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Abstract

Recently, we devised a promising new multi-dimensional integral transform within the
Clifford analysis setting, the so-called Fourier-Bessel transform. In the specific case of
dimension two, it coincides with the Clifford-Fourier transform introduced earlier as an
operator exponential. Moreover, the L2-basis elements, consisting of generalized Clifford-
Hermite functions, appear to be simultaneous eigenfunctions of both integral transforms.
In the even dimensional case, this allows us to express the Clifford-Fourier transform in
terms of the Fourier-Bessel transform, leading to a closed form of the Clifford-Fourier
integral kernel.
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1. Introduction

The Fourier transform is by far the most important integral transform. Since its
introduction by Fourier in the early 1800s, it has remained an indispensable and stimulating
mathematical concept that is at the core of the highly evolved branch of mathematics
called Fourier analysis. It has found use in innumerable applications and has become
a fundamental tool in engineering sciences, thanks to the generalizations extending the
class of Fourier transformable functions and to the development of efficient algorithms for
computing the discrete version of it.

The second player in this paper is Clifford analysis. It is a function theory for functions
defined in Euclidean space Rm and taking values in the real Clifford algebra R0,m, con-
structed over Rm. A Clifford algebra is an associative but non-commutative algebra with
zero divisors, which combines the algebraic properties of the reals, the complex numbers
and the quaternions with the geometric properties of a Grassmann algebra.
During the past 50 years, Clifford analysis has gradually developed into a comprehensive
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theory offering a direct, elegant and powerful generalization to higher dimension of the
theory of holomorphic functions in the complex plane. In its most simple but still useful
setting, flat m-dimensional Euclidean space, Clifford analysis focuses on monogenic func-
tions, i.e. null solutions of the Clifford vector-valued Dirac operator ∂x =

∑m
j=1 ej∂xj

, where

(e1, . . . , em) forms an orthogonal basis for the quadratic space R0,m underlying the construc-
tion of the real Clifford algebra R0,m. Monogenic functions have a special relationship with
harmonic functions of several variables in that they are refining their properties. The
reason is that, as does the Cauchy-Riemann operator in the complex plane, the rotation-
invariant Dirac operator factorizes the m-dimensional Laplace operator. At the same time,
Clifford analysis offers the possibility of generalizing one-dimensional mathematical analy-
sis to higher dimension in a rather natural way by encompassing all dimensions at once, in
contrast to the traditional approach, where tensor products of one-dimensional phenomena
are taken.

It is precisely this last qualification of Clifford analysis which has been exploited in [1]
and [2] to construct a genuine multi-dimensional Fourier transform within the context of
Clifford analysis. This so-called Clifford-Fourier transform is briefly discussed in Section 3.
It is given in terms of an operator exponential or, alternatively, by a series representation.
Particular attention is directed towards the two-dimensional case, since then the Clifford-
Fourier kernel can be written in a closed form. Note that we have not succeeded yet in
obtaining such a closed form in arbitrary dimension.
In [3] we introduced another promising multi-dimensional integral transform within the
language of Clifford analysis, the so-called Fourier-Bessel transform (see Section 4). It
appears that in the two-dimensional case, it coincides with the above mentioned Clifford-
Fourier transform. Moreover, it satisfies operational formulae which are similar to those
of the classical multi-dimensional Fourier transform. Furthermore, as is also the case for
the Clifford-Fourier transform, the L2-basis elements consisting of generalized Clifford-
Hermite functions appear to be eigenfunctions of the Fourier-Bessel transform. The fact
that the L2-basis elements are simultaneous eigenfunctions of the Clifford-Fourier and the
Fourier-Bessel transform will allow us, in the even dimensional case, to express the Clifford-
Fourier transform in terms of the Fourier-Bessel transform (see Section 5), which leads to
a closed form of the Clifford-Fourier integral kernel (see Section 6). To make the paper
self-contained a section on definitions and basic properties of Clifford algebra and Clifford
analysis is included (Section 2).

2. The Clifford Analysis Toolkit

Clifford analysis (see e.g. [4], [5], [6] and [7]) offers a function theory which is a higher
dimensional analogue of the theory of the holomorphic functions of one complex variable.

The functions considered are defined in Rm (m > 1) and take their values in the Clifford
algebra R0,m or its complexification Cm = R0,m⊗C. If (e1, . . . , em) is an orthonormal basis
of Rm, then a basis for the Clifford algebra R0,m or Cm is given by all possible products
of basis vectors (eA : A ⊂ {1, . . . ,m}) where e∅ = 1 is the identity element. The non-
commutative multiplication in the Clifford algebra is governed by the rules: ejek + ekej =
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−2δj,k (j, k = 1, . . . ,m).
Conjugation is defined as the anti-involution for which ej = −ej (j = 1, . . . ,m). In

case of Cm, the Hermitean conjugate of an element λ =
∑

A λAeA (λA ∈ C) is defined
by λ† =

∑
A λ

c
A eA, where λcA denotes the complex conjugate of λA. This Hermitean

conjugation leads to a Hermitean inner product and its associated norm on Cm given
respectively by

(λ, µ) = [λ†µ]0 and |λ|2 = [λ†λ]0 =
∑
A

|λA|2 ,

where [λ]0 denotes the scalar part of the Clifford element λ.
The Euclidean space Rm is embedded in the Clifford algebras R0,m and Cm by identify-

ing the point (x1, . . . , xm) with the vector variable x given by x =
∑m

j=1 ejxj. The product
of two vectors splits up into a scalar part (the inner product up to a minus sign) and a
so-called bivector part (the wedge product):

x y = x . y + x ∧ y ,

where

x . y = − < x, y > = −
m∑
j=1

xjyj and x ∧ y =
m∑
i=1

m∑
j=i+1

eiej(xiyj − xjyi) .

Note that the square of a vector variable x is scalar-valued and equals the norm squared
up to a minus sign: x2 = − < x, x > = −|x|2 = −r2.
Moreover, one can verify (see [8]) that for all x, t ∈ Rm the following formula holds:

(x ∧ t)2 = −|x ∧ t|2 = (< x, t >)2 − |x|2|t|2 . (1)

The central notion in Clifford analysis is the notion of monogenicity, a notion which is
the multi-dimensional counterpart to that of holomorphy in the complex plane. A function
F (x1, . . . , xm) defined and continuously differentiable in an open region of Rm and taking
values in R0,m or Cm, is called left monogenic in that region if ∂x[F ] = 0. Here ∂x is the
Dirac operator in Rm : ∂x =

∑m
j=1 ej∂xj

, an elliptic, rotation-invariant, vector differential
operator of the first order, which may be looked upon as the ”square root” of the Laplace
operator in Rm: ∆m = −∂2

x. This factorization of the Laplace operator establishes a special
relationship between Clifford analysis and harmonic analysis in that monogenic functions
refine the properties of harmonic functions.

In the sequel the monogenic homogeneous polynomials will play an important role. A
left monogenic homogeneous polynomial Pk of degree k (k ≥ 0) in Rm is called a left solid
inner spherical monogenic of order k. The set of all left solid inner spherical monogenics
of order k will be denoted by M+

` (k). The dimension of M+
` (k) is given by

dim
(
M+

` (k)
)

=

(
m+ k − 2

m− 2

)
=

(m+ k − 2)!

(m− 2)! k!
.
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These left solid inner spherical monogenics are polynomial eigenfunctions of the so-called
angular Dirac operator given by

Γ = −x ∧ ∂x = −
m∑
i=1

m∑
j=i+1

eiej(xi∂xj
− xj∂xi

) ,

i.e.
Γ[Pk] = −kPk , Pk ∈M+

` (k) . (2)

This angular Dirac operator acts only on the angular co-ordinates. In Section 5 and 6 we
will also use the following formula:

Γ[xPk] = (k +m− 1) x Pk , Pk ∈M+
` (k) . (3)

The set

φs,k,j(x) =
2m/4

(γs,k)1/2
Hs,k(

√
2x) P

(j)
k (
√

2x) exp

(
−|x|

2

2

)
(4)

s, k ∈ N, j ≤ dim
(
M+

` (k)
)

, constitutes an orthonormal basis for the space L2(Rm) of

square integrable functions. Here
{
P

(j)
k (x); j ≤ dim

(
M+

` (k)
)}

denotes an orthonormal
basis of M+

` (k) and γs,k a real constant depending on the parity of s. The polynomials
Hs,k(x) are the so-called generalized Clifford-Hermite polynomials introduced by Sommen
in [9]; they are a multi-dimensional generalization to Clifford analysis of the classical Her-
mite polynomials on the real line. Note that Hs,k(x) is a polynomial of degree s in the
variable x with real coefficients depending on k. More precisely, H2s,k(x) only contains
even powers of x and hence is scalar-valued, while H2s+1,k(x) only contains odd ones and
thus is vector-valued.

3. The Clifford-Fourier transform

In [1] a new multi-dimensional Fourier transform in the framework of Clifford analy-
sis, the so-called Clifford-Fourier transform, is introduced. The idea behind its definition
originates from an alternative representation for the standard tensorial multi-dimensional
Fourier transform given by

F [f ](ξ) =
1

(2π)m/2

∫
Rm

exp (−i < x, ξ >) f(x) dV (x) , (5)

where dV (x) stands for the Lebesgue measure on Rm.
It is indeed so that this classical Fourier transform can be seen as the operator exponential

F = exp
(
−i π

2
H
)

=
∞∑
n=0

1

n!

(
−iπ

2

)n
Hn (6)

where H is the scalar-valued differential operator H = 1
2
(−∆m + r2−m). The equivalence

of this operator exponential form with the traditional integral form in (5) may be proved
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rather easy in the Clifford analysis setting. To this end, we use the orthonormal basis
(4) of the space L2(Rm). In [10] we have shown that the L2(Rm)-basis functions φs,k,j are
simultaneous eigenfunctions of the Fourier transform F in integral form and of the operator
H; more precisely we have at the same time

F [φs,k,j](ξ) =
1

(2π)m/2

∫
Rm

exp
(
−i < x, ξ >

)
φs,k,j(x) dV (x)

= exp
(
−i(s+ k)

π

2

)
φs,k,j(ξ)

and
H[φs,k,j(x)] = (s+ k) φs,k,j(x) .

It then follows that

exp
(
−iπ

2
H
)

[φs,k,j] =
∞∑
n=0

1

n!

(
−iπ

2

)n
Hn[φs,k,j]

=
∞∑
n=0

1

n!

(
−iπ

2

)n
(s+ k)n φs,k,j

= exp
(
−iπ

2
(s+ k)

)
φs,k,j

= F [φs,k,j] ,

which immediately gives rise to the desired equivalence in L2(Rm).
Note that, due to the scalar character of the standard Fourier kernel, the Fourier spectrum
inherits its Clifford algebra character from the original signal, without any interaction with
the Fourier kernel. So in order to genuinely introduce the Clifford analysis character in
the Fourier transform, the idea occurred to us to replace the scalar-valued operator H in
the operator exponential (6) by a Clifford algebra-valued one. To that end we aimed at
factorizing the operator H, making use of the factorization of the Laplace operator by the
Dirac operator. Splitting H into a sum of Clifford algebra-valued second order operators,
leads in a natural way to a pair of transforms

FH± = exp
(
−iπ

2
H±
)

with H± = H± Γ ,

the geometric average of which is precisely the standard Fourier transform F , i.e. F2 =
FH+ FH− .

Particular attention is directed towards the two-dimensional case, since then the Clifford-
Fourier kernel can be written in a closed form. Indeed, the two-dimensional Clifford-Fourier
transform may be expressed as

FH± [f ](ξ) =
1

2π

∫
R2

exp
(
±(ξ ∧ x)

)
f(x) dV (x)

with exp (ξ ∧ x) =
∑∞

r=0

(ξ∧x)r

r!
. This closed form has enabled us to generalize the well-

known results for the standard Fourier transform both in the L1 and in the L2-context
(see [2]). Note that we have not succeeded yet in obtaining such a closed form in arbitrary
dimension.
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4. The Fourier-Bessel Transform

In [3] we have introduced another promising multi-dimensional integral transform within
the language of Clifford-analysis, the so-called Fourier-Bessel transform given by

Fbes[f ](ξ) =
1

(2π)m/2

∫
Rm

J(x ∧ ξ) f(x) dV (x) .

Its integral kernel

J(x∧ξ) = 2(m−3)/2 Γ

(
m− 1

2

)
|x∧ξ|(3−m)/2

(
J(m−3)/2(|x ∧ ξ|) +

x ∧ ξ
|x ∧ ξ|

J(m−1)/2(|x ∧ ξ|)
)

with Jν the Bessel function of the first kind, is obtained by leaving out the exponential
factor exp (< x, ξ >) from the so-called Bessel-exponential function, introduced by Som-
men who recently used it to study Clifford generalizations of the classical Fourier-Borel
transform (see [11]).

In the special case of dimension two, it is observed that the Clifford-Fourier and the
Fourier-Bessel transform coincide:

Fbes[f ](ξ) = FH− [f ](ξ) = FH+ [f ](−ξ) .

Moreover, the Fourier-Bessel transform satisfies operational formulae which are similar
to those of the classical multi-dimensional Fourier transform (5). For example, let us state
the differentiation and multiplication rule.

Proposition 1 (differentiation and multiplication rule).
The Fourier-Bessel transform satisfies
(i) the differentiation rule

Fbes
[
∂x[f(x)]

]
(ξ) = −ξ Fbes[f(x)](−ξ)

(ii) the multiplication rule

Fbes[xf(x)](ξ) = −∂ξ
[
Fbes[f(x)](−ξ)

]
.

For further use, let us also mention the reflection property.

Proposition 2 (reflection property).
The Fourier-Bessel transform satisfies

Fbes[f(−x)](ξ) = Fbes[f(x)](−ξ) .

Furthermore, in [3] we have calculated the Fourier-Bessel spectrum of the L2-basis (4)
consisting of generalized Clifford-Hermite functions. We have found that these L2-basis
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elements are eigenfunctions of the Fourier-Bessel transform. Indeed, for k even we have
obtained that:

Fbes
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)k/2

√
π Γ

(
m−1

2

)
Γ
(−k+1

2

)
Γ
(
k+m−1

2

) (−1)p H2p,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
and

Fbes
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)k/2

√
π Γ

(
m−1

2

)
Γ
(

1−k
2

)
Γ
(
k+m−1

2

) (−1)p H2p+1,k(
√

2ξ) exp

(
−
|ξ|2

2

)
Pk(ξ) ,

while for k odd:

Fbes
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)(k−1)/2

√
π Γ

(
m−1

2

)
Γ
(
−k

2

)
Γ
(
k+m

2

) (−1)p H2p,k(
√

2ξ) exp

(
−
|ξ|2

2

)
Pk(ξ)

and

Fbes
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)(k+1)/2

√
π Γ

(
m−1

2

)
Γ
(
−k

2

)
Γ
(
k+m

2

) (−1)p H2p+1,k(
√

2ξ) exp

(
−
|ξ|2

2

)
Pk(ξ) .

The above results will be used in the next section to express the Clifford-Fourier in terms
of the Fourier-Bessel transform.

5. The Clifford-Fourier transform in terms of the Fourier-Bessel transform in
the even dimensional case

In this section, we will compare the Fourier-Bessel transform with the Clifford-Fourier
transform. To this end we will use the following eigenvalue equations (see e.g. [8])

FH+

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) = (−1)p H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)

FH+

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

= (−1)p+k (−i)m H2p+1,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
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FH−
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) = (−1)p+k H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)

FH−
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

= (−1)p+1 im H2p+1,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
.

The following results only hold in the case of even dimension m.

5.1. Basis function φ2p,k,j with k even

Taking into account the formulae

Γ(n+ z) = z (z + 1) . . . (z + n− 1) Γ(z) , Γ

(
1

2
+ z

)
Γ

(
1

2
− z
)

=
π

cos (πz)
(7)

with n ∈ N, we have in the case where m is even that

Γ

(
k +m− 1

2

)
Γ

(
−k + 1

2

)
= Γ

(
k + 1

2
+
m− 2

2

)
Γ

(
−k + 1

2

)
=

(
k + 1

2

) (
k + 3

2

)
. . .

(
k +m− 3

2

)
Γ

(
1

2
+
k

2

)
Γ

(
1

2
− k

2

)
= 21−m/2 (k + 1)(k + 3) . . . (k +m− 3) π (−1)k/2 .

Hence, we obtain

Fbes
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)k/2

√
π Γ

(
m−1

2

)
Γ
(−k+1

2

)
Γ
(
k+m−1

2

) (−1)p H2p,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p

Q(k)
H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
,

where we have introduced the following polynomial of degree m/2− 1 in k :

Q(k) = (k +m− 3)(k +m− 5) . . . (k + 3)(k + 1) =
(k +m− 3)!!

(k − 1)!!
.

In view of (2), we have that

−Γξ

[
H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)]
= k H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
,
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which means also that:

Q(−Γξ)

[
H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)]
= Q(k) H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
.

This in its turn, implies that

Q(−Γξ)

[
Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p H2p,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

2m/2−1 Γ
(
m−1

2

)
√
π

FH±
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) .

We have thus proved that

FH±
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=

√
π

2m/2−1 Γ
(
m−1

2

) Q(−Γξ)

[
Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
.

Remark 1. To study the case where m is odd, we use the following formulae satisfied by
the Gamma function:

Γ(n+ 1) = n! and Γ

(
1

2
− n

)
= (−1)n

√
π 22n n!

(2n)!

with n ∈ N. We find consecutively

Γ

(
k +m− 1

2

)
Γ

(
−k + 1

2

)
=

(
k +m− 3

2

) (
k +m− 5

2

)
. . . 2.1 (−1)k/2

√
π 2k

(
k
2

)
!

k!

=
1

2(k+m−3)/2
(k +m− 3)!! (−1)k/2

√
π 2k

k(k − 2) . . . 2

2k/2 k(k − 1) . . . 1

= 2(3−m)/2 (k +m− 3)!! (−1)k/2
√
π

(k − 1)!!
.

Hence, in this case the expression

(−1)k/2
√
π Γ

(
m−1

2

)
Γ
(−k+1

2

)
Γ
(
k+m−1

2

) =
Γ
(
m−1

2

)
(k − 1)!!

(k +m− 3)!!
2(m−3)/2

yields a rational function in k. It follows that the previous method cannot be applied in
case where m is odd.
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5.2. Basis function φ2p,k,j with k odd

Again using the formulae (7) we find that for m even and k odd:

Γ

(
k +m

2

)
Γ

(
−k

2

)
= Γ

(
m− 2

2
+
k + 2

2

)
Γ

(
1

2
− k + 1

2

)
=

(
k + 2

2

) (
k + 4

2

)
. . .

(
k +m− 2

2

)
Γ

(
1

2
+
k + 1

2

)
Γ

(
1

2
− k + 1

2

)
=

1

2(m−2)/2
(k + 2)(k + 4) . . . (k +m− 2)

π

cos
(
π
(
k+1
2

))
=

1

2(m−2)/2

(k +m− 2)!!

k!!
π (−1)(k+1)/2 ,

which yields

Fbes
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)(k−1)/2

√
π Γ

(
m−1

2

)
Γ
(
−k

2

)
Γ
(
k+m

2

) (−1)p H2p,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p+1 k!!

(k +m− 2)!!
H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p+1

Q(k + 1)
H2p,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
.

This also implies that

Q(−Γξ + I)

[
Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p+1 H2p,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
= ±

2m/2−1 Γ
(
m−1

2

)
√
π

FH∓
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) ,

where I denotes the identity operator. Hence, in the case where k is odd, we have shown
that

∓ FH±
[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=

√
π

2m/2−1Γ
(
m−1

2

) Q(−Γξ + I)

[
Fbes

[
H2p,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
.
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5.3. Basis function φ2p+1,k,j with k even

Similarly as in subsection 5.1, we have that

Fbes
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=
(−1)k/2

√
π Γ

(
m−1

2

)
Γ
(

1−k
2

)
Γ
(
k+m−1

2

) (−1)p H2p+1,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p

Q(k)
H2p+1,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
.

In view of (3), we find that

(−Γξ + I)

[
H2p+1,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)]
= (−k −m+ 2) H2p+1,k(

√
2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
,

which gives

(−1)m/2−1 Q(−Γξ + I)

[
Fbes

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
=

(−1)m/2−1 2m/2−1 Γ
(
m−1

2

)
(−1)p

√
π Q(k)

Q(−k −m+ 2) H2p+1,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
=

2m/2−1 Γ
(
m−1

2

)
√
π

(−1)p H2p+1,k(
√

2ξ) Pk(ξ) exp

(
−
|ξ|2

2

)
,

since

Q(−k −m+ 2) = (−k − 1)(−k − 3) . . . (−k −m+ 5)(−k −m+ 3)

= (−1)m/2−1 (k +m− 3)(k +m− 5) . . . (k + 3)(k + 1)

= (−1)m/2−1 Q(k) .

Hence we arrive at

(−1)m/2−1 Q(−Γξ + I)

[
Fbes

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
=

2m/2−1 Γ
(
m−1

2

)
√
π

(±1) (±i)m FH±
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ) .

As (±i)m = (−1)m/2, this can be rewritten as

∓ FH±
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=

√
π

2m/2−1 Γ
(
m−1

2

) Q(−Γξ + I)

[
Fbes

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
.
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5.4. Basis function φ2p+1,k,j with k odd

In this case we find for m even

FH±
[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

=

√
π

2m/2−1 Γ
(
m−1

2

) Q(−Γξ)

[
Fbes

[
H2p+1,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
.

5.5. General expression

Summarizing, we can state that in case of dimension m even:
A) k, s: same parity

FH±
[
Hs,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

= cm Q(−Γξ)

[
Fbes

[
Hs,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
B) k, s: different parity

∓ FH±
[
Hs,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

= cm Q(−Γξ + I)

[
Fbes

[
Hs,k(

√
2x) Pk(x) exp

(
−|x|

2

2

)]
(ξ)

]
with

Q(k) = (k + 1)(k + 3) . . . (k +m− 5)(k +m− 3) and cm =

√
π

2m/2−1 Γ
(
m−1

2

) .

Note that the above result only depends on the even or odd character of the basis function.
As each function f ∈ L2(Rm) can be decomposed into its even and odd part:

f(x) = f e(x) + f o(x)

=
1

2
(I + S)[f ](x) +

1

2
(I − S)[f ](x)

with S the ”antipodal” map given by

S[f ](x) = f(−x) ,

we have that:

FH+

1

2
(I + S) = cm Q(−Γξ) Fbes

1

2
(I + S)

FH+

1

2
(I − S) = −cm Q(−Γξ + I) Fbes

1

2
(I − S) .
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Moreover, taking into account the reflection property of the Fourier-Bessel transform (see
Proposition 2), it is easily seen that the Fourier-Bessel transform and the antipodal map
S commute, i.e. Fbes S = S Fbes.
Hence, we can also write

FH+

1

2
(I + S) = cm Q(−Γξ)

1

2
(I + S) Fbes

FH+

1

2
(I − S) = −cm Q(−Γξ + I)

1

2
(I − S) Fbes .

Adding the above equations finally yields

FH+ = cm

{
Q(−Γξ)

(
I + S

2

)
−Q(−Γξ + I)

(
I − S

2

)}
Fbes . (8)

Similarly, we find

FH− = cm

{
Q(−Γξ)

(
I + S

2

)
+Q(−Γξ + I)

(
I − S

2

)}
Fbes . (9)

6. Closed form for the Clifford-Fourier integral kernel in the even dimensional
case

By means of equations (8) and (9), we immediately obtain the following result.

Theorem 1.
The integral kernel of the Clifford-Fourier transform FH± in case of even dimension is
given by

cm

{
Q(−Γξ)

(
I + S

2

)
[J(x ∧ ξ)]∓Q(−Γξ + I)

(
I − S

2

)
[J(x ∧ ξ)]

}
(10)

with

Q(k) = (k + 1)(k + 3) . . . (k +m− 5)(k +m− 3) and cm =

√
π

2m/2−1 Γ
(
m−1

2

) .

The even and odd part of the Fourier-Bessel kernel are respectively scalar- and bivector-
valued:(

I + S

2

)
[J(x ∧ ξ)] = 2(m−3)/2 Γ

(
m− 1

2

)
|x ∧ ξ|(3−m)/2 J(m−3)/2(|x ∧ ξ|)(

I − S
2

)
[J(x ∧ ξ)] = 2(m−3)/2 Γ

(
m− 1

2

)
|x ∧ ξ|(1−m)/2 J(m−1)/2(|x ∧ ξ|) (x ∧ ξ) .
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6.1. Case m = 2

In the case where m = 2, we have that Q(k) = c2 = 1.
Taking into account that (see e.g. [12])

J1/2(z) =
(π

2
z
)−1/2

sin (z) and J−1/2(z) =
(π

2
z
)−1/2

cos (z) ,

expression (10) indeed yields the two-dimensional Clifford-Fourier kernel:√
π

2
|x ∧ ξ|1/2 J−1/2(|x ∧ ξ|)∓

√
π

2

(x ∧ ξ)
|x ∧ ξ|1/2

J1/2(|x ∧ ξ|)

= cos (|x ∧ ξ|)∓
x ∧ ξ
|x ∧ ξ|

sin (|x ∧ ξ|) = exp
(
∓(x ∧ ξ)

)
.

6.2. Case m = 4

Let us now calculate the Clifford-Fourier kernels in case m = 4.
First, we have that c4 = 1 and Q(k) = k + 1.
Next, we obtain

Γξ[ξ ∧ x] = Γξ[ξx+ < ξ, x >] = 3 ξx+ x ∧ ξ = −3 < ξ, x > +2 (ξ ∧ x) , (11)

since
Γξ[ξ] = (m− 1)ξ and Γξ[< ξ, x >] = x ∧ ξ .

Furthermore, in view of (1) we also find that

Γξ[|x ∧ ξ|2] = Γξ[|x|2|ξ|2 − (< x, ξ >)2] = −2 < x, ξ > Γξ[< x, ξ >]

= −2 < x, ξ > (x ∧ ξ) .

Combining the above result with

Γξ[|x ∧ ξ|2] = 2|x ∧ ξ| Γξ[|x ∧ ξ|] ,

yields

Γξ[|x ∧ ξ|] =
< x, ξ > (ξ ∧ x)

|x ∧ ξ|
. (12)

Taking into account formula (12) and the following formulae (see e.g. [12])

J ′ν(z) = Jν−1(z)− ν

z
Jν(z) and Jν−1(z)− 2

ν

z
Jν(z) = −Jν+1(z) ,

we arrive at

Q(−Γξ)

(
I + S

2

)
[J(x ∧ ξ)]

= (−Γξ + I)

[√
π

2
|x ∧ ξ|−1/2 J1/2(|x ∧ ξ|)

]
=

√
π

2
|x ∧ ξ|−1/2

(
J1/2(|x ∧ ξ|) +

(ξ ∧ x)

|x ∧ ξ|
J3/2(|x ∧ ξ|) < x, ξ >

)
.
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Similarly, a straightforward computation using also formula (11), yields

Q(−Γξ + I)

(
I − S

2

)
[J(x ∧ ξ)] = (−Γξ + 2I)

[√
π

2
|x ∧ ξ|−3/2 J3/2(|x ∧ ξ|) (x ∧ ξ)

]
= −

√
π

2
|x ∧ ξ|−1/2 J1/2(|x ∧ ξ|) < x, ξ > .

Hence for m = 4 we have derived the following closed form of the kernel of FH± :√
π

2
|x ∧ ξ|−1/2

(
(1± < x, ξ >) J1/2(|x ∧ ξ|) +

(ξ ∧ x)

|x ∧ ξ|
J3/2(|x ∧ ξ|) < x, ξ >

)
.

6.3. Case m = 6

In case of dimension m = 6, we obtain after a similar lengthy calculation the following
kernels of FH± :√

π

2

{
|x ∧ ξ|−1/2

(
J1/2(|x ∧ ξ|) +

< x, ξ >2

|x ∧ ξ|
J3/2(|x ∧ ξ|)

)
± |x ∧ ξ|−3/2

(
2 < x, ξ > J3/2(|x ∧ ξ|) + (ξ ∧ x) J3/2(|x ∧ ξ|) +

< x, ξ >2

|x ∧ ξ|
(ξ ∧ x) J5/2(|x ∧ ξ|)

)}
.
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