in front using the commutation
relations

UZ = −ZU, U †Z = −ZU † + {U †, Z}.
This means that one only has to be able to evaluate objects of the form fG with f scalar and
Z not occurring in G or of the form fZG with f scalar and Z not occurring in G . Now, as
to the evaluation of scalars, assume

(D3) ∂Z(U,Z) = U †, ∂†Z(Z,U) = ∂†Z(U †, Z†) = U

and this for every Z ∈ S , U ∈ S (including Z = U ). Also assume

(D4) ∂Z [Z] =
1
2
(n + B), ∂†Z [Z†] =

1
2
(n−B)

and
(D′

4) [Z]∂Z =
1
2
(n−B), [Z†]∂†Z =

1
2
(n + B)

whereby n is scalar and B is a bivector. The universality of n and B follows from the obvious
assumption

(U) ∂Z [Z] = ∂U [U ], ∂†Z [Z†] = ∂†U [U †].

To define a bivector B as above one sets

(D5) B = ∂Z [Z]− ∂†Z [Z†]

and from the Clifford representation one has relations of the form

(A3) BZ − ZB = −2Z, BZ† − Z†B = 2Z.
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This axiom together with (A1), (A2) determines the associative algebra R(S, †, n, B) generated
over the field of rational functions in n by the set S ∪S† ∪B . Moreover one can verify that for
any vectorial object v in the algebra, vB −Bv is still a vector. One extends (D2) by requiring

(D2) ∂Z [B] = ∂Z† [B] = [B]∂Z = [B]∂Z† = 0, ∂Z [n] = ∂Z† [n] = 0.

From the Clifford setting it also follows that

B∂Z† − ∂Z†B = −2∂Z† , B∂Z − ∂ZB = 2∂Z

but this is no axiom; it can be derived from the abstract setting as well. Hence to define the
Hermitian radial algebra one needs

1. the axioms of radial algebra (A1 ), (A2 ) and (A3 ) including the scalar n

2. the derivation axioms (D1 ), (D2 )

3. the evaluation of scalars (D3 )

4. the axioms (D4 ), (D′
4 ) together with the obvious axiom (U ).

7 Complexes of Hermitian Dirac operators

This section describes the algebraic analysis of the h -hermitian system. It is interesting to note
that the various notions of hyperholomorphy, in one variable, are described by systems that are
associated, in the sense that will be made precise below, to square matrices and in this sense they
are not interesting. The system arising from the condition of h -monogenicity is not square and
gives rise to an interesting analysis. In order to keep this note self-contained, some basic notions
in algebraic analysis are repeated here but the reader is referred to [28] for more information.
Let ~f = (f1, . . . , fr) be an r -tuple of functions real differentiable on an open set U ⊆ Rm and
let

r∑

j=1

Pij(D)fj = gi i = 1, . . . , q (7.5)

be a q×r system of linear partial differential equations with constant coefficients. Let P = [Pij ]
be an q × r matrix of complex polynomials in Cm and D = (−i∂x1 , . . . ,−i∂xm) . The matrix
P , symbol of the system, can be obtained from P (D) = [Pij(D)] by replacing (formally) ∂xk

by
the complex variable zk for every k = 1, . . . , m . Let R be the ring of polynomials with complex
coefficients C[z1, . . . , zm] . The transpose matrix P t of P is an R -homomorphism Rq → Rr

whose cokernel is Rr/P tRq = Rr/〈P t〉 is denoted by M . Note that 〈P t〉 is the submodule of
Rr generated by the columns of P t . The Hilbert syzygy theorem guarantees the existence of a
finite free resolution of the form

0 −→ Ras
P t

as−→ Ras−1 −→ . . .
P t

1−→ Rq P t−→ Rr −→ M −→ 0

that together with its transpose

0 −→ Rr P−→ Rq P1−→ . . . −→ Ras−1
Pas−→ Ras −→ 0 (7.6)

are key tools for the algebraic analysis of the given system. The matrix P t
ai

(D) gives the com-
patibility conditions for the system whose symbol is the polynomial matrix P t

ai−1
. In particular,
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P1(D) gives the compatibility conditions that a datum ~g of a inhomogeneous system P (D)~f = ~g
must satisfy to have solutions ~f . The cohomology groups of (7.6), denoted by Ext j(M,R) are
uniquely determined by M (even though (7.6) is not uniquely defined) and carry analytic in-
formation on the nullsolutions to the system associated to P (D) . For example, the vanishing
of Ext 1(M,R) is related to the removability of compact singularities.
Our first goal is now to write the matrix associated to the h -hermitian system. To this end,
one needs the following result:

Theorem 8. For all 1 ≤ j ≤ n− 1 , the spaces CSj are sl(n) -irreducibles with highest weight
(1n−j , 0j−1) , under the multiplicative sl(n) -action. Both CS0 and CSn yield a copy of the
trivial representation.

Note that, whereas X and ∂X define endomorphisms of CS under the embedding C2n ↪→
C(1)

2n , the complex vector variables (z, z†) and Hermitian Dirac operators (∂z, ∂
†
z) map spaces

CSj into CSj±1 , where CS−1 = CSn+1 = 0. This fact allows to write the matrices associated
to the operators ∂z , ∂†z in a special form. With an abuse, the matrices are denoted with the
same symbol as the operators.

Proposition 9. With respect to the decomposition CS = ⊕n
j=0CSj we can represent the Dirac

operators as the following block matrices with entries in C[z, z†]

∂z =




0 0 · · · 0 0
d1 0 · · · 0 0

0 d2
. . . 0 0

...
...

. . . . . .
...

0 0 · · · dn 0




(7.7)

where the i, j -th block is a
(
n
i

)
times

(
n
j

)
matrix of either zeroes or given by the restriction of

the Dirac operator di := πCSi ◦ [ ∂z ]|CSi−1
: CSi−1 → CSi , and similarly

∂†z =




0 δ0 0 · · · 0
0 0 δ1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . δn−1

0 0 0 · · · 0




(7.8)

where δi := πCSi ◦ [ ∂†z ]|CSi+1
: CSi+1 → CSi .

Remark 10. It can be verified by direct computations that the operators di and δi satisfy
didi−1 = δiδi+1 = 0, for all i such that the equalities make sense.

Next result describes more precisely the resolution of the module associated to the Hermitian
Dirac system and the maps associated to the first syzygies.

Theorem 9. The free resolution of the module associated to the Hermitian Dirac system in
dimension 2n is linear of length n . The first syzygies are described by the relations

{
di a|CSi−1

= 0 2 ≤ i ≤ n,

δi b|CSi+1
= 0 0 ≤ i ≤ n− 2,

(7.9)

which form 2n − n− 1 complex relations among the scalar components of a and b .
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Remark 11. It is interesting to note that, unlike what happens for the Cauchy-Riemann or the
Cauchy-Fueter system, the compatibility conditions do not contain relations involving both a
and b at a time.

The proof of the previous theorem gives an explicit description of the whole resolution for
the module M . This fact i s, in general, non trivial (see [28]). In this case, the particular form
of the matrix associated to the Hermitian system allows to write the maps in the sequence.

Theorem 10. Let ϕ0 = P t and ϕj be the j -th maps in the minimal free resolution of the
module M = R2n

/Im(P t) . Its nonzero blocks are only the matrices associated to dj+1, . . . , dn

and δ0, . . . , δn−j−1 . Explicitly, the matrix ϕj for j ≥ 1 is given by the transpose of



dj+1 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0

0 0 dn 0 0 0 0 0
0 0 0 0 0 δ0 0 0

0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 δn−j−1




The Betti numbers of M are given by

β0 = 2n, and βi = 2




n∑

j=i

(
n

j

)
 , 1 ≤ i ≤ n.

As a consquence of this discussion, one may obtain important information on h -monogenic
functions. For example, one deduces the Hartogs’ type of phenomenon does not hold:

Corollary 1. Let K be a compact convex subset of an open set U ⊆ R2n , n > 1 and let f be a
Hermitian monogenic function on U \K . Then f cannot in general be extended to a Hermitian
monogenic function on U .

The case of functions h -hermitian in several variables has been treated in [32].
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