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INTRODUCTION

Recently, when constructing orthogonal bases of spaces of polynomials in Euclidean and Hermitean Clifford analy-
sis using ideas stemming from group representation theory, more particularly the well-known construction of the
Gel’fand-Tsetlin basis for irreducible modules of classical Lie groups (see [22, 8]), it became apparent that two basic
theorems are really indispensable in this approach: the Fischer decomposition and the Cauchy-Kovalevskaya exten-
sion. Of both theorems the classical version and the Clifford analysis versions are enlightened. They not only are
powerful tools in Clifford analysis, they are also nice illustrations of how Clifford analyis, in a direct and elegant
way, generalizes to higher dimension the concept of holomorphy in the complex plane and at the same times refines
harmonic analysis.

BASICS OF CLIFFORD ANALYSIS

Let (e1, . . . ,em) be an orthonormal basis ofRm, then multiplication in the real Clifford algebraRm and in the
complex Clifford algebraCm = Rm⊗C is governed by the ruleeαeβ + eβ eα = −2δαβ , α,β = 1, . . . ,m, whence
both Clifford algebras are generated additively by the elementseA = ej1 . . .ejh, whereA = { j1, . . . , jh} ⊂ {1, . . . ,m},
with 1≤ j1 < j2 < · · ·< jh ≤m, ande/0 = 1.
In Euclidean Clifford analysis (see e.g. [3, 15, 19, 20]) the central notion is that of a monogenic function, i.e. a null
solution of the so–called Dirac operator∂X = ∑m

α=1 eα ∂Xα
.

In the books [23, 13] and the series of papers [24, 9, 1, 2, 4, 16, 17] so–called Hermitean Clifford analysis has emerged
as a refinement of Euclidean Clifford analysis. The framework for Hermitean Clifford analysis is introduced by means
of a complex structure, i.e. an SO(m)–elementJ with J2 = −1 (see [1, 2]). So, the dimension is forced to be even:
m = 2n. UsuallyJ is chosen to act upon the generators ofC2n asJ[ej ] = −en+ j andJ[en+ j ] = ej , j = 1, . . . ,n. By
means of the projection operators±1

2(1± iJ) associated toJ, first the Witt basis elements(f j , f
†
j )

n
j=1 for C2n are

obtained:f j = 1
2(1+ iJ)[ej ] = 1

2(ej − ien+ j) and f†j = −1
2(1− iJ)[ej ] = −1

2(ej + ien+ j), j = 1, . . . ,n, satisfying the

relationsf j fk + fkf j = f†j f
†
k + f†kf

†
j = 0 andf j f

†
k + f†kf j = δ jk, j,k = 1, . . . ,n. Next, a vector(x1, . . . ,xn,y1, . . . ,yn) ∈ R2n

is identified withX = ∑n
j=1(ej x j + en+ j y j), producing the Hermitean variablesz = 1

2(1+ iJ)[X] = ∑n
j=1 f j zj and

z† = −1
2(1− iJ)[X] = ∑n

j=1 f†j zj , expressed in the complex variableszj = x j + iy j and their conjugateszj = x j − iy j ,
j = 1, . . . ,n. Finally, the Dirac operator∂X = ∑n

j=1(ej ∂x j + en+ j ∂y j ) gives rise to the Hermitean Dirac operators

∂ †
z = 1

4(1+ iJ)[∂X] = ∑n
j=1 f j ∂zj and ∂z = −1

4(1− iJ)[∂X] = ∑n
j=1 f†j ∂zj , involving the Cauchy–Riemann operators

∂zj = 1
2(∂x j + i∂y j ) and their conjugates∂zj = 1

2(∂x j − i∂y j ), j = 1, . . . ,n. The Hermitean variables and Dirac operators
are isotropic, whence the Laplacian decomposes as∆2n = 4(∂z∂

†
z +∂ †

z ∂z), while alsozz† +z†z= |z|2.
We take functions with values in an irreducible representationSn of C2n, called spinor space, which is realized

within C2n using a primitive idempotentI = I1 . . . In, with I j = f j f
†
j , j = 1, . . . ,n. With that choiceSn ≡ C2nI ∼=

∧†
nI ,
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where
∧†

n denotes the Grassmann algebra generated by thef†j ’s, sincef j I = 0. HenceSn decomposes into homogeneous

parts asSn =
n⊕

r=0
S(r)

n =
n⊕

r=0
(
∧†

n)
(r)I , with (

∧†
n)

(r) = spanC(f†k1
∧ f†k2

∧·· ·∧ f†kr
: {k1, . . . ,kr} ⊂ {1, . . . ,n}).

A continuously differentiable functiong in an open regionΩ of R2n, taking values inSn, then is called (left)
Hermitean monogenic inΩ iff it satisfies inΩ the system∂zg = 0 = ∂ †

z g. A major difference with Euclidean Clifford
analysis concerns the underlying group invariance. The fundamental group leaving the Dirac operator∂X invariant is
the orthogonal group O(m), which is doubly covered by the Pin(m) group of the Clifford algebra. However the system
invariance of the Hermitean Dirac operators(∂z,∂

†
z ) breaks down to the group U(n), see e.g. [1, 2]. Both groups O(m)

and U(n) play a fundamental role in the construction of an orthogonal basis of (Hermitean) monogenic polynomials,
as explained in [22, 8, 6].

THE FISCHER DECOMPOSITION

In 1917 Ernst Fischer proved (see [18]) that, given a homogeneous polynomialq(X), X ∈ Rm, every homogeneous
polynomial Pk(X) of degreek can be uniquely decomposed asPk(X) = Qk(X) + q(X)R(X), where Qk(X) is a
homogeneous polynomial of degreek satisfyingq(D)Qk = 0, D being the differential operator corresponding toX
through Fourier identification (Xj ↔ ∂x j , j = 1, . . . ,m) andR(X) is a homogeneous polynomial of suitable degree. If in
particularq(X) = ||X||2, thenq(D) is the Laplacian∆m andQk is harmonic, leading to the direct sum decomposition

P(Rm;C) =
∞⊕

k=0

∞⊕
p=0

r2p Hk(Rm;C) (1)

of the spaceP(Rm;C) of complex valued polynomials into the spacesHk(Rm;C) of complex valued harmonic
homogeneous polynomials of degreek. Each of the terms in the decomposition (1) is an irreducible O(m)-module.

Euclidean Clifford analysis offers the possibility for a first refinement of this decomposition (1). Indeed, the
polynomialq(X) may be chosen to beq(X) = X, whereX = ∑m

α=1 eαXα is a real vector in the complex Clifford
algebraCm constructed overRm; the differential operatorq(D) then is precisely the Dirac operator∂ = ∑m

α=1 eα ∂Xα

andQk is ak-homogeneous polynomial null solution of∂ , a so–called spherical monogenic. This leads to the well-
known Fischer decomposition in Euclidean Clifford analysis of the spaceP(Rm;S) = P(Rm;C)⊗S of homogeneous
polynomials taking their values in spinor spaceS. This Fischer decomposition reads:

P(Rm;S) =
∞⊕

k=0

∞⊕
p=0

Xp Mk(Rm;S) , (2)

whereMk(Rm;S) denotes the space of spinor valued monogenic homogeneous polynomials of degreek. Each of the
terms in the decomposition (2) is an irreducible Pin(m)-module.

In particular each harmonick-homogeneous polynomialHk, be it real, complex or spinor valued, may be split in
terms of homogeneous monogenic polynomials as

Hk = Mk +XMk−1

Mk and Mk−1 being monogenic homogeneous polynomials of the indicated degree. This splitting also reflects the
fundamental property of the Dirac operator being a ”square root” of the Laplace operator:∂ 2

X =−∆.
In its turn Hermitean Clifford analysis offers the possibility to split any monogenic homogeneous polynomial in

terms of homogeneous Hermitean monogenic ones (see [14, 10]). As explained above this is only possible in even
dimension:m= 2n. We first decompose the spacePk(R2n;S) of spinor valuedk-homogeneous polynomials in the
variables (z1, . . . ,zn,z1, . . . ,zn) according to bidegree of homogeneity and to the homogeneous parts of spinor space:

Pk(R2n;S) =
⊕

a+b=k

n⊕
r=0

P
(r)
a,b

It is interesting to know that for the casesr = 0, respectivelyr = n, the notion of Hermitean monogenicity coincides
with the notion of antiholomorphy, respectively holomorphy, inn complex variables. This also explains why from now
on we will restrict the spinor homogeneity degreer to 1≤ r ≤ n−1.



If Ma,b(R2n;S(r)) denotes the space of Hermitean monogenic polynomials belonging toP
(r)
a,b, thenMk(R2n;S) may

be decomposed into U(n)-irreducibles as follows:

Mk =

(
k⊕

a=0

n⊕
r=0

M
(r)
a,k−a

)
⊕

(
k−1⊕
a=0

n−1⊕
r=1

(
z

a+ r
+

z†

k−a−1+n− r

)
M

(r)
a,k−a−1

)
We went even a step further and established a Fischer decomposition theorem for the null solutions of either one of

the Hermitean Dirac operators (see [7]), i.e. for the homogeneous polynomials belonging to

Ker r
a,b(∂z) = {p∈P r

a,b| ∂zp = 0} and Kerra,b(∂
†
z ) = {p∈P r

a,b| ∂
†
z p = 0}

These kernel spaces are strongly related to the spaces of ”initial data” needed for the Hermitean monogenic Cauchy-
Kovalevskaya extension (see the next section). We obtained the following results:

(i) Under the action of U(n), the space Kerra,b(∂z) has the multiplicity free irreducible decomposition

Ker r
a,b(∂z) = M

(r)
a,b ⊕

min(a,b−1)⊕
j=0

|z|2 jz†M
(r−1)
a− j,b− j−1⊕

min(a−1,b−1)⊕
j=0

|z|2 j(z†z+
(a− j−1+ r)

(a+ r)
zz†)M (r)

a− j−1,b− j−1

(ii) Under the action of U(n), the space Kerra,b(∂
†
z ) has the multiplicity free irreducible decomposition

Ker r
a,b(∂

†
z ) = M

(r)
a,b ⊕

min(a−1,b)⊕
j=0

|z|2 jzM (r+1)
a− j−1,b− j ⊕

min(a−1,b−1)⊕
j=0

|z|2 j(zz† +
(b− j−1+n− r)

(b+n− r)
zz†)M (r)

a− j−1,b− j−1

THE CAUCHY-KOVALSKEVSKAYA EXTENSION

The Cauchy–Kovalevskaya (CK) extension theorem (see e.g. [11, 21]) is very well known; for a nice and well–
documented historical account on this result we refer to [12]. The classical idea behind the concept of CK–extension is
to characterize solutions of suitable (systems of) PDE’s by their restriction, sometimes together with the restrictions of
some of their derivatives, to a submanifold of codimension one. In its most simple setting the CK-extension theorem
reads as follows.

Proposition 1. If the functions F, f0, . . . , fk−1 are analytic in a neighbourhood of the origin, then the initial value
problem

∂
k
t h(x, t) = F(x, t,∂ i

t ∂
α
x h)

∂
j

t h(x,0) = f j(x), j = 0, . . . ,k−1

has a unique solution which is analytic in a neighbourhood of the origin, provided that|α|+ i ≤ k.

If the differential operator is chosen to be the Cauchy–Riemann operator, or more explicitly:∂th = −i∂xh, with
k = 1, |α|= 1, i = 0, it follows from Proposition 1 that a holomorphic function in an appropriate region of the complex
plane is completely determined by its restriction to the real axis. For a harmonic function though, or more explicitly
when∂ 2

t h =−∂ 2
x h, with k = 2, |α|= 2, i = 0, also the values of its normal derivative on the real axis should be given.

In fact, there is a nice and simple construction formula for the holomorphic and harmonic CK–extensions, illustrating
the necessity of these restricted values.

Proposition 2. If the function f0(x) is real-analytic in|x|< a, then

F(z) = exp(iy
d
dx

) [ f0(x)] =
∞

∑
k=0

1
k!

ikyk f (k)
0 (x)

is holomorphic in|z|< a and F(z)|R = f0(x). If moreover f1(x) is real-analytic in|x|< a, then

G(z) =
∞

∑
j=0

(−1) j

(2 j)!
y2 j
(

d
dx

)2 j

[ f0(x)]+
∞

∑
j=0

(−1) j

(2 j +1)!
y2 j+1

(
d
dx

)2 j

[ f1(x)]

is harmonic in|z|< a and G(z)|R = f0(x), ∂

∂yG(z)|R = f1(x).



The CK–extension theorem in Euclidean Clifford analysis is a direct generalization to higher dimension of this
complex plane case; it reads as follows (see [3, p.110] for the version related to the Cauchy–Riemann operator instead
of the Dirac operator used here).

Theorem 1. (The monogenic CK extension)
If f̃ (X1,X2, . . . ,Xm−1) is real-analytic in an open set̃Ω of Rm−1 identified with{X ∈ Rm : Xm = 0}, then there exists
an open neigbourhoodΩ of Ω̃ in Rm and a unique monogenic function f inΩ such that its restriction tõΩ is precisely
f̃ . If moreoverΩ̃ contains the origin, then in an open neighbourhood of the origin this CK-extension f is given by

f (X1,X2, . . . ,Xm) = exp
(

Xmem∂̃

)
[ f̃ ] =

∞

∑
k=0

1
k!

Xk
m(em∂̃ )k[ f̃ ]

where∂̃ stands for the restriction of∂ to Rm−1.

Recently a CK–extension theorem for homogeneous polynomials in Hermitean Clifford analysis was obtained (see
[5]). In particular, the necessary restricted values needed for a unique Hermitean monogenic extension to exist, were
determined. Again we consider homogeneous polynomials with values inS(r). We single out the variables(zn,zn) and
consider restrictions to the vector subspaceCn−1 = {z∈ Cn |zn = zn = 0} of codimension 1. We may then split the
value spaceS(r) as

S(r) ≡ (
∧†

n)
(r)I = (

∧†
n−1)

(r) I ⊕ (
∧†

n−1)
(r−1) f†n I

Hence any polynomialp with values in(
∧†

n)
(r)I can be split asp = p0I + p1 f†n I , wherep0 has values in(

∧†
n−1)

(r) and

p1 has values in(
∧†

n−1)
(r−1). In [5] we proved the following CK-extension theorem.

Theorem 2. (The Hermitean monogenic CK extension)
Given as ”initial data” the homogeneous polynomials p0

a,b− j ( j = 0, . . . ,b) with values in(
∧†

n−1)
(r)(f†1, . . . , f

†
n−1) and

p1
a−i,b (i = 0, . . . ,a) with values in(

∧†
n−1)

(r−1)(f†1, . . . , f
†
n−1), satisfying the respective compatibility conditions

∂̃zp0
a,b = 0, ∂̃zp0

a,b−1 = 0, . . . , ∂̃zp0
a,0 = 0 (r < n−1)

∂̃
†
z p1

a,b f†n I = 0, ∂̃
†
z p1

a−1,b f†n I = 0, . . . , ∂̃
†
z p1

0,b f†n I = 0 (r > 1)

there exists a unique Hermitean monogenic homogeneous polynomial Ma,b given by

Ma,b =
b

∑
j=0

M0
a,b− j +

a

∑
i=0

M1
a−i,b

where

M0
a,b− j = z1

j
A

∑
k=0

1

b k
2c!

1

b k+1
2 + jc!

(
zn ∂̃zfn + zn ∂̃

†
z f†n

)k

p0
a,b− j I

M1
a−i,b = zi

1

B

∑
k=0

1

b k
2c!

1

b k+1
2 + ic!

(
zn ∂̃zfn +zn ∂̃

†
z f†n

)k

p1
a−i,b f†n I

with A= 2(b− j) if a≥ b− j or A = 2a+1 if a < b− j, and B= 2(a− i) if b≥ a− i or B = 2b+1 if b < a− i, such
that

Ma,b |Cn−1 = pa,b = p0
a,b I + p1

a,b f†n I

∂ iMa,b

∂zn
i |Cn−1 = pa−i,b = (−1)r+1

∂̃zp1
a−i+1,b I + p1

a−i,b f†n I , i = 0, . . . ,a

∂ jMa,b

∂zn
j |Cn−1 = pa,b− j = p0

a,b− j I − f†n ∂̃
†
z p0

a,b− j+1 I , j = 0, . . . ,b
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