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Integrating below-ground ecology into sustainable grassland management 
R.D. Bardgett 
Institute of Environmental and Natural Sciences, Lancaster University, Lancaster LA1 4YQ, 
UK, Email: r.bardgett@lancaster.ac.uk  
 
Key points 
 
1. Grasslands produce soils that sustain an abundant and diverse soil food web, providing 

tremendous opportunity for below-ground interactions to influence nutrient cycling 
processes and plant production. 

2. Fast developing areas of ecological science offer scope to harness positive outcomes of 
below-ground ecology for enhancing efficient cycling of nutrients in sustainable grassland 
systems. 

 
Keywords: nitrogen cycling, soil biota, organic nitrogen, mycorrhizal fungi, soil microbes, 
grazing animals, root exudation 
  
Introduction 
 
Grasslands, including steppes, savannas, and prairies, are important terrestrial ecosystems 
covering about a quarter of Earth’s land surface. The development of agriculture has been 
very closely linked to these grasslands, and they now form the backbone of the global 
ruminant livestock industry, completely dominating the landscape of many parts of the world. 
In recent years, the nature of grassland agriculture in many parts of the world has started to 
change. Until recently, the drive was to maximise production through the use of large 
amounts of fertiliser and nitrogen (N) responsive grasses. Now, the need to develop 
sustainable management strategies that encourage efficient nutrient cycling, thereby 
minimising the use of fertilisers, has come to the fore. This has largely been driven by 
agricultural policy aimed at cutting fertiliser use to reduce nutrient losses to air and water, and 
also to help restore botanical diversity to species-poor agriculturally improved grassland. 
There is also an increasing drive towards organic production systems, which rely entirely on 
biological processes of nutrient cycling to meet crop demand. Collectively, these demands 
highlight the urgent need to develop management strategies for grassland that are directed at 
encouraging a greater reliance on natural ecological processes, rather than on the input of 
artificial inputs such as fertilisers.   
 
Grassland lends itself well to management for natural processes of nutrient cycling. This is 
because they build soil systems that are very different from those of other vegetation types; 
their high turnover of shoot and root biomass creates a large pool of labile organic matter at 
the soil surface, and heavy herbivore loads result in large amounts of organic matter being 
returned to soil as animal waste, which is nutrient replete. These features combine to produce 
a soil environment that sustains an abundant and diverse soil food web, the main agent of 
efficient nutrient cycling; hence, there is a tremendous opportunity for soil organisms and 
their interactions with plants, and their consumers, to influence nutrient cycling processes and 
plant production. This is what this paper is concerned with: illustrating, using selected 
examples, how an understanding of ecological interactions between plants and soil biota can 
be harnessed to promote efficient nutrient cycling and sustainable management in agricultural 
grassland. I will use three examples from rapidly developing areas of research to demonstrate 
this. First, I will consider recent developments in the area of plant nutrition that reveal the 
potential for grassland plants to use organic N forms, as opposed to a complete reliance on 
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mineral N. Second, I will discuss recent studies that show intimate links between grazers, 
plants, and soil microbes, which have important consequences for plant production in grazed 
grassland. Finally, I will consider research that reveals how management of grassland can be 
altered to maximise soil biodiversity, especially the fungal component of soils, with 
associated benefits for plant communities. The examples that I use have not yet been 
integrated into grassland management; the aim here is to illustrate how knowledge of these 
ecological interactions might be harnessed in sustainable management.  
 
Case 1: A role for organic nitrogen in grassland systems 
 
Historically, a central assumption of terrestrial nutrient cycles was that for soil N to be 
available for plant uptake it needs to be in an inorganic form. A growing body of evidence 
now challenges this view, pointing to the importance of dissolved organic nitrogen (DON) in 
the form of amino acids for plant nutrition. This is especially the case in strongly N limited 
ecosystems, such as alpine and arctic tundra, where studies reveal that plants can take up 
amino acids directly, by-passing the need for microbial mineralisation to produce simpler 
inorganic N forms (Chapin et al., 1993; Kielland, 1994; Schimel & Chapin, 1996; Lipson & 
Monson, 1998; Raab et al., 1999; Henry & Jefferies, 2003a, b). This is especially significant 
since DON often represents the dominant form of soluble N in these ecosystems (Kielland, 
1994; Jones & Kielland, 2002), thereby providing a previously unrecognised source of N for 
plant growth. 
 
Whilst most research in this area has focussed on natural ecosystems, recent work reveals that 
DON may also be of significance for plant nutrition in agricultural settings. There are two 
lines of evidence to support this. First, studies of temperate grassland reveal that amino acids 
can reach significant concentrations in soil, sometimes reaching equal abundance to mineral N 
(Bardgett et al., 2003). Second, studies done under both laboratory and field conditions show 
that grassland plants have the potential to take-up amino acids from soil directly, as in natural 
settings (Näsholm et al., 2000; Streeter et al., 2000; Bardgett et al., 2003; Weigelt et al., 
2005). This is not a straightforward issue, however. For example, it has also been argued that 
due to fast microbial turnover of organic N in agricultural soils, the main route for plant 
uptake of N is as mineral N after microbial mineralisation (Hodge et al., 1998, 1999; Owen & 
Jones, 2001). That organic N uptake is of limited importance in agricultural situations is also 
evidenced by in situ measurements of N uptake by plants in temperate grasslands, which show 
that whilst glycine can be taken up directly by plants, microbial turnover and release of this N 
into the plant-soil system is the major pathway for N acquisition (Bardgett et al., 2003). 
Despite this, field studies do reveal that amino acids could be of some significance for plant 
nutrition in low productivity, unfertilised grasslands where amino acids are relatively 
abundant in soil (Bardgett et al., 2003). This implies, therefore, that there is potential for 
organic N use in certain situations; hence, the challenge is to identify these situations and 
management strategies that best optimise organic N availability in soil. 
 
Understanding organic N cycling may also be of significance in other areas of grassland 
agriculture, especially in relation to promoting plant diversity. Whilst the capacity of plants to 
take up organic N directly appears to be ubiquitous, there is emerging evidence that plants 
vary in their capacity to take up different chemical forms of N, showing species-specific 
preferential uptake of either organic or inorganic N. So far, species-specific differences have 
been demonstrated most clearly in arctic tundra (McKane et al., 2002) and in alpine 
communities (Miller & Bowman 2002, 2003). Studies of grassland plants also indicate a 
degree of preferential uptake of different forms of N by some species, albeit under laboratory 
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conditions (Weigelt et al., 2005). These findings are potentially significant since the existence 
of species-level differences in the preference of plants to take up chemical forms of N could 
provide a mechanism for plants to efficiently partition a limited soil N pool, thereby 
facilitating species coexistence and the maintenance of plant diversity (McKane et al., 2002) 
(Figure 1). The implication here, therefore, is that managing to promote diversity of N forms 
in soil could contribute to the maintenance of plant diversity, a key objective of sustainable 
grassland management. A similar model could also be envisaged for P, which similarly occurs 
in many forms in soil, both organic and inorganic (Turner et al., 2004). It is important to 
stress, however, that evidence for this is still lacking and work is urgently needed to test the 
importance of resource partitioning for plant communities in both natural and agricultural 
settings. 
 

 
Figure 1  Schematic diagram showing how individual plant species might access different 
chemical forms of N enabling species to coexist in terrestrial ecosystems (redrawn from 
Bardgett, 2005) 
 
 
The above studies all suggest that direct uptake of DON by plants could be of importance for 
nutrient cycling and vegetation structure in grassland, but especially in unfertilised grassland 
systems, which are the cornerstone of sustainable agriculture. However, there is still much 
more work to be done in this area. This point was recently emphasised by Jones et al. (2005) 
who argued that experimental approaches used to assess whether DON is important may be 
compromised because of the use of inappropriate methods for comparing and quantifying 
plant available inorganic and organic soil N pools. In addition, they argued that experiments 
aimed at quantifying plant DON capture, which typically use dual-labelled (N-15, C-13) 
organic N tracers, often do not consider important aspects such as isotope pool dilution, 
differences in organic and inorganic N pool turnover times, bi-directional DON flows at the 
soil-root interface, and the differential fate of the 15N and 13C in the tracer compounds. Based 
upon experimental evidence, they hypothesised that DON uptake from the soil may not 
contribute largely to N acquisition by plants but may instead be primarily involved in the 
recapture of DON previously lost during root exudation. In summary, the jury is still out and 
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further work is needed to establish the importance of amino acids as plant N acquisition 
pathway in grassland systems. 
 
Case 2:  Links between grazers, plants and soil microbes 
 
Grazing animals are integral to grassland agriculture, and it has long been recognised that they 
can have important effects on both the productivity and vegetation composition of grassland 
(Bardgett & Wardle, 2003). However, only recently have ecologists started to consider how 
grazers can influence decomposer communities, and the consequences of this for grassland 
production and livestock carrying capacity.  A central tenant of ecology is that grazers can 
actually increase plant production when at intermediate densities (McNaughton, 1985). This is 
especially the case in areas of high soil fertility, such as productive grassland ecosystems, 
where the phenomena is refereed to as compensatory growth (De Mazancourt et al., 1999). 
Various mechanisms have been proposed to explain this, especially the priming of soil 
nutrient cycling through the recycling of plant material as animal waste - which is nutrient 
replete - rather than through a plant litter pathway (Bardgett et al., 1998). Recent studies, 
however, point to other mechanisms that involve soil microbes and roots that could be of high 
significance for sustainable management. 
 
 

 
Figure 2  Schematic diagram of the effects of herbivory on producer-decomposer feedbacks 
in fertile grasslands that result from changes in the quantity of resources returned to the soil. 
These mechanisms are commonest in nutrient rich grasslands, where dominant plant species 
benefit from herbivory through positive feedbacks between herbivores, plants and soil biota, 
and through preventing colonisation by later successional plants that produce poorer litter 
quality (redrawn from Bardgett & Wardle, 2003). 
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It is well known that plants allocate large proportions of their assimilated C to root exudation, 
which may stimulate the growth and activity of heterotrophic microbes in the rhizosphere. A 
number of studies have shown that defoliation of grassland plants actually leads to short-term 
pulse of root exudation, which has the effect of stimulating microbial activity in the 
rhizosphere (Mawdsley & Bardgett, 1997; Guitian & Bardgett, 2000; Paterson & Sim, 1999; 
Murray et al., 2004). In turn, this has been shown to also increase population densities of 
animals in the root zone that feed on microbes, such as bacterial and fungal-feeding 
nematodes (Mikola et al., 2001, Hokka et al., 2004). This is of relevance to sustainable 
agriculture because such positive effects of defoliation on rhizosphere organisms can 
feedback positively to the plant through enhanced soil N availability (Bardgett et al., 1998). 
This was recently demonstrated by Hamilton & Frank (2001) who showed that simulated 
defoliation of the grazing tolerant grass Poa pratensis led to increased leaf photosynthesis and 
root exudation of recently assimilated 13C, which stimulated microbial biomass in the root 
zone. This in turn increased soil N availability and plant N acquisition, which ultimately 
benefited plant growth. It was proposed that such mechanisms could explain, in part, the 
compensatory response of grasses to grazing in high fertility grasslands (Hamilton & Frank, 
2001) (Figure 2). There does appear to be much inter-species variability in the response of 
plants to defoliation (Guitian & Bardgett, 2000, Hokka et al., 2004). Also, responses are 
likely to vary with growth stage of the plant. However, what these findings collectively 
suggest is that physiological responses of plants to grazing have the potential to stimulate 
rhizosphere processes that ultimately feedback positively on plant nutrition and plant 
productivity (Bardgett & Wardle, 2003). Understanding the nature of such feedbacks between 
soil microbes, plants, and their consumers is clearly of high significance for sustainable 
grassland management, since nutrient cycling processes in unfertilised grasslands will be in 
part reliant on them. The challenge is thus to encourage such positive feedback mechanisms in 
sustainable grassland systems.   
 
Case 3: Managing grassland to promote linkages between soil and plant diversity 
 
The final example that I wish to consider is the potential for soil biodiversity to influence 
vegetation diversity in grassland. A key aim of sustainable management is the promotion of 
botanical diversity, and recent studies point to an important role for soil organisms in 
achieving this goal. This is perhaps best illustrated by using recent studies on mycorrhizal 
fungi, which are well known to benefit the performance of their host plants. However, whilst 
mycorrhizal fungi associate with the majority of plants within any community, they confer 
different degrees of benefit on certain plant species, thereby directly influencing the structure 
of plant communities. One of the first studies to illustrate this experimentally was by Grime et 
al. (1987) who assembled diverse grassland communities in microcosms and allowed them to 
develop in the presence and absence of arbuscular mycorrhizal (AM) fungi. The presence of 
AM fungi led to a shift in plant community composition, reducing the dominance of grass in 
favour of several subordinate herb species that benefited most from AM fungal infection. The 
net effect of this was a significant increase in plant species diversity due to a relaxation of 
plant competitive interactions. Positive effects of AM fungi on plant diversity have also been 
shown to occur in the field, due again to the promotion of subordinate species in the 
community (Gange et al., 1993).  Several mechanisms have been proposed to explain 
increases in plant diversity resulting from AM fungal infection.  Allen (1991) suggested that 
mycorrhizal fungi might increase plant diversity due to spatial heterogeneity of fungal 
infectivity in field soil, allowing mycotrophic (i.e. species that depend on mycorrhizal 
associations) and non-mycotrophic species to coexist in patches of high and low inoculum. 
Alternatively, Grime et al. (1987) suggested that AM fungi increase plant diversity through  
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inter-plant transfers of carbon and nutrients via hyphal links, which lead to more even 
distribution of resources within the plant community, reducing the ability of certain species to 
monopolise resources. The net effect of such nutrient distribution would be more equitable 
competitive interactions between plant species, promoting species coexistence and greater 
plant diversity. This view is also consistent with findings of Van der Heijden (2004) who 
found that AM fungi promoted seedling establishment in perennial grassland by integrating 
emerging seedlings into extensive hyphal networks and by supplying nutrients, especially P, 
to the seedlings. AM fungi therefore act as a symbiotic support system that promotes seedling 
establishment and reduces recruitment limitation in grassland (Van der Heijden, 2004).  
 
Variations in AM fungal diversity are also likely to strongly affect plant diversity in 
grassland. This was tested by Van der Heijden et al. (1998b), who manipulated the number of 
native AM species (1-to-14 species) in experimental grassland units containing 15 plant 
species. They found that plant diversity and productivity were positively related to AM fungal 
diversity. This effect was thought to be due to an increase in AM hyphal length in the more 
diverse treatments, enabling more efficient exploitation and partitioning of soil P reserves, 
thereby relaxing plant competition and increasing plant productivity. 
 
 

Grassland type

1. 2. 3. 4.

Fu
ng

al
:b

ac
te

ria
l r

at
io

0

0.01

0.02

0.03

a
a

b
b

A. Meadow grasslands

Grassland type
1. 2. 3.

0

0.02

0.04

0.06

0.08

0.1

a

b b

B. Upland grassland

 
Figure 3  Effects of management intensity on fungal-to-bacterial biomass ratios measured 
using PLFA. (A). Gradient of declining management intensity on meadow grasslands in 
northern England, characterised by long-term reductions in fertiliser use and livestock density, 
classified as: (1) improved meadow; (2) very modified meadow; (3) slightly modified 
meadow, and (4) unmodified meadow. (B). Gradient of three upland grassland types of 
varying management intensity across ten sites in different biogeographic areas of the UK, 
from: (1) improved Lolium - Cynosurus grassland; (2)  semi-improved  Festuca - Agrostis - 
Galium grassland, Holcus - Trifolium sub-community, and; (3) unimproved Festuca - Agrostis 
- Galium grassland. Values are means and bars with the same letter are not significantly 
different (data from Bardgett & McAlister, 1999; and Grayston et al., 2004). 
 
 
What is clear from the above studies is that AM fungi have the potential to promote plant 
diversity in grassland, and also more efficient exploitation of nutrients within the plant-soil 
system. The challenge therefore is to develop management strategies that are specifically 
aimed at encouraging the growth of these fungi in grassland soil, with a view to enhancing 
plant diversity and nutrient exploitation. Recent literature shows that there is much scope to 
do this. In particular, studies of gradients of management intensity in temperate grasslands 
reveal that soils of traditionally managed, unfertilised grasslands have fungal-dominated food 
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webs, with a high component of AM fungi, whereas intensive systems, characterised by high 
levels of fertiliser use, high grazing pressures, and reduced soil organic matter content, 
consistently have bacterial-dominated soil food webs (Yeates et al., 1997, Bardgett & McAlister, 
1999;  Donnison  et  al.,  2000,  Grayston et  al.,  2001,  2004)  (Figure 3).   Furthermore,  field 
manipulation studies reveal that seeding of particular plant species, for example legumes, can 
positively influence the growth of fungi in soils (Smith et al., 2003), thereby increasing 
opportunities for plant-soil interactions that positively influence nutrient cycling and plant 
diversity in grassland. In sum, there is clearly much scope to manage grassland to promote plant-
soil microbial interactions that are central to sustainable management.  
 
Conclusions 
 
This paper provides insights into fast developing areas of ecological science that offer scope 
for enhancing efficient cycling of nutrients in sustainable grassland systems. The work that I 
have presented has not yet been integrated into practical agriculture.  However, what I have 
hopefully shown is that there is much scope to alter grassland management systems to 
optimise biotic interactions between plants, their grazers, and soil microbes, to increase the 
efficiency of nutrient cycling and plant nutrition in unfertilised, low input systems. Much 
work is still to be done, but the rapid development of this area of research suggests that 
integration of below-ground ecology into sustainable grassland management is not far away.  
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