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ABSTRACT

This thesis addresses issues relating to MEG modelling, analysis and interpretation of 

results. A source model em ploying current density distributions, nam ely Magnetic Field 

Tom ography (MET), is used to obtain the MEG results.

The first issue of concern refers to the registration of MEG data w ith structural MR 

images in an attem pt to im prove the localisation capability of MEG/MET. Simulations 

testing some spatial and tem poral aspects of the reconstruction capability of MET are 

also provided. A novel w ay of conducting MET studies in depth  is suggested and 

im plem ented: the iterative use of a source space designed to cover deep situated 

structures on either side of the brain.

The main bulk of this thesis is concerned w ith research into interictal epileptic activity as 

recorded by means of m ultichannel MEG systems and analysed using MET. The major 

aim  is to investigate w hether or not MET analysis of unaveraged MEG data (single 

epochs) is feasible in cases of pathophysiological signals and more specifically interictal 

signals from patients w ith epilepsy of a complex partial type. The investigation is 

undertaken against the "traditional" view of the im propriety and absurdity of using 

single epoch records in the MEG analysis due to noise dominance; we provide evidence 

that analysis of single, unaveraged epileptic spikes is actually feasible: we dem onstrate 

spatio-tem poral coherence in the MET results of the various single interictal events and 

show that activity extracted from the "averaged event" is m ade up  of activity 

contributions which occur interm ittently and at variable latencies. O ur statem ents are 

draw n from the study of both superficial and deep activity.

W e further exploit the above conclusions to study the spatio-tem poral evolution of 

interictal activity during  the course of unaveraged spike events in two cases of tem poral 

lobe epilepsy. We observe the interactions between superficial and deep tem poral 

structures: superficial activity is identified as preceding deep activity. These observations 

are reinforced using a novel technique of backavareging three dim ensional MET 

solutions. Eurthermore, consistent propagation patterns of activation in the depth  of the 

tem poral lobe are revealed am ong the various spike events.
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1. Introduction

Biomagnetisni embraces a diverse range of activities, all made manifest by the presence 
of a magnetic field outside a body. Although different living organisms can indeed be 
included, research is mainly focused on human studies. Depending on the origin of the 
magnetic fields, biomagnetism is divided into Magnetoencephalography (MEG, brain), 
Magnetocardiography (MCG, heart), Magnetoneurography (MNG, peripheral nerve), 
Magnetogastrography (MGG, gastiointestinal tract), Magnetopneumonography (MPG, 
lungs), and Biosusceptometry (BLS, liver or BSS, spleen). All these biomagnetic methods 
have two distinctive qualities: they are completely non-invasive and they provide 
information about the function or the physical properties of the various organs. This 
thesis focuses on the measurement, analysis, modelling, and interpretation (in terms of 
physiology/pathophysiology) of MEG signals, with special emphasis on signals from

epileptic patients.

The goal of this introductory chapter is to place this piece of research in the context of 
other work in the biomagnotic field, but also in the wider field of functional brain 
imaging. Since MEG signals are a result of the electrophysiological phenomena within 
the brain, the important milestones in the history of bioelectromagnetic measurements 
are reviewed. Following, the current state of MEG within biomagnetism is examined, and 
issues relating to MEG modelling discussed. At the end of this chapter, the scope and an 
outline of the remainder of the thesis are given.
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1.1 History of bioelectromagnetism*
The Greeks are credited with the first recorded bioelectric observations some 2600 years 
ago thanks to Thales of Miletus, who commented on the severe shocks produced by 
electric fish, but also to Hippocrates, who just a little more recently (5th century BQ gave 
a written account of the numbing effects of Nüe catfish's electric discharges. However, 
the scientific era of bioelectromagnetics did not start until 1600, when Gilbert defined and 
named electricity. In 1791 Galvani performed the first experiments on the stimulation of 
muscle contractions by electric fields, and progress was made in understanding the link 
between biology and electricity. Although Galvani's interpretations were challenged by 
Volta, it was obvious that the period of scientific experimentation had been initiated.

In 1820, Oersted accidentally discovered the connection between electricity and 
magnetism having observed the deflection of a magnetic needle due to a current. Soon 
after that. Ampere established the concepts we now call current and voltage, and 
proposed the use of a galvanometer based on them and eight years later Nobili actually 
developed a galvanometer sensitive enough to malœ precise measurements of currents in 
frog preparations. At about the same time the laws of electrical resistance were elucidated 
by Ohm and others, and finally in 1831, Faraday discovered the basis of all transformers 
and related devices, mutual induction, while Henry stated the principle of self-induction. 
Owing to the introduction of induced currents from magnetoelectric or electromagnetic 
machines, and the constant attempts of Duchenne, uses of "electrotherapy" also 
appeared. In parallel Bois-Reymond established many basic laws of bioelectricity, and his 
friend, Helmholtz, succeeded in precisely measuring the velocity of the nerve impulse - 
he got a value of 27.25 m /sec which is about the same as measured today. Helmholtz 
made theoretical contributions too. He was the first to point out (Helmholtz 1853), that it 
is impossible to deduce uniquely the spatial distribution of activity within a confined 
volume from measurements of the surface potential and/ or the magnetic field outside 
the body, a statement known as "the non-uniqueness of the bioelectromagnetic inverse 
problem" (Helmholtz 1853).

The late 18(X)s witnessed a number of fundamental discoveries in physics and parallel 
technological innovations in the Western civilisation, that had an invaluable impact on 
bioelectromagnetics. For example, Tesla in 1888, made possible the industrial use of AC 
current and in tiie same year. Hertz demonstrated the existence of the electromagnetic 
waves as predicted by Maxwell in 1864. However, instrumentation in

* where references are not explicitly made, the fblloming hook^dpers have been used: Brazier 1984, Brazier 

1988, Bischofl994
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bioelectromagnetics remained quite unreliable and inaccurate well into the 1920s when 
vacuum-tube amplifiers and oscilloscopes came into more general use.

Although recordings were performed in animals, human "brainwaves" were not 
recorded from the surface of the scalp until 1924, when Berger, a Gorman psychiatrist, 
was finally successful in his recordings, having been benefited from a double-coil 
galvanometer granted to him by Siemens. He used two large sheets of tinfoil, one on the 
forehead and one on the back of the head, to register the first human 
electroencephalogram (EEG)* , and claimed that he was able to discriminate between 
alpha and beta waves generated by currents inside the brain. For years he was trying to 
find a physiological basis for psychic phenomena, brain injury, epilepsy, and mental 
effort. His studies were later enriched with the discovery of delta and theta waves in 1935 
and 1943 by Adrian and Walter respectively. Their efforts had undoubtedly established 
the era of EEG as a tool in neurology and psychiatry. Computing and other technological 
advances together with the need for more precise recordings have replaced Berger's 2 
electrodes with as many as 64, 128 or even 256! Nowadays, there are more than 50 
laboratories around world-wide using "high resolution systems" accommodating more 
than 64 electrodes (channels; Neuro Scan News 1995)

1.2 The development of Magnetoencephalography
Since the currents that Berger and others were measuring would also generate magnetic 
fields, it should be theoretically possible to measure them outside the head. However, 
very sensitive devices were needed for that purpose. In fact, the birth of biomagnetism is 
dated back to 1963 (Baule and McFee 1963) when Baule and McFee succeeded in 
measuring real "animal magnetism", the magnetocardiogram (MCG). However, the 
measurement of the magnetic equivalent of EEG, is attributed to Cohen. In 1968, he used 
room-temperature operated solenoid coils inside a magnetically shielded room, to detect 
the spontaneous alpha rhythm magnetically. Inside the room, environmental signals 
were reduced and the most dominant noise source interfering with the measurements 
were the coils themselves!

* The term EEG is also attributed to Berger, whose humanistic educational background rejected the 

previously adapted "electrocerebrogram" due to the ugly linguistic mixture o f Greek (''electro”, "gram”) 

and Latin ("cerdrro”) fragments. What Berger proposed in German was the term “Elektrenkephalogram”, 

since the root "enkephalo” from the Greek is linguistically more correct than "encephalo” (Niedermeyer, 

1993a).
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The following step was the advent of superconducting technology. The 
superconductivity effect, discovered in 1911 by Qnnes, and theoretically exploited by 
Josephson (Josephson 1962), was used in 1970 by Zimmerman (Zimmerman et al 1970) 
for the construction of the Superconducting (Quantum Interference Device (SQUID), a 
highly sensitive magnetic flux detector. Cohen collaborated with Zimmerman and 
Edelsack that same year, and used the SQUID to record the human MCG (Cohen et al 
1970). Two years later, the recordings were carried out on epileptic patients (Cohen 1972). 
Cohen's pioneering studies were followed by those of Brenner and others (Brenner et al 
1975), who were the first to present magnetic measurements of (visually) evoked 
responses/ fields (VEFs). The single sensor (channel) used in those early days, though, 
was too laborious to use: to locate, even approximately, the activated area of cortex, it 
had to be repositioned around the head, and the recordings to be repeated; it is obvious 
that this was causing discomfort to the "immobile" patient/subject, and many 
phenomena, especially spontaneous activity, could not be adequately studied.

Over the past two decades, remarkable advances in instrumentation were made in the 
infant discipline of biomagnetism. The first generation of single channel systems gave its 
place to the second (oligochannel systems, 5-14 sensors), third (polychannel or 
multichannel systems, 19, 28, 37 sensors), and finally to the fourth generation (whole 
head systems, 64, 74, 122, 143, 147 sensors). There are currently three companies 
constructing commercial whole head systems: Neuromag (Finland), BTi (USA), and CTF 
(Canada). More than 18 laboratories world-wide are currently using multichannel 
systems of more than 19 sensors providing partial coverage of one or both sides of the 
head, and by the end of 1996 or soon thereafter, another 18 will be using helmet like 
systems, Various national projects are also under development. In Italy, a "small" MCG 
system facilitated with 55 channels, together with a helmet-like system featuring 153 
channels (Pizzella 1995) are being constructed. The Japanese government had also 
launched a multi-company project at the Superconducting Sensor Laboratory of Japan 
(SSL), in order to construct a helmet system with more than 2CX) sensors, but also to drive 
from element technology to system integration for magnetometry (Kado 1995). Although 
the latter project was recently stopped, some other smaller scale programs seem to be 
running in Japan.

Obviously, hehnet-hke systems can only be used for MEG. However, all the previous 
generation systems were and are used in the broad field of biomagnetism covering 
numerous applications. We mentioned in the beginning of our introduction tiie diverse 
subsections sharing the common grounds of the biomagnetic science. It will be useful to 
examine the relative proportion of research that has been input into each one of those.
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In trying to do so, we shall consider the papers presented at the last four "International 

Conferences of Biomagnetism", the m ost prestigious m eetings that serve as forum s of the 

biomagnetic field: the 1989 m eeting in New York, the 1991 in M ünster, the 1993 in 

Vienna, and the m ost recent one held in Santa Fe, New Mexico in February 1996..

Figure 1-1 shows that MEG has always been the main research topic, followed by MCG. 

A slight increase in the proportion of both MEG and MGG at the expense of the other 

sections is seen. Moreover, alm ost three times as m any papers focused on brain 

investigations than on cardiac topics, an analogy kept alm ost constant throughout the 

years.
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Figure 1-1: Relative proportion of various sections of Biomagnetism during  the last four 

International Conferences of the "biomagnetic" research com m unity that took 

place in New York (NY, 1989), M ünster (MÜ, 1991), Vienna (VIEN, 1993), and 

New Mexico (NM, 1996). See m ain text for the rest of abbreviations.

Classifying the papers into categories according to the topics deem ed to have benefited 

w e can see that three main areas emerge: instrum entation, theory-m odelling, and 

applications. The main bulk of research over the last few years has been throw n onto 

applications, as appreciated from Figure 1-2. M oreover, relatively few papers are 

presented on instrum entation, an effect explained by the fact that instrum entation has 

been m ainly carried out m ore commercially (by companies) lately, rather than by 

individual research groups. An gradual rising in theory-m odelling is also appearing, and 

is actually expected to increase more in forthcom ing meetings, as a result of the 

introduction of new system s (e.g. helmets), which of course necessitate m ore advanced 

modelling methodologies.

Since this thesis is concerned w ith MEG as applied in epilepsy, w e regard it appropriate 

to show  in Figure 1-3 the relative distribution of MEG applications. Studies w ith evoked 

responses have been the main consideration so far, since they form a relatively easy, but
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also traditional way of experim entation in cognitive neuroscience. Studies in epilepsy 

have rem ained almost constant throughout the years, bu t they are four times as fewer 

than evoked fields. However, they constitute the main clinical application ground of 

MEG (BioMagList 1995). A nother trend that is illustrated in Figure 1.3, is the increase of 

cognitive applications. As Lloyd Kaufman pointed out in the opening speech of the 

Vienna Conference, "MEG has a real potential to study hum an cognition", and, therefore, 

such MEG applications are expected to expand further over the next few years.
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Figure 1-2; Classification of biomagnetic papers into three main categories and their 

relative proportions in the last four conferences. See Figure 1-1 for abbreviations.
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Figure 1-3; The three main areas of MEG applications and their relative proportions over 

the last four biom agnetism  conferences. See Figure 1-1 for abbreviations.
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1.3 Issues on MEG modelling
Images of brain activity are also produced by other m ethods like single photon emission 

tom ography (SPECT), positron em ission tom ography (PET), and functional magnetic 

resonance im aging (fMRl). At present, the spatial resolution of these (especially the latter 

one) is sufficiently good to allow studies of brain function. However, all these techniques 

lack in tem poral resolution; they can only trace brain activity in the order of seconds (or 

even minutes), which is far slower than the actual speed of brain processes. EEG and 

MEG offer the ability to study the dynam ic topology of brain activity millisecond by 

millisecond. They are both completely non-invasive, since the subjects/ patients are not 

exposed to any radioactivity, time varying, or strong steady magnetic fields. Moreover, 

MEG m easurem ents are non-contact.

In addition, MEG's spatial resolution is a few millimetres for cortical, superficial sources. 

W hen calculating the distribution of currents in the brain from magnetic (or electric) 

fields (or potentials) outside the head, we are dealing w ith the so-called "inverse 

problem ". Unlike in the case of the previously m entioned im aging techniques, however, 

the m athem atics of the bioelectromagnetic inverse problem  are inherently fuzzy. As 

m entioned before, H elm holtz had already show n in 1853, that the solution is not unique: 

an infinite num ber of diverse current distributions can explain a given magnetic field. 

Despite this m athem atical hurdle, reliable estim ates for the prim ary current distribution 

can in fact be obtained, if some prior knowledge and assum ption about the form of the 

sources is given and the level of detail dem anded in the reconstruction is not finer than 

the sensitivity of the sensors (loannides 1994).

Injecting a priori know ledge into the source reconstruction usually dem ands anatomical 

constraints. In the sim plest of the cases, one should expect the sources of brain activity to 

lie w ithin the brain volume! To gear even this simplistic task, correlation w ith images of 

anatom y (i.e. M R l/C T images) is necessary. Likewise, if certain regions are know n to be 

activated at specific instances, the reconstruction volum e could be defined by those 

regions. Obviously, the higher the degree of accuracy in correlating (registering) MEG 

w ith M Rl/GT, the m ore precise the outcome.

A nother way of introducing a priori inform ation is through a model. To date, m any 

source models have been proposed and developed. These can be basically classified into 

two categories. The first one, assum es that all prim ary activity is generated by a single or 

a few point sources, i.e. current dipoles, while the second one allows for the m ore general 

and realistic case of distribution of currents. The m ain bulk of this thesis, makes use of an 

im aging m ethod that lies w ithin the second category, namely. Magnetic Field 

Tom ography (MFT). However, at some stages, com parisons of MFT with the more
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widely used, though simplistic, single current dipole or equivalent current dipole (ECD) 

model, are perform ed.

The traditional view that (useless) background "brain noise" is elim m ated by averagm g 

signals, has been widely used to date, to im prove the signal-to-noise ratio (SNR). W hen 

perform ing an evoked response experim ent, there is a well (pre)defined epoch length 

w ith respect to a stim ulus onset, and  signal averaging across epochs, is very easily 

achieved. In the case of studying spontaneous activity w hen no sHmulus is present, the 

task is m ore difficult, but one can still use target signal patterns, and then attem pt a 

global spatio-tem poral search to correlate epoch segments. For example, a clear epilephc 

spike could be used as a target (template) and then scanning can be conducted through 

the signal space, in order to identify similar appearances of the presum ably sam e event. 
A veraging can then be perform ed across the identified tim e periods (Abraham-Fuchs et

al 1990).

A rgum ents against treating background brain acHvity as noise have been appearing 

m ore frequently in recent years. It was shown, for instance, that pre-stim ulus EEC tends 

to attain a phase-order pattern prior to expected stim ulation (Ba<;ar et al 1989). In 

addition, im portance has been draw n onto m ind's "m icrostates" as opposed to the global 

general characteristics of the averaged signals (Lehm ann 1989; Pascual-M arqui et al 

1995). Furtherm ore, analysis of single epochs is em erging as a robust methodology of 

hom ing into brain 's dynam ics (Childers 1986; Liu LC and loannides 1995; Haig et al

1995).

The validity and reliability of the averaged signal have also been questioned w hen 

spontaneous epileptic recordings are considered (Sato 1992). In the early days, w hen a 

single or a few MEG channels w ere used, averaging was necessary if a m ap of signals 

w ere to be constructed outside the head. The m ost fundam ental capability of 

m ultichannel systems, however, has been the ability to capture the magnetic field w ith  no 

loss of spatio-tem poral coherence. This allows analysis of single epochs (in evoked 

responses) or single spike events (in epileptic activity). One im portant consideration 

though m ust be taken into account; the m odel that one uses, has to be adequately robust 

to perm it such analysis. ECD models have often failed to provide sensible source 

descripHons over data w ith low SNR, or at segm ents away from the main signal peaks. In 

fact, this has been the traditional link between ECD models and the use of averaged 

sigiials (loannides 1994). On the other hand, MFT has been proved to be immensely m ore 

pow erful in studies of single auditory evoked responses (Liu 1995), especiaUy through 

the use of integrals of intensity distributions.
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1.4 Scope of the thesis
This thesis addresses the following issues relating to MEG modelling, analysis and 

interpretation of the results. First, to device strategies of accurately registering MEG data 

with structural images (e.g. MR images), thereby im proving the localisation capability of 

MEG/MFT, but also provide the prerequisite for advanced modelling of specific brain 

structures (e.g. hippocam pus). Secondly, to provide some tests on MFT's reconstruction 

capability in depth, especially w hen contem porary MEG equipm ent is used. Thirdly, to 

use MFT to test w hether or not analysis of single trial pathophysiological data is doable. 

We shall show that analysis of single, unaveraged epileptic spikes is actually feasible, 

and com pare such analysis w ith that of averaged spikes. Finally, we shall exploit this 

capability to study the spatio-tem poral evolution of epileptic activity (especially in depth) 

and extract useful and physiologically m eaningful information of the underlying 

generators.

To achieve the above goals, the rem ainder of the thesis is organised as follows. C hapter 2 

is a review of the general background on im aging brain function. The m ulti-disciplinary 

field of neurom agnetism  is defined, the origin of the electric sources is discussed, and the 

fundam ental m athem atical/  physical/ technical principles that govern the m easurem ent 

and interpretation of such sources are given. Finally, MEG is placed on the m ore general 

context of functional brain im aging modalities.

C hapter 3 focuses on aspects of the registration of MEG and MRl. The mathem atical 

background and the general strategies of registration are reviewed, followed by the 

im plem entation and the results of the m ethods developed. Their significance for MFT 

studies is also stated.

The issues specific to the biomagnetic inverse problem, including m odelling w ith point

like sources or distributed current m ethods are discussed in chapter 4. Special em phasis 

is draw n on MFT, some tests of which are presented in the next chapter. A lthough both 

superficial and deep sources are regarded, prom inence is shown in m odelling deep 

sources, w ith both unilateral and bilateral (bihemispheric) sensor set-ups.

The condition of epilepsy and the "state of play" in im aging epileptic patients is 

introduced in chapter 6. In the sam e chapter, the feasibility of studying unaveraged, 

interictal spike events w ith MFT is presented through the dem onstration of consistencies, 

in the case of complex partial epilepsy (CPE).

C hapter 7 is concerned w ith the spatio-tem poral evolution of epileptic activity during 

unaveraged, interictal spikes recorded with the KRENIKON 37-channel system  

(unilateral recordings of CPE). Since activity initiated in the contralateral to the 

m easurem ents side is identified, the following two chapters focus on sim ultaneous.
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bilateral recordings. Due to the lack of such data with the KRENIKON system, the BTi 
twin MAGNES probe (2x37 channels) is used in two examples in chapter 8: in a case of a 
patient with ihyoclonic epilepsy, and in single case taken from a series of auditory odd
ball evoked responses.

A summary of tire main findings and the conclusions drawn from this project toother 
with suggestions for possible future work are finally presented in chapter 9 .



2. Im aging the Human Brain: background 
inform ation

2.1 Neiiromagnetism

Electrical activity in the brain is caused by movements of specific ions inside and outside 
cellular membranes. Neuromagnetism is concerned with the study of the magnetic 
phenomena in neurons, the basic units of organisation of the cential nervous system. 
Magnetoencephalography (MEG) refers to the detection and study of the magnetic fields 
produced by neural tissue or in other words the "neuromagnetic fields". On the other 
hand, an electroencephalogram (EEG) is a measurement of the potential difference also 
due to neural activity (Figure 2-1). Both techniques can record physiological signals in the 
millisecond range, a characteristic that distinguishes them from tiie rest of the imaging 
modalities, relating to large scale brain function.

In this chapter, we describe the mechanisms underlying the generation of electrical 
activity, and we then home into the physical principles governing such effects, together 
with the instruments used for their measurement. Although the presentation is specially 
adopted to MEG, we try to keep some "wmdows open" for EEG as well, so that the 
comparison of the two techniques, as given at a later stage in this chapter, becomes more 
comprehensive. Finally, the two techniques are compared with other functional brain 
imaging modalities.
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Figure 2-1: Basic parts of the human brain anatomy and demonstration of two techniques 
capable of recording its electrical activity: MEG, which measures magnetic fields 
outside the head, and EEG which measures electric potentials on the scalp.

2.2 The origin of the signals

2.2.1 Organisation of the brain
The three primary divisions of the human brain are brainstem, cerebellum, and cerebrum 
(Figure 2-1). The brainstem, the stalk of the brain, is the structure througih which nerve 
fibres relay signals in both directions between higher brain centres and spinal cord. Two 
egg-shaped structures compose the thalamus at the top (superior) and to the side 
(laterally) of the brainstem, which is a relay station and important integrating centre for 
all sensory input to the cortex (except for smeU). The cerebellum, which sits on top and to 
the back (posterior) of the brainstem is concerned with co-ordinating subconscious 
movements of skeletal muscles and with posture/equilibrium maintenance (Tortora and 
Anagnostakos 1990), although more recently it has been implicated in cognition and 
mental development too (Hashimoto et al 1995).

The large part of the brain remaining when brainstem and cerebellum are excluded is the 
cerebrum, accounting for seven-eighths of the total brain weigjht, and occupying most of 
the cranium. It is divided almost equally into two halves {cerebral hemispheres). The 
uppermost layer of the cerebrum, the cerebral cortex, is about 2-4 mm thick, and has a total 
surface area of some 2500 cm2 folded in a complicated way, so that it fits the cranial 
cavity formed by the skull. There are four lobes in each cerebral hemisphere: frontal, 

parietal, temporal, and occipital (Figure 2-1).
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Nerve cells (neurons) and glial cells (glia) are the principal building blocks of the brain. 
The glia (neuroglia) were believed to be mainly concerned with the structural support 
and protection of the brain tissue. Recently, however, suggestions were made for a more 
active role of neuroglia (Shea 1995). Neurons on the other handf are responsible for 
conducting nerve impulses from one part of the brain to another; they are the basic 
information processing units. It is believed that as many as lO ô-lOii neurons are present 
in the human brain (Thomson 1985). Most neurons consist of three distinct portions 
(Figure 2-2): cell body (soma or perikaryon), dendrites, and axon. Soma is the neuronal 
portion containing the cell nucleus and much of the metabolic machinery and being 
necessary for the continuation of neuron's life. Dendrites are usually highly branched, 
thread-like extensions of the soma, that receive inputs from other neurons. The axon 
originates from the soma as a small conical elevation (axon hillock), and forms a large, 
trunk-like process that is highly specialised and conducts nerve impulses away from the 
cell body to other neurons.

Synapses

Dendrites

Soma

Axon HîQück

Axon

Figure 2-2: Structure of a neuron (modified from Hamalainen et al 1993).
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The cortex is composed of "grey matter", so called because of the predominance of cell 
bodies. Just below the grey matter is the "white matter", in which axons predominate. 
However, grey matter also exists in subcortical nuclei, like the thalamus.

2.2.2 Neuroelectric activity.
A neuron is surrounded by a 10 nm-thick insulating membrane, which divides tiie tissue 
into intracellular and extracellular compartments with different ion concentrations. In a 
non-excited neuron, the intracellular compartment is more negative than the extracellular 
one resulting in a potential diffidence across the membrane called resting membrane 
potential (RMP, ~-70mV); this is maintained by special protein molecules on the 
membrane that pump specific ions against the concentration gradient and also serve as 
passive ion channels. The most important is the Na-K pump, which we shall come back 
to later.

A conventional neuron is bipolar in nature, designed to gather information at one end 
(one and only one dendrite) and to transmit data at the other (axon end). However, the 
vast majority of the brain neurons are multipolar, having several dendrites. Neurons in a 
neuronal pathway are not in actual physical contact, but are separated by a narrow gap 
known as synapse. By convention, the membrane of the axon terminal is referred to as the 
presynaptic membrane, and that of the neuron it connects with as the postsynaptic membrane. 
When electrical activity arrives along the axon, certain chemicals are released from the 
terminal into the synaptic cleft. These chemicals precipitate electrical activity in the 
dendrites of the receiving cell. For this reason, the presynaptic neuron refers to the 
transmitting terminal, while the postsynaptic neuron refers to the receiving dendrite.

2.2.3 Postsynaptic Potential
When the transmitting molecules released to the 50 nm-wide synaptic cleft arrive at the 
postsynaptic neuron, they cause a change in the permeability of the membrane for 
specific ions resulting in an alteration of the potential in the vicinity of the membrane 
(postsynaptic potential, PSP) which in turn causes an electric current along the interior of 
the postsynaptic neuron. Depending on the direction of flow two types of PSPs can bfi 
defined. The underlying chemical processes are extremely complex, but, in general, they 
can be described as follows. In one case, sodium channels open and the current flows into 
the cell, thereby, depolarising it. Once the transmembrane potential rises above a critical 
value, the cell is excited (excitatory PSP). In another case chloride channels are activated, 
current flows out (Figure 2-3), the postsynaptic cell is hyperpolarised and thus, inhibited 
(inhibitory PSP).
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Figure 2-3: Ionic processes occurring in an excitatory (E) and in an inhibitory (I) synapse. 

2.2.4 Action Potential
The action potential (AP) is a propagating excitation along a neuronal axon. It is initiated 
at the axon hillock when the net effect of multiple synapses to a neuron is sufficiently 
larger than the RMP value (~-70mV) to exceed the necessary threshold (~-40mV) 
(Santana de Sa 1991). During the first part of the action potential (depolarisation) voltage 
gated Na+ channels open and allow Na+ to enter the intracellular space. The process is 
fast, and as more Na+ channels open depolarisation is increased and more Na+ channels 
open (positive feedback); the membrane potential is ultimately reversed (~ +20mV). At 
this point the permeability of the membrane changes again, the Na+ channels are shut 
and an outward flow of K+ ions is established (repolarisation) eventually restoring the 
initial state (RMP). The AP travels along the axon with undiminished amplitude like the 
wave of falling pieces in a chain of dominoes (Hamalainen et al 1993). The moving ions 
give rise to currents within the cell, which can be described by current dipoles resulting 
in currents in the surrounding tissues, the so-called volume currents (Plonsey 1981).

The above description of AP emerges a picture where the leading front of the AP is 
represented by an intracellular current pointing in the propagation direction
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(depolarisation front) and an intracellular current of opposite sign (repolarisation front) 
each accompanied by its own extracellular currents (Wikswo et al 1980) as m Figure 2-4.

Intracellular s Dace

Depolartsatidh Repolarisatlon
____________ ++++++++++++++++H -----------------

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Extracellular space

Propagation

Figure 2-4: Propagation of an action potential (AP) in a neuron. Note the depolarisation
and repolarisation fronts and the distribution of ions in the mtracellular and

extracellular spaces.

2.2.5 What is it that MEG detects?
Attempting a determination of the likely sources detectable by MEG, one has to take mto 
account considerations regarding the strength of the various sources (with respect to 
detectable strengths), their temporal and spatial summations, as well as tiieir geometrical 
arrangement. Although APs can be detected magnetically (Curio 1995) it is most unlikely 
that they are responsible for the macroscopic fields observed outside the bram, for a 
number of reasons. First, the two opposite dipoles composing an AP form a quadrupole 
whose magnetic field decreases rapidly with distance as l/r®, as opposed to l/r^ valid for 
a dipolar field such as the postsynaptic current flow. Cancellation of the fields associated 
with the two dipoles of an AP is very likely and will depend on the separation of the two 
fronts (-1 mm for an unmyelinated cortical axon). Furthermore, temporal summation of 
currents flowing in neighbouring fibres is more likely for synaptic currents, which last 
tens to hundreds of milliseconds (low-frequency region) than for APs lasting 1 ms only 

(high frequency region).

There is good histological evidence supporting the likely summation of the synaptic 
currents too. The cortex is organised in 6 layers parallel to the cortical surface. Each of 
these contains neurons with different sizes and soma shapes. The largest cell bodies are 
found in layers 5 and 6 (layer 1 being the most superficial) and have a definite pyraimdal 
shape. These pyramidal cells have a linear structure with long dendrites that span most 
of tire six layers and extent laterally along the cortex by as much as 0.5 mm in a parallel 
fashion (columnar organisation; Robinson D, 1992).
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So activity in one cell is highly likely to be accompanied by activity in the cells around it. 
This correlation is attributable to the collateral processes of the cell synapsing 
preferentially on cells within its surrounding column; as a consequence the resultant 
direction of current flowing in the dendrites is perpendicular to the cortical sheet of grey 
matter. Moreover, this sheet is higjily folded forming fissures/sulci in such a way, that it 
eventually becomes parallel to the head surface. As we discuss in the next few sections 
though, such a configuration is favourably prone to MEG (EEG) detection through the 
measurement of the magnetic fields (electric potentials) generated by such currents. Since 
one square millimetre of cortex contains as many as 10  ̂pyramidal cells, the simultaneous 
activation of one synapse in a thousand over an area of 1 mm  ̂would suffice to produce a 
detectable signal In practice, 40-200 mm  ̂ of cortex may be activated in order for the 
magnetic fields to be detected (Chapman et al 1984; Hari 1990).

In conclusion, the consensus is that MEG (EEG) can detect the postsynaptic currents from 
the pyramidal dendrites. However, there have been only a few experimental studies (e.g. 
Okada 1988) on the microscopic mechanisms of field generation, and so one has to be 
cautious of the possibility of there being other field generation mechanisms. For example 
the earliest components of evoked responses and certain components of brain stem 
responses may well represent coherent volleys of action potentials.

2.2.6 The Equivalent Current Dipole Approach

To describe the relationship between neural activity and measured electric and magnetic 
field the approach of the equivalent current dipole model (ECD) is usually adopted, as 
has briefly been mentioned in previous paragraphs. A current dipole Q, is a short 
element of current 1, of length L, and negligible cross-section. Being a vector, both its 
position and orientation in space are necessary for its determination. The dipolar strength 
or the magnitude of the "moment" Q is defined as Q=1L (units A-m). It is usually 
represented by an arrow pointing in the direction of current (see Figure 2-4 and Figure 2- 
5). This simplified description of the electrical properties of a biological source suffices 
when considering a small region of active tissue, where the largest linear dimension of 
the region is much smaller than its distance from the measuring point However, wide 
distributions of activity may exist. In this case the superposition principle permits us to 
view the resulting field (potential) patterns as arising from a number of current dipoles 
distributed within the active area, and the field (potential) as being the sum of the 
individual dipolar contributions.
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Field point

B

Dipolar source

Figure 2-5: The Biot-Savart law.

The magnetic field (strictly speaking, the magnetic induction) B, is given by the Biot-
Savart law:

with jn̂  being the permeability of free space (4;r lO^N/ in SI) and r being the vector

joining the point where the field is evaluated with the dipole position (Figure 2-5). With 
the assumption that there are no ferromagnetic particles within the head, the 
permeability of biological tissue may be considered as equal to that of free space. 
Therefore, postsynaptic activity at a dendrite of a pyramidal cell (typically Q=3 lO^^A m) 
will generate a magnetic field of B»0.002 fT, 4 cm away from the synapse. Such a weak 
field is not detectable, but if say, some 50,000 synapses were contributing coherently then 
the total magnetic field would have been (assuming they are almost parallel to each 
other, and pointing in the same direction)

B = B1 + B2+...850,000= 50,000B = 100/T (2-2)

which is about the order of a typical measurement over the scalp in response to e.g. an 
auditory stimulation. However, as mentioned earlier, the activated area may occupy 
some 2 cm2 to allow for the above number of simultaneous activated synapses. It is 
obvious, that the more extended the area is, the less accurate the description of the 
biological activity the ECD model provides will be (Williamson and Kaufman, 1990). The 
more general case would consider a distribution of current density, J(r) over a certain
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brain volume. Within this terminology the current dipole moment can be thought of as a 
mathematical convention where J is concentrated to a single point Tq

J(r) = Q<^(r-rg) (2-3)

where ^ r ) is Dirac's delta function.

In summary, a current dipole is used in MEG (EEG) as an equivalent source for the 
unidirectional (primary, see next paragraph) current density that may extend over 
several square centimetres of cortex; this concept, however, involves slightly different 
physical concepts for MEG and EEG as we discuss below.

2.3 Basic Background Electromagnetism

2.3.1 Forward problem
In the previous section, we described examples where the source details (magnitude, 
position relative to detector) were known and so we were able to calculate the 
characteristics of the generated magnetic field. This procedure is known as the 
"biomagnetic forward problem". When the magnetic fields are measured and 
identification and characterisation of the source responsible for their generation must be 
deduced, we are dealing with the so-called "biomagnetic inverse problem" which will be 
the theme of discussion in another chapter. In this paragraph we concentrate on the 

forward problem

2.3.2 Maxwell's Equations
When the conductivity <J and the electric current generators (sources) in the brain are 
known, it is feasible to calculate the electric field E and the magnetic field B using

Maxwell's equations and the continuity equationV - J = —^  (J and p  are the total 

current density and the charge density, respectively). Assuming that the permeability of 

the medium is that of free space and the fact that -^ a n d  -^ can  be ignored as source

terms (quistatic approximation^) Maxwell's equations can take the form:

+ TTtts approximation is based on the assumption that the time derivative terms in Maxwell's Equations are 
very small. In other words, «  |oE| and ôRjdt to be very small. One may prove that these two

condiHons are valid by taking into account the low range of frequencies involved in neuromagnetism 
(typically < 100 Hz) and the conductivity value for brain tissue (cfHümàUanen et al 1993).
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V xE  = 0 or E = -V F  
V-B = 0
y  X B == //„ J

d  d  dwhere V = + —  with Bo being the permitivity of free space and V the
^  âx. y  ^ ÔZ

electric potential. Using the above equations we can deduce expressions for B and V at a 
point r due to J existing at r':

«■=>

For a dipolar source

and

2.3.3 Primary and secondary sources
It is useful to divide the current density J into two components: the volume or return 
current = <jE which is the "passive" result of the macroscopic field on charge carriers 
in the conducting medium, and the primary current Jp. Therefore:

j(r) = J**(r)+ J"(r) = P (r )+ a(r)E(r) = f ( r ) -  cr(r)VF(r) (2-9)

We reiterate here, that C7(r) is the macroscopic conductivity of the head. In other words, 

the whole cortex is supposed to be a homogeneous conductor.

The primary source within the conducting tissue (intracellular current) can be considered 
as a battery in a conducting medium composed of a pair of monopoles (a source and a 
sink) next to each other which are linked by a small line current element In this case an 
Ohmic current flow is induced in the conducting medium: the return or volume current*

* It is important to realise that the physical nature of this concept is different for MEG and EEG (loannides
1994). For MEG, a monopole, i.e. a point source or sink of current produces no magnetic field, but it does
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The expression for the magnetic field generated by J can now be written as

B(r) = B,(r) + B^(r) (2-10)

with Bg(r) given by Equation 2-6 for J=Jp and

w hereV  = e^ — + e ^ — + e , - .

(r-rM
y v ( x ) ^ T — ; ir - r ’

dV (2-11)

If the conducting medium is assumed to be composed of homogenous parts, V a(r)is 

non-ZCTo only at the boundaries and so, it is possible to expand B  ̂as a sum of surface 
integrals over boundaries, i.e. over all discontinuities in cr :

A

B"(r) = - O f  (2-12)
4;r y_i |r r |

with cr̂ j and being the conductivities inside and outside the conductivity object of 

surface Sj, n being an outward unit vector normal to Sj, and dSj a surface element 

The corresponding expression for (r) is given by:

where a  denotes the electrical conductivity of the medium surrounding r . The terms 

{a 'f-& j)V {r^ )n {r')  describe the equivalent surface current distributions on the 
boundaries of each Sj and are often called "secondary currents"; they are oriented

perpendicular to the boundaries.

produce an electric potential. Since current conservation makes a monopole impossible, the next most 
fiindammtal structure is a pair of monopoles (a source and a sink in close proximity). Although the latter is 
the most basic source in EEG,it is still a "silent" source for MEG. If the construct, however, involves a 
connection of the source with the sink by means of an infinitesimal line element of current, then it becomes a 
legitimate MEG source too. When such a construct is errûjedded in a biological medium, it induces a flow of 
current to complete the circuit.
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2.3.4 Homogeneously Conducting Sphere
The most elementary model of conductivity of the human head that takes account of its 
curvature is a sphere of uniform conductivity. This is the most widely used model in 
MEG. A more generalised model can include concentric shells of different conductivity to 
represent the cerebrospinal fluid, skull and dermis.

When a uniform conductor is spherically symmetric, the contribution of the volume 
currents to the radial component of the magnetic field vanishes. Thus, the radial 
component of the field at any distance above the surface of a conducting sphere can be 
attributed to the primary source alone. Therefore, can be calculated from

or in the case of a current dipole Q at Tq

Mo

(2-14)

Br = - (2-15)
r - r J4;r

Sarvas (1987) derived an analytic expression for B in rectangular co-ordinates:

^  ^  X «-Q -  (Q X »-Q • r)Vf(r.rQ)
4)t f(r,rq)^

where

F(r,rQ> = a{ra + -  Fq • r) (2-17)

and

VF(r, Fq ) = ( r W  + a'^a • f  + 2a + 2r)F -  (a  + 2r + a"'a • f)Fq ) (2-18)

with a = (f-F g), a = |a|, r = |f1 .

Although the above equations seem to be complicated, an important point directly seen 
from them, is that vanishes if the primary current is radially oriented, and so does B.

This is true for any axially symmetric current in an axially symmetric conductor
(Grynszpan and Geselowitz 1973). A source placed in the centre of the sphere will
produce no magnetic field either. It is common to refer to such sources as "magnetically

silent".

To resume, in a spherically symmetric conductor, MEG is sensitive only to the tangential 
component of the primary current. As a result, and as long as the assumption that PSP 
currents flow perpendicular to the cortical surface, the method is optimal for detecting
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activity in fissures or in structures where geometry enhances current flow parallel to the 
surface (e.g. hippocampus).

The electric scalar potential V, on the surface of such a conductor is affected by the 
conductivity profile. In oQier words, if two good conducting bodies (brain, scalp) are 
interrupted by a poorly conducting layer (skull), V will be attenuated on the scalp and 
the potential pattern (e.g. due to a dipole inside) will be more widespread than in a 
homogenous sphere. Finally, another point to remember, is that both radial and deep 
sources contribute significantly to V.

2.3.5 Other models of the conducting medium
A number of other conducting models has been used in the biomagnetic research so far. 
The simplest of these treats the conducting tissue as a flat surface of infinite extent, with 
an insulating material on one side (e.g. air) and a uniform conductor on the other. This is 
called the conducting "half space" or "infinite half space", and can be considered as an 
asymptotic case of the spherically symmetric conductor discussed in the previous 
paragraph. Its relevance to brain studies becomes apparent when the primary source is 
very superficial so that its depth is much smaller than the radius of the head, so that the 
scalp curvature near the source can be locally neglected.

Both the half space and sphere models can be generalised to include multislab or 
concentric shells of different conductivities to represent the brain tissue, cerebrospinal 
fluid, skull, and scalp. A typical choice, developed mainly for EEG studies, makes use of 
three concentric and homogeneous spheres. Scalp and skull thickness followed by the 
ratio of conductivity between skull and brain/ scalp are the most important modelling 
parameters especially when one considers the potential distribution on the scalp (Scherg 
1990). However, these considerations are not essential for MEG modelling, since the 
currents in the skull and on the scalp contribute negligibly to B (Hamalainen and Sarvas 
1989). In support of this theoretical statement, Okada and Xu (1993) proved 
experimentally that magnetic fields are permeable to the skull: they compared animal 
somatic evoked fields (SEFs) over intact skull against the SEFs over the intact dura (ie. 
with the skull removed) and found the two signals to be similar in topography and 
waveform.

Inaccuracies introduced by the spherical model may, however, be attributed to 
directional and/or spatial variability of brain conductivity or large conductivity 
variations (e.g. eye sockets). When measurements are conducted over a relatively small 
area of the head, the spherical model furnishes a neat description and there is no need to 
use more elaborate models. The need is stronger when a large area of the head is covered 
or multichannel probes covering both hemispheres are used. Lütkenhôner et al (1990)
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showed that it is better to consider the local (to the measurements) curvature of the inner 
skuU in the process of fitting it with a sphere; Hari and Umoniemi (1986) suggested that 
the curvature of the inner skull just above the source is of importance in the 
determination of the conducting profile. In this context, it proves useful to take into 
account different sphere models, one for each head region, or even one for each sensor.

More sophisticated and realistic models have also been and being developed, where the 
head is assumed to consist of arbitrarily shaped compartments \̂ûth different (isotropic) 
conductivities. The brain surface, as derived from MRI or CT images, is usually 
triangulated and then the forward problem is solved by assuming this surface encloses 
(in the simple case) a medium with homogeneous conductivity, and the potential over 
several hundreds of triangles composing the surface together with the field outside it are 
evaluated. The feasibility of this method has been proved both theoretically (Hamalainen 
and Sarvas 1987) and experimentally (Ducla-Soares 1989). Such a model might improve 
MEG modelling especially when deep sources are concerned or when the temporal or 
frontal brain regions are considered where the deviation from sphericity is sometimes 
large. However, as Hamalainen and Sarvas noted (1989) there is no need to account for a 
realistic multi-layer medium when the magnetic fields are evaluated (whereas there is a 
definite such need when evaluating the electric potential over the scalp in EEC), although 
improvements in modelling deep source are indeed expected by using realistically 
shaped compartment models (Stok et al 1987).

The penalty, of course, in moving away from simple to sophisticated realistic models, is 
substantial increase m the complexity of the model and associated computations. 
Intermediate models can also be used alternatively by choosing a spheroidal head shape 
(Fieseler et al, 1995) for which expressions for the magnetic field calculation have been 
known for some time (Grynszpan and Geselowitzt 1973; Cuffin and Cohen 1977). The 
important message drawn from such studies is that the "silent space" of a perfect 
spherical conductor (sphere centre) is no more silent when such elaborate (and of course 
closer to reality) models are regarded, and so activity from structures close to the centre 
of the head might indeed produce detectable signals as evidenced from recent studies 
(Ribary et al 1991).

2.4 Neiiromagnetic Instrumentation

2.4.1 Basics
The signal strengths associated with neural activity are extremely small, as mentioned 
already and as depicted in Figure 2-6, necessitating the use of ultra sensitive detection 
systems. To date, the only instrument fulfilling such requirements of sensitivity and
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bandwidth is the SQUID magnetometer. The components of such a device are shown in 
Figure 2-7: a detection coü which senses changes in the external magnetic field and 
transforms them into an electric current; an input coü which transforms the resulting 
current into a magnetic flux; the SQUID sensor; and associated electronics dealing with 
further transformation of the flux into a room temperature voltage output. A refrigerant 
bath (liquid HeHum, temperature below 4.7 K) is used to maintain the SQUID (and 
detection coü) in the superconducting state.

Spectral density 
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Figure 2-6: Distribution of spectral densities of various magnetic fields ascribed to typical 
sources of bioelectromagnetism and noise.

The term SQUID is an acronym of a Superconducting QUantum Interference Device 
which consists of a superconducting ring (loop) interrupted by one or more weak links 
(Josephson junctions) that are either resistive or have such a low critical current that 
become resistive far sooner than the rest of the loop. A weak Imk is characterised by a 
maximum value of current it can sustain without loss of superconductivity. Quantum 
mechanical phase coherence of charge carriers in a superconductor gives rise to flux 
quantisation in a solid ring; the magnetic flux through the loop must be an integer 
multiple of the so-caUed flux quantum, 0^ = 2.07 fWb = 2.07 10 Tm^. In an external

magnetic field, the quantisation is accomplished by supercurrente that flow in the ring so 
as to precisely cancel any deviations from the quantisation condition. In a SQUID, the 
weak link limits these currents and, as a consequence, the degree of the external field 
compensation. In a dc-SQUID, i.e. when direct current is fed through the loop, the
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voltage over the SQUID depends on the external flux threading the loop; dc squids: have 
better noise characteristics and are also used with dc amplifiers which in turn have less 

inherent noise than rf ones.

Compensation Coil
CryogenicT em perature

HIO™'
inpu t Coil SQUID

RoomT em p era tv e

Control DtAo
□ ed t ionic; Acquiskior

Pidcup coir

Figure 2-7: Block diagram of a typical SQUID-based magnetic sensor and its associated 
electronics. Note the part operating m cryogenic temperatures.

The detection coil (usually referred to as the pickup coil) together with its compensation 
coil (whenever present) and the input coil form what is called the flux transformer. When 
a magnetic field impinges on the pickup coil an electric current is set up in it; as a result 
of the mutual inductance between the input coü and the SQUID, the latter can sense a 
signal proportional to the original flux.

The use of flux transformers gives the biomagnetometer designers a considerable amount 
of freedom in designing the geometry of the sensors. Even a simple loop of wire coupled 
to the SQUID could l>e used (magnetometer). In this case though, the apparatus has to be 
placed in a shielded room to eliminate ambient noise. UsuaUy gradiometers are used 
rather than simple magnetometers. A gradiometer is sensitive to nearby sources but 
insensitive to distant "noise" sources, because they couple with the same amplitude but 
opposite sign to the pickup and compensation coils, and they, therefore, sense the 
gradient of the field rather than the field itself.

Compared with the magnetometer (Figure 2-8 (a)) which has only one pickup coil, the 
gradiometer comprises a pickup coü and a compensating coü. In the c^ e of Figure 2-8 
(b), the gradiometer is sensitive to the field gradient in the z-direction, and it is, therefore, 
caUed "first order axial gradiometer^, since it is only the first spatial derivative of the 
field that is involved. Even in this case, however, the devices stül operate within a 
shielded environments to secure noise rejection. The noise level is conventionaUy quoted 
as a root mean square field noise per square root of the bandwidth, with a typical figure 
being a few fX / yfHz .

More sophisticated geometries are involved in a second order gradiometer^ (Figure 2- 
8(c) to reject both spatiaUy uniform field and field gradients. "Third order gradiometers" 
are also available including virtual third order gradiometers using reference channels 
some distance away from the pickup coüs. Such gradiometers have been used in the CTF
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commercial instrument showing that no shielded room is required in this circumstance 

(Vbra et al 1995).

(a)
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(b)

(c) - #

Figure 2-8: The most fundamental types of magnetic sensors used in biomagnetism: (a) 
magnetometer, (b) first order axial gradiometer, (c) second order axial 
gradiometer, and (d) planar gradiometer.

Although axial gradiometers have been traditionally used for most experiments world
wide, the coils can indeed be shaped differently in order to perform measurements of the 
vertical component of the field Bz along a transverse direction (x, y or both). Such devices 
are called planar gradiometers (Figure 2-8 (d)). The advantages of such configuration 
designs over the axial ones lie in that the double D construction is compact in size and 
can be easily fabricated with thin-film techniques (Josephs et al 1995). In addition, it 
provides better locating accuracy; it lacks, however, in depth sensitivity (Hari 1993).

2.4.2 Multi-SQUID considerations
Until about a decade ago, almost all biomagnetic measurements were earned out using 
single channel magnetometers. Under such conditions, multiple placements over the 
head were necessary to cover a sufficiently large patch. As a result, the recording



Chapter 2: Imaging the Human Brain: background information 28

procedure was extremely time consuming, but also the temporal coherence of the data 
was lost. The advent of multichannel probes containing a number of sensors in one (or 
two) Dewar(s), and covering large areas (or even the whole head) simultaneously, 
changed the situation dramatically in favour of the use of MEG as a functional brain 
imaging tool

Because of the unimaginable variety of likely current distributions in the human brain, 
general criteria for optimal magnetometer design do not exist For a given source 
configuration, one would favour maximum sensitivity The latter is sometimes, however, 
contradictory to the requirement of good spatial resolution (locating accuracy). For 
example, increasing the pickup coil diameter improves field sensitivity, but deteriorates 
spatial resolution.

In addition, the size of ti\e Dewar, the properties of the SQUIDs, the feasible number of 
channels, the distribution and strength of external noise sources, are all constraints 
restricting the previously mentioned d%ign freedom.

2.4.3 Modem Systems
Since 1989, the generation of multichannel systems emerged, having typically more than 
20 SQUID channels arranged over an area exceeding 10 cm in diametar. For years since 
then, the most commonly used systems were the 37-channel systems constructed by 
Siemens AC (Germany) or BTi (USA). They were both operating with axial gradiometers 
of first and second order respectively. In the last three years whole head coverage 
systems are available by Neuromag (Finland) and CTF (Canada). The Neuromag system  
has a total of 122 planar first order gradiometers (61 two-gradiometer units, measuring 

and white the CTF instrument consists of 64 axial first order gradiometers,

which with the help of reference channels can be electronically operating as second or 
third order gradiometers; both systems employ a helmet like arrangement. Recently CTF 
upgraded their system; their new helmet version accommodates 143 channels.

BTi has also recently launched a twin probe system (2x37) with Dewars than can be 
independently positioned over each hemisphere to provide large coverage. In 1996, they 
are also going to release a whole head system employing 147 magnetometers.

More technical details are given in Appendix A for the Siemens 37 channel system 
(KRENIKON) and the BTi twin probe system (MAGNES) as data from these two 
instruments are used extensively in this piece of work.

A final point to be mentioned is that aU systems are assigned a co-ordinate system  
defined by a set of fiduciary points. Probe position indicator devices are developed to 
facilitate this requirement Using such a device, the sensor positions can be accurately
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defined in the 3-dimensional space, and the MEG recordings can also be associated with 
MRI images of the same subject/ patient to allow for studies of function with the correct 
anatomical background. A more detailed description of this topic is given in Chapter 3.

2.4.4 Digest
If the axis of a gradiometer is oriented perpendicular to the head so that it measures just 
the radial component of the magnetic field, then the measurement wül only depend on 
the primary sources if the spherical head model is used. Tilting the gradiometer axis 
relative to the head, so that the tangential component of the field be also measured, will 
result in a magnetic field recording associated with both the primary and secondary 
sources (Stok et al 1987). Although in practice, the gradiometer axis is usually oriented 
perpendicular to the head, this is often not the case with the modem multichannel 
s y s t e m s ,  which of course, cannot fulfil the requirement of having a large number of 
gradiometers arranged in a fixed curvature and all of them being perpendicular to all 
heads!

25 Comparison of EEG and MEG
Because of their common electrophysiological origin, EEG and MEG share many features 
and should be viewed as being complementary methods. In this section we highlight 
some of their differences and pinpoint the complementarity issue.

As mentioned in the beginning of the chapter, EEG records the difference in potential 
between two electrodes. The choice of the electrodes to be compared, therefore, becomes 
important Three common reference connections are referred to as:

• unipolar: each electrode is connected to a single reference electrode, usually at a fixed 
location, which can be at an electrically quiet location on the scalp.

• bipolar: each electrode is referenced to its next one (electrode 1 to electrode 2, 2 to 3 
etc.)

• Average reference: each electrode is referenced to a point which is calculated as the 
average of the potentials at more than one (e.g. the two ears) or even all electrode 
points (global average reference) or as the average of the nearest neighbours (source 
derivation).

The idea of assuming a scalp electrode as being electrically quiet suffers from obvious 
limitations, since locations commonly used, like the ears, might not be that electrically 
quiet during an auditory stimulation. There have been many studies that demonstrate 
that EEG wave forms are sensitive to the location of the reference electrode, and, as a 
result, individual investigatore have their own preference for reference configurations.



Chapter 2: Imaging the Human Brain: hackground information___________________________ ^

This requirement is completely absent in MEG, since absolute values of the magnetic 
field can be recorded without any reference. (Of course the term "reference channels" can 
also be met in MEG but it is associated to distant noise elimination rather than being a 

recording necessity).

This problem though can be partially overcome by computing the surface Laplacian, 
which in its simplest form, can be performed by subtracting from a given recording one- 
fourth of the voltage signal recorded at each of the 4 surrounding electrodes to evaluate 
tiie Laplacian: / âĉ  + Such Laplacian EEG maps are essentiaUy sharper

than the original EEG potential maps, since they reveal patterns of the volume current 
emerging from the cortex, passing through the skull and scalp, and returning back to the 

interior.

However, sharpening the potential maps to eliminate reference electrode effects, reduces 
the sensitivity to deep sources but also fails to be accurate at the edges of the EEG array 
where the full Laplacian cannot be obtained, although some improved techniques using 
spline functions or spherical harmonics have been reported (e.g. Perrin et al 1987). 
Moreover, the missing exact knowledge of the various conductivities and thicknesses 
(scalp, skull, CSF etc.), essential for the electric potential calculation as mentioned 
previously, suggests that a sharper pattern does not imply that a more accurate 
estimation for the sources can be obtained (Wikswo et al 1993).

Moreover, one should remember that MEG is not sensitive in radial dipoles embedded in 
a perfect spherical conductor, while EEG is sensitive to both radial and tangential 
sources. Although this statement is usually regarded as an obvious disadvantage of 
MEG, it could be used as a facility to discriminate between two hypothesised sources, 
one of which would have a tangential component and the other of which would not (Hari 
et al 1984, Wood et al 1985). Since, however, the spherical model is not a perfectly realistic 
case, the selectivity of MEG is somewhat compromised, and dipoles oriented normal to 
the skull may as well contribute appreciably. On the other hand, this different emphasis 
between MEG and EEG on neuronal populations (e.g. sulci and gyri) may be particularly 
helpful - once the two methods are combined - in charting activity that spreads from one 
region to another, since it would be expected that the prominence of one modality would 

be followed by the other sequentially.

Other more practical differences are associated with the fact that EEG is based on contact 
measurements, since the electrodes applied to the scalp with conductive paste while the 
MEG recordings are conducted in a non-contact fashion. Entire head measurements were 
traditionally performed with EEG allowing for a complete scalp potential of spontaneous 
events like epileptiform discharges, while it is only recently that whole head MEG
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systems became available. On the other hand, longer patient/sul^ect preparation times 
were needed with EEG, but this is also minimised now with contemporary systems 
(Gevins et al 1991). In addition, continuous monitoring is easily accomplished with EEG, 
since the electrodes are small and secured to the head -while MEG demands immobile 
recordings inside shielded rooms; this enables the EEGer to study rare spontaneous 
events like for example seizures.

As far as localisation accuracies are concerned, it is expected that either technique have its 
own "preferred" direction in the localisation. It was in fact shown, both theoretically and 
experimentally (Cohen and Cuffin 1983), that in general the MEG maps should be tighter 
than the EEG ones (i.e. by at least one-third under certain configurations), favouring 
MEG's locating ability. Since then, there have been many studies on the subject, and 
fairly recentiy a controversy began concerning the relative localisation merits of the two 
techniques (Cohen et al 1990). Cohen and co-workers compared electric and magnetic 
measurements of signals from a source implanted in a patient's head and concluded that 
MEG is only marginally more accurate than EEG and practically offers no significant 
advantage in locating cerebral activity. The claim, however, was challenged by other 
researchers on methodological grounds (Williamson 1991; Hari et al 1991). Numerous 
conferences and symposia have subsequently discussed the topic delineating the 
minimum requirements for a satisfactory in vivo comparison of the ability to localise 
dipoles with EEG and MEG (Anogianakis et al 1992). The dust appears now to be settling 
due to recent reports on localisation tests (Nakasato et al 1994) and to what one would 
anticipate in terms of the basic electromagnetic theory (loannides 1994).

2.6 Topographic Electrophysiological Mapping
Despite the limitations mentioned so far, EEG and MEG offer a unique view of brain 
physiology at the millisecond temporal scale. They are both completely non-invasive and 
harmless and are perfectly suited to follow the dynamics of the various 
neurophysiological processes in a spatio-temporal coherent way - thanks to the modem 
multichannel systems - with a few millimetres accuracy at the cortical level. However, 
they can provide only functional information, or in other words unravel the underlying 
physiology, but not the anatomy as such. They, therefore, need to be associated with 
images of structure, ie . CT or MR images (see next section, but also Chapter 3). The end 
product, is a powerful and fascinating depiction of the brain in action.

A number of studies have been performed in this way by researchers of both 
communities, ranging from tracking activity evoked by a stimulus (auditory, visual, 
somatosensory, pain) (Liégeois-Chauvel et al 1994; Singh et al 1994; Suk et al 1991), and 
recording of spontaneous activity of healthy subjects (Ribary et al 1995) or epileptic
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patients (Bamidis et al 1995), up to unfolding memory or mentality associated activations 
(Salmelin et al 1994; Gevins and Smith 1995).

One of the drawbacks in the analysis of both techniques (but mainly of MEG) has been 
the model used to represent the underlying activity. To date, the majority of the MEG 
investigators use current dipoles (where the whole activity is collapsed into a point) to 
model the distribution of electrical sources within the brain (see for example Rogers
1994). The oversimplicity of such models has limited the range of physiologically 
interesting questions that MEG (and/ or EEG) is capable of tackling and served as against 
the general acceptance of the technique, although when used along with stringiest 
selection criteria produced results of clinical usefulness. In the last ten years or so, but 
especially in the last five, more general and powerful techniques which allow for 
distributions of current density rather than point like generators of activity, have become 
available with names like Magnetic Field Tomography (MFT) or Minimum Norm 
Current distribution and others (see Chapter 4 for a more detailed description). Many 
brain functions involve the coherent activation of broad regions that are inconsistent with 
ECD models. In these cases, models that estimate the general distribution of current flow 
within the brain at many possible regions are of interest.

Finally, when both the MEG and the EEG, as well as their users, reach an equal stage of 
techiücal and physiological sophistication, it will undoubtedly be possible to obtain 
additional returns on the collective intellectual investments by fully merging the two 
techniques to obtain even more accurate and stable source reconstructions (Hasson 1991).

27 Other Functional Brain Imaging Modalities
6 ver the last two decades a formidable array of medical imaging methods have been 
generated. Notable among these and particularly relevant to our discussion are X-ray 
tomography (CT), Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS), Single 
Photon Emission Computed Tomography (SPECT), Positron Emission Tomography 
(PET), Electrical Impedance Tomography (EIT), and Near Infra-Red Spectroscopy (NIRS). 
In this section we briefly describe each technique and we highlight their powers and 
limitations, in the general context of comparing them with the already mentioned EEG 
and MEG. Some more details of the various techniques as used in the study of epilepsy 

are also going to be given in Chapter 6.

2.7.1 X-ray CT
Developed in the early 70's (Hounsfield 1973), CT overtook the simple X-ray 
radio^aphs, and offered 3-dimensional sets of electron density maps. It was the first 
non-invasive (but radiation utilising) method to offer images of human anatomy with a
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spatial resolution of about 1 mm and a density (linear attenuation coefficient of X-rays) 
discrimination of better than 1%. Fairly recently, the use of contrast agents and the 
development of spiral (or helical) CT has enabled the application of 3-dimensional CT 
angiography that offers exquisite reconstructions of the intracranial vasculature (Heiken 
et al, 1993). One way or another, CT can reveal malformations of some sort once they 
occurred, and although it provided the clinical community enormous help with the 
diagnosis and treatment of diseases, its inability to image function has excluded it from 
the functional imaging modality's group.

2.7.2 MRI
MRI revolutionised brain imaging by offering direct visualisation of brain structures with 
an accuracy similar to that of CT, but with better specificity to soft tissue and involving 
no radiation hazard MR proton images provide information relating not only to proton 
density but also to the freedom of hydrogen-containing molecules to rotate and to the 
proportion of water contained in different body-fluid compartments. Furthermore, 
imaging of other biologically important nuclei is possible. For example sodium imaging 
can be used to reveal cerebral infarcts, neoplastic changes, and some kind of metabolism 
(Bamidis 1990).

Although one can claim that some measure of brain function could be obtained (e.g. with 
the use of paramagneticaUy labelled tracers and measurements of blood flow and/ or 
water diffusion), it was not until recently (Belliveau et al 1991; Kwong et al 1992) that 
MRI was added to the armamentarium of non-invasive functional imaging modalities, 
transforming its name into the jargon functional MRI (fMRI). This was accomplished 
with the use of high-speed echo planar imaging techniques (EFI), which can efficiently 
sample the spatial information of the object (brain) after a single excitation of water 
molecules. In this way, all data needed for an image can be obtained in less than 100 ms, 
whereas a more conventional imaging sequence would take several tens of seconds 
(though images resulting from the latter process would have greater spatial detail). This 
type of fast sequence is particularly useful for sampling large portions of the brain many 
times at short intervals to monitor brain activity.

The most commonly used fMRI technique relies on a subtle increase in signal intensity in 
the regions activated during a carefully designed experiment (Turner and Jezzard 1994). 
The cause of this small increase in intensity is ascribed to a local change in blood 
oxygenation balance, which is in turn a result of neuronal activation. It has been known 
for many years that deoxyhaemoglobin is magnetically différât from oxyhaemoglobin 
and that, in the case of blood passing through tissue, the presence of deoxyhaemoglobin 
creates point magnetic inhomogeneities within the blood vessels that result in
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microscopic field distortions around the vessels. The coherence of the signal from 
hydrogen nuclei in the water content of the surrounding tissue is partially destroyed by 
those inhomogeneities, and, thus, the signal intensity is lower than it would be if they 
were absent. As a residt, deoxygenated blood itself acts as an intravascular contrast 
agent, that can indeed be utilised instead of other labelled tracers (Kwong et al 1992).

During neuronal activity, local metabolism increases (Roy and Sherrington 1890) and 
local blood flow increases substantially, more than compensating for the demand for 
extra oxygen caused by the neuronal activity (Fox et al 1988). The local concentration of 
deoxyhaemoglobin, therefore decreases, and so the signal in those regions increases in 
intensity. Important new results have actually shown, that following photic stimulation, 
certain focal areas of grey matter display an initial negative change in signal intensity 
that reaches a maximum some 500 ms (Ernst et al 1994) or 2 s (Menon et al 1995) after the 
onset of the stimulus, while other local areas sustain a positive signal change.

In a typical fMRI experiment, statistical reliability is improved by collecting images at a 
few seconds intervals over a period of several minutes. By subtracting the control state 
image (resting condition) from the stimulated state, one can map regions of specific brain 
functions, like vision (Haxby 1995), hearing (Binder et al 1994), motor movement (Sadato
1995), or even language generation (Rueckert 1995) with and a temporal resolution of 3 

seconds or less.

While an fMR image can be obtained rapidly enough (e.g. 50 msec) the much longer time 
constant for blood diffusion limits the overall temporal resolution and, therefore, the 
number of physiological questions that can be tackled. Another drawback is imposed 
inherently in the spatial resolution, as a consequence of the imprecise matching of 
cerebral blood flow changes to increased neural activity. To express it differently, it is 
neuronal activity that one is interested in examining, but it is blood flow that is triggered 
and subsequently measured, which in turn takes place in arterioles supplying wider 
cortical regions than those actually active, and so an inaccuracy of at least 2-3 mm should 
be anticipated, that is ameliorated even more when a large area of cortex (several cm2) is 
activated (Turner 1995). However, there is much on-going research in this field, 
providing strong evidence that fMR images obtained under high magnetic fields (e.g. 
4 T) might be sensitive to the state of capillary oxygenation (Menon et al 1995), thereby 
further decreasing the previous inherent limit.

Finally, we should mention recent developmCTits on the analysis of the functional MRI 

time-series" (Friston et al 1994; Worsley and Friston 1995), based on the concept of 
detecting significant and regionally specific correlations between sensory input and
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measured physiological response. Such correlations are tested after convolving the 
sensory input with an estimate of the heamodynamic response function.

To conclude, the exciting prospect of combining functional information with exquisite 
anatomical imaging within the sam e modality has opened a hitherto fascinating 
prospects in the study of individual brain physiology. The "non-invasive" nature of fMRI 
that makes imaging repeatable over time within the same sul^ect (allowing for 
intrasubject averaging) places fMRI into a really advantageous position over other 
radionuclide teclmiques (see below). It should finally be mentioned that there is real 
wealth of prospectives by injecting the physiological information (e.g. activated areas) 
obtained by fMRI as a priori knowledge into the MEG/EEG inverse problems (see

Chapter 4).

2.7.3 MRS
Spectroscopic studies of functional activity-related changes in brain metabolism depend 
mainly upon the IH nucleus, which is the most-sensitive to maximise signal strengths of 
the dilute metabolites that are in the millimolar range (Shulman et al 1993). While initial 
studies focused on the use of 3iP MRS for the detection of energy metabolites, increased 
interest has recently been observed in MRS, which extends the range of metabolites 
that can be studied, and provides improved spatial resolution. Anyhow, MRS 
metabolite measurements require sampling over voxels of > Icm  ̂ and acquisition times 
of several minutes. UsuaUy, the spatial resolution is worse, involving many cubic 
centimetres depending on main magnetic field strength and specific task, although 
promises of studying voxels of mm® have been made (Posse 1995). Obviously, one cannot 
be satisfied with such records, however, MRS does indeed provide the opportunity to 
study brain chemistry in relation to anatomy when combined with MR imaging. In such 
cases, regions of interest (ROIs) can be determined on MR images and the changes of 
concentration in specific compounds can be monitored and associated to activities evoked 
by stimuU or to pathological conditions, e.g. neuronal loss resulting from hippocampal 

sclerosis (Gadian 1993).

2.7.4 Radionuclide Techniques: PET and SPECT
Functional imaging using radioactive tracer techniques has developed in the last 50 years 
to become a sophisticated highly sensitive (in the nanomole/picomole level) method of 
determining in vivo body tissue function. In the last decade, advances in detector 
technology and computing power led to a rapid increase m the use of emission 
tomographic techniques for research on normal and pathological brain function.

Single Photon Emission Computed Tomography (SPECT) is based on the use of tracers 
which emit y-rays with an energy between 160-500 keV. Individual photons are detected
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using either a rotating y-camera or special purpose multidetector devices. The 
development of new radiopharmaceuticals for use in SPECT which can measure tissue 
function, together with advances in the collimating systems used, have improved the 
spatial resolution of SPECT which is now -in the brain studies- below 1 cm (Webb 1988).

Positron Emission Tomography (PET) uses radioactive tracers labelled with 
radionuclides emitting positrons during their radioactive decay; the latter then annihilate 
within a couple of millimetres giving rise to the production of two back-to-back 511 keV 
y-rays which can be detected using a positron camera which records data only when two 
y-rays are detected in. fast-time coincidence. PET has therefore increased sensitivity and 
improved spatial resolution - 5-6 mm (Spinks et al 1988; Mintun et al 1989) with the 
potential of decreasing it further - over SPECT, enabling somebody to perform 
quantitative 3D dynamic PET studies.

PET has the ability to measure multiple parameters (blood flow, metabolism, receptor 
binding) in a single session, and to perform activation studies with accurate location of 
activated areas (Bartestein and Schober 1992). A number of such studies have been 
performed by research groups world-wide (Frith et al 1991; Corbetta et al 1991) and brain 
regions with increased or decreased activity (regional Cerebral Blood Flow, rCBF) -which 
correlates with neuronal synaptic firing- have been identified in association with specific 
tasks. However, the issue of mismatching between neuronal activity and blood flow as 
mentioned in the fMRI section holds here too, and together with the positron travel path 
inaccuracy pose inherent limits in PET's spatial resolution.

Moreover, in cases where small brain regions are activated, the spatial resolution of PET 
(SPECT) is not adequate to correlate to the underlying anatomy. Thus, the PET images 
have to be superimposed on MRIs, after some kind of registration procedure (see below), 
or fused with specific anatomical atlases (Mazziotta et al 1991). The key problem, though, 
of PET (which is even worse for SPECT) is its relatively poor temporal resolution (~10- 
40 sec). Although the transfer of activity between different brain regions is accomplished 
in a few milliseconds, it takes seconds for blood flow changes to lead to accumulation of 
enough data for statistically meaningful processing. This means that although the mainly 
activated areas can be identified, the duration and flow of activity from one brain region 
to another cannot be followed (loannides 1991). In fact, only the main nodes of 
activations will be highlighted, but little can be said about the spatio-temporal evolution 
of activity. Moreover, both PET and SPECT have the disadvantage of exposing the 
subject/ patient to radiation, which means that experiments may not be repeated over 
time.
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It should be mentioned here, that analysis of PET data has been vastly performed via the 
study of covariances across subjects undergoing the same experimental paradigm - 
presumably under exactly the same conditions. Ideas whose origins lie in the analysis of 
electrophysiological signals (i.e. EEG and MEG) have recently been incorporated in PET 
(and fMRI as well) to allow the study of covariances of activations across time and not 
across subjects (Friston et al 1994; Friston 1994).

Finally, it should again be emphasised that there can be exciting synergistic advances 
expected from the integration of these techniques with MEG/EEG, since the information 
obtained can be used to physiologically constrain the ambiguities in the MEG/EEG 
analysis (Wikswo et al 1993; loannides et al 1995c).

2.7.5 EIT

Electrical impedance tomography (EIT), applied potential tomography (APT), and 
im pedance computer tomography (ICT) are synonyms for a technique that images the 
distribution of resistivity or conductivity of tissues within a body region . The method is 
comparatively new - it has only been developed during the past decade - and involves no 
known hazards (Jongschaap et al 1994). The electrical properties of tissue are imaged by 
injecting small currents and measuring the resultant voltages. These voltages are then 
converted into a tomographic image using a reconstruction algorithm. The spatial 
resolution of EIT is currently about 10% of the body diameter (Dijkstra et al 1993), and 
although this figure will improve as research continues, it is most unlikely that it will 
ever reach that of MRI or CT.

EIT can be applied to imaging brain function as follows: during the passage of an action 
potential, the resistance of the neuronal membrane drops to 1/40 of its resting value. 
However, attempts to record evoked electrical impedance responses using scalp 
electrodes and measurements at 50 kHz, concluded that the response was too small to 
yield reliable images. It was, therefore suggested that imaging neuronal discharge may 
be possible at lower frequencies (probably as low as DC) and cortical placement of 
electrodes (Holder 1993).

In practical terms, it is probably easiest to implement EIT imaging of the relatively large 
slow impedance changes which occur during stroke, cerebral ischemia or epilepsy, which 
are largely due to swelling, or during cortical spreading depression. The advantages of 
EIT over other techniques are only practical ones: it is safe (unlike PET/SPECT), 
inexpensive and portable, so that it can be used for continuous bedside monitoring or in 
developing countries (Boone and Holder 1995). However, much research is needed before 
EIT could be considered as a useful functional brain imaging modality.
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2.7.6 NIRS
Near infrared spectroscopy/spectrophotometry (NIRS) measures tissue absorbance of 
light at several wavelengths in the spectral region from 670-1000 nm, thus enabling 
determination of concentration changes of oxygenated haemoglobin, deoxygenated 
haemoglobin, blood volume, and oxygenated cytochrome-oxidase (Villringer et al 1993). 
Since near infrared light penetrates biological tissue and even bone, such measurements 
can be performed through the intact skuR Although most of the so far employed studies 
have been performed in neonates, one can use such measurements in adult human brain, 
to record probably the same effects as those recorded by PET/ fMRI but with higher time 
resolution (100 ms) (Hoshi and Tamura 1993). Although optical images of biological 
structure and function with a spatial resolution of better than 1 cm have been reported 
(Grease 1993), methodological difficulties associated with image reconstruction, render 
these images yet too crude for clinical use. In addition, the same as before inherent 
lim itations in measuring neural activity through blood flow still apply. However, NIRS is 
a flexible and inexpaisive technique, and in the future may become an alternative 
functional neuroimaging modality.

28 Overview: MEG versus others
We have described the most contemporary techniques for imaging brain structure and 
function. Limits on resolution of PET/  SPECT/  fMRI are becoming fairly clear. These are 
not instrumental limits, but arise from the as yet unknown relation between cerebral 
blood flow changes and increased neural activity. The temporal resolution of a few 
seconds arising from the time lag of haemodynamic response can be improved only by 
adoption of techniques based on direct detection of neural activity, such as EEG and 
MEG. On the other hand, EEG and MEG are not very accurate in imaging deep 
structures due to the problem of non-uniqueness as weU as the conductivity uncertainties 
in the case of EEG.

Moreover, a proper comparison of MEG with the various imaging systems should 
include systematic criteria such as (apart from temporal/ spatial resolution) sensitivity, 
reliability, specificity, and validity (Galen et al 1995). The specificity refers to the 
proportion of patients that a method deems are abnormal and who are in fact abnormal. 
The reliability of a test reflects its reproducibility. Validity refers to the accuracy of the 
information. In assessing clinical applications of functional imaging methods, it is 
important to examine all these parameters in the context of the populations of intended 
subjects and the nature of the target brain functions. MEG seems particularly promising 
along these lines, and one should expect it to "take over" once tiie above requirements 
are fulfilled.
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It w ould have been unfair not to m ention the costs involved too. PET and MEG seem to 

be the m ost costly techniques (order of million(s) of pounds), a fact originating from the 

need for an on-site cyclotron for the PET radionuclide production and the use of liquid 

Helium as a superconducting bath for MEG sensors. SPECT is relatively cheap and the 

m ost w idespread in hospitals. The easiness of transform ing a MRI unit into fMRI puts 

fMRI into an advantageous position over the others, despite its costs (which are high, but 

certainly less than those of PET/MEG). EEG is supposed to be the cheapest of all the 

modalities, although the costs of purchasing of m odern EEG machine are not that m odest 

(order of tens of thousands pounds). However, it is expected that the cost per MEG 

sensor will continue dropping with the advent of whole head systems, and it will be 

reduced dram atically w hen high tem perature superconductors appear commercially - 

although it is argued that systems facilitated with the latter m ight not be appropriate for 

brain studies (due to high SQUID noise), but they will definitely be so for cardiac studies.

In an attem pt to estim ate the current effort on brain research, we m ay consider the 

presentations in the first International Conference on 'Functional M apping of the H um an 

Brain', taken place in Paris on June 1995. Figure 2-9 shows the relative proportion of the 

various techniques. As illustrated, PET scores the highest percentage, followed by fMRI. 

A lthough MEG is only fourth in the row, it w ould be useful to m ention that the 

conference started w ith three invited lectures, one in each of PET, fMRI, and MEG, a fact 

that dem onstrates the establishm ent of MEG in the functional neuroim aging com munity.

fMRI o th e rs
24% 8%

Figure 2-9: Relative proportion of research w ith the various functional brain im aging 

techniques, as judged  from papers presented at the 1st International Conference 

on Functional M apping of the H um an Brain, held in Paris in June 1995.
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Finally, we reiterate that synergistic advances can be expected from the integration of the 

EEG and MEG w ith the other modalities. Intercom parison of data obtained by EEG and 

MEG w ith com plem entary studies using invasive electrodes in patients, or PET, SPECT, 

and fMRI in patients and norm al subjects will provide im portant validations across 

modalities. Animal m odels will provide additional validation.



3. Relating Structure and Function

In the previous section we described various brain im aging modalities. Some of these, 

can depict detailed brain anatom y (e.g. CT, MRI), while some others provide inform ation 

regarding its function (e.g. PET, MEG). However, if functional inform ation is to be 

meaningful, then the loci of activity m ust be clearly correlated to anatomical landm arks 

of the brain. The procedure of correlating two (or more) techniques is called 

coregistration or sim ply registration. The subject of this chapter is how structure (mainly 

MRI) and function (mainly MEG) can be integrated together, in other w ords, how  the 

M RI/M EG registration can be accomplished.

3.1 In General
The need for registering two datasets (e.g. images) has come up  in the last decade or so, 

in cases that is required to combine the inform ation content of different modalities, since 

no single m odality is capable of adequately im aging both anatom y and function or even 

providing all the anatomical data needed for a specific task (e.g. surgery, radiotherapy). 

For example, sometimes anatomical detail is m ore easily seen in MRI than in CT, 

differentiating tum our and oedem a from grey and w hite m atter in the brain. Bony 

structure is best visualised by CT whereas soft-tissue pathology and nervous tissue at the 

skull base is best seen by MRI. A need to combine these two modalities is therefore 

arising for the purpose of skull base surgery (Hill et al, 1991). In other situations 

understanding w hat a structure is responsible of doing, or diagnosis of a diseased state 

may be illum inated by functional im aging alongside w ith anatomical data (M azziotta et 

al 1991; Bidaut 1991).
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M atching different modalities is com plicated because each m ay have its own geometrical 

description w ith different pixel sizes, slice thicknesses, data orientations, magnifications, 

and possibly non-aligned longitudinal axes (tilted transaxial planes). All these problems 

have to be addressed by image correlation m ethods (Webb 1993). Some of these problem s 

are also met in the M EG/M RI registration. The im portance of the final mismatch 

(registration error) will depend on the MEG model used and of course on the study itself. 

For instance, if a point descriptor (EGD) is used in a study of auditory evoked responses 

then 0.5-1.0 cm error may be acceptable. However, when the MEG study is used to guide 

radiosurgery procedures (Hellstrand et al 1993) accuracy becomes critical.

In the MFT* studies, the need to accurately correlate the estim ates of activity with 

background structure is higher, since the shape as well as the position of the solutions 

becomes im portant (Bamidis and loannides 1993). Not only the shape of an activated 

structure (e.g. m otor cortex) and the shape of the MFT solutions are highly correlated, 

but the definition of the source space requires accurate position and orientation of the 

subject's h ead /b ra in  in the MEG system. This m eans that the brain outlines from MRIs 

have to be expressed in the MEG co-ordinate system  so that MFT solutions can be 

obtained. Moreover, if a priori physiological knowledge is to be injected in the inversion 

procedure then the MEG locations of specific structures (extracted from MRIs) have to be 

precisely known.

3.2 Localisation in MEG
If one w ere to correlate the loci of activity, as identified by MEG, to anatomical brain 

landm arks, then a com m on co-ordinate system  is required; such a system  needs at least 

three fixed points for its definition, and can be used to specify both the sensor location 

and orientation and any landm arks or features of the brain as seen on a MR or CT image. 

One w ay of achieving such a coregistration, is by identifying com m on points on MRIs 

and MEG based locations. Points that have been used extensively, include the nasion (the 

deepest point of the nasal bone between eyes), the preauriculars (the points on the lateral 

face side just prior to the entrance into the ear canals), the inion (the protrusion of the 

occipital bone at the back of the head), and the front teeth (Hamalainen et al 1993). An 

orthogonal system  can be determ ined, for instance, by the two preauriculars and the 

nasion points.

The position and orientation of the Dewar (containing the SQUIDS, gradiom eters etc.) 

w ith respect to the system already defined can then be accurately found by m easuring

M a g n etic  Field T om ography (M F T ) is exam ined in deta il in the fo llo w in g  C hapter
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the magnetic field produced by currents in small coils attached to the scalp (Ahlfors and 

Umoniemi 1989). Three such small coils can be m ounted on a thin fibre-glass plate, which 

is then attached to the subject's head at a known point in the m easurem ent area; the 

Dewar can then be positioned, the coils energised sequentially, and the resulting fields 

can be m easured. The position of the coil set w ith respect to the head system  defined 

previously can be determ ined w ith the help of a 3D digitiser. The position of the Dewar 

can be determ ined w ith an RMS error of about 1 m m  (Hamalainen et al 1993).

A nother approach is based on an inductive m agnetom eter using three orthogonal coils in 

the receiver (attached to the subject's head) and in the transm itter (secured to the Dewar). 

The position and orientation of the m agnetom eter can be found from the m easured 

m utual inductances. The locations of the head coils are obtained by a reference 

measurem ent: the 3D co-ordinates of chosen landm arks on the head are determ ined by 

touching them  w ith a pointer, that has similar orthogonal coil transm itter, and energism g 

the pointers coils (the process is usually referred to as "clicking ). The correlation of the 

head location (during the MEG m easurem ent) w ith the subject's anatomical data (MR 

images) can then be accomplished by attaching pieces of oil-filled plastic tubes prior to 

the MRI acquisition to the same three or more landm arks chosen for the MEG experim ent 

(Hamalainen 1991).

3.3 Fundamental Principles of Registration
Let us assum e that we are given two Cartesian co-ordinate systems, {Oxyz} and 

{O'x'y'z'}, and a single point, w ith P denoting its position vector in the first system, F' the 

position vector in the second one, and b the position vector of the origin O ' w ith respect 

to the first system, as in Figure 3-1:

Representing the point by a 3-element column vector notation we have:

(3 -1 )p = T , P’= y , and b — K
U J

Then

P' = SRP + b (3 - 2 )

w here R  is a (3x3) rotation matrix, and S is a diagonal (3x3) scaling matrix. The rotation 

matrix R  can be broken dow n as the product of three separate rotations. Let R x (0 x ) be a 

rotation by 0 x  about the x-axis, R y (0 y )  be a rotation by 0 y  about the y-axis, and R z (0 z )  be a 

rotation by 0x about the z-axis (Foley and Van Dam 1989).
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Figure 3-1: Representation of a point in two different co-ordinate systems. 

Then (and implicitly defining a specific order of sequential rotations):

where

f l  0 0 '

Rx(^,) = 0 cos^. sin^.
<0 -  sin 0 . cosO^j

 ̂cos^^ 0 sin^^^
0 1 0

0 QOsOyj

 ̂cos^. sin^. O'
-  sin 6̂ cos^, 0

< 0 0 \)

The scale matrix in general may be written;

S =

(3-3)

(3-4)

(3-5)0 5.
10

where s^, s ,̂ ,s  ̂ are the scaling factors in the x,y,z directions, If the scaling is assumed

to be isotropic then S collapses to si, where I is the identity matrix and s is a scalar 
constant. Combining Equation 3-2, Equation 3-3, Equation 3-4, Equation 3-5 we get
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s,S.C, -s,C.S,+s,S.Sfi;
p  = y = -SySfiy -FSyCjŜSy y + by (3-6)

\z) UJ
where Sx,y,z=sm0x,y,z and Cx,y,z=cos0x,y,z. Note that the rotations and scaling are not 
commutative; they must be performed in the order written. The centre of the rotation 
(scaling) has been silently kept to be the origin O of the first system  If rotations about an 
arbitrary point Pi are desired, then a sequence of three fundamental transformations is 

necessary:

• Translation so that Pi is at the origin.

• Rotation (scaling).

• Translation so that the point at the origin returns to Pi These operations can be 
described by:

P; = S R (P ,-P i) + P i+ b  (3-7)

In the presence of noise which arises as a result of errors in locating equivalent 3D points 
in the two systems, a noise vector {Ni} has to be input in Equation 3-7 leading to:

p; = S R (P ,-P i)+ P i+ b  + N, (3-8)

Finding the registration transformation that relates {Pi} and (?/} involves determining the 
S,R,b, which rrimimise noise errors (cost function, F):

F=SW=Zl*’.'-̂ - (3-9)
f=l f=l

3.4 A Review of the Registration Techniques used in Medical 
Imaging
There is no universally acceptable method for solving the registration problem. The 
available techniques have been classified by Kessler (1989) into four individual groups. 
These are point-matching, line-matching, surface-based matching, and interactive 
matching. The first three of these involve rriinirnising some merit or cost function 
(representing the mismatch error) in order to align one dataset with another. The last 

■ group, however, relies on a user attempting to register anatomical landmarks 
interactively, in a trial-and-error mode.
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3.4.1 PoinVLme-Matching
The point-matching method makes use of either external fiducials placed on the sul^ect's 
head (e.g. small spots of oil for MRI, or solder for CT, or M'a™ for SPECT, or ^ a  for PET, 
or coils for MEG) or observer-determined anatomical point landmarks (e.g. the apical 
turn of cochlea, a blood vessel, an identifiable part of a sulcus or gyrus (Hill et al 1991)). It 
has been used in a number of cases to register MR and CT images (Hill et al 1991), PET 
images with MR images (Kessler 1989; Evans et al 1989), and PET/SPECT with MR/CT 
(Rizzo et al 1990). The registration task is to, first, identify corresponding landmark 
points in each set of images, and then determine the transformation among these 
corresponding points. Usually the scaling is regarded as being isotropic or even known, 
so the system in Equation 3-9 is solved for the translation and the three rotation angles 
only. The cost function can be formed by summing the squares of the distances between 
corresponding points. Kessler (Kessler 1989) mentions that four points are required to 
find all the parameters*, however, he is often using 5-12 points to reduce sensitivity to 
localisation errors. Similar techniques have been applied to correlate EEG measurements 
with MRIs (Lagerlund et al 1993), by gluing vaseline filled capsules on the scalp to 
produce delineated regions of increased signal on MRI scans in order to mark the 33-EEG 
scalp-electrode positions.

The line-matching methods are used under circumstances where it is difficult to ensure 
that single points are in the field of view. In such cases a custom mask for the head 
(Kessler 1989) or a stereotactic frame (Peters et al 1986; Wilson and Mountz 1989), that 
employs rods filled with the same materials as for point-matching are used. The 
orientations of the rods are chosen to maximise the sensitivity of the method. A merit 
function involving the centres of the rods can then be rriiriiriiised (Kessler 1989; Webb 

1993).

3.4.2 Surface-based Methods
This is probably the most difficult to engineer but also the most reliable method. It 
requires that the same surface can be described by the two modalities of interest. 
Different points are usually involved in the definition of each surface. The jargon "head- 
hat" fitting has come into use to name this technique (Pelizzari et al 1989). The rotated 
"hat" (usually the surface from the less accurate modality) have to be transformed in 
order to fit the "head". Neiw et al (1991) further classify these methods into the principal 
axes matching technique, and the surface matching technique,

* Only three points are needed thougĥ  if scaling is known.
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The principal axes method computes the centroids and principal axes (of symmetry) from 
the two sets of 3-D surface model built by stacking up a series of surface contours 
identified in the tomographic slices. The translational difference between the two models 
is estimated from the difference vector between the two centroids. After the centroids are 
aligned by applying the appropriate translation, the rotational correction is obtained by 
aligning the principal axes of the two models.

The surface matching technique works as follows: we are seeking the geometric 
transformation (relating the "hat" to the "head") that minimises the cost function which 
is formed by summing up the squares of the distances of each hat̂  point to the surface 
of the "head". Usually a point "below" the "head", like the centroid of the "head" points, 
is given and a ray pointing from each "hat" point to the above point intersects the "head" 
surface at Pint. The squared distance of the "hat" point to this intersection point is then 
entered in the cost function (Pelizzari et al 1989).

Figure 3-2: Ihe ray from the "hat" point P' to a point below the "head" (circular disks) 
intersects the 'Tiead" at point Pmt. The distance of P' to Pw is contributing to the 

cost function.

A number of tricks have been employed in the last few years to further optimise this 
technique. For example, tiled surfaces are constructed for each dataset (e.g. Fuchs et al 
1990, cited in Webb 1993), so that the surface of the head and therefore the intersection of 
the mentioned ray (from the "hat" point to the "head" centroid) can be more accurately 
determined. Moreover, the extraction of the surface (i.e. the contours from individual 
tomographic slices) has been automated (Neiw et al 1991) to overcome the difficulties and
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the possible errors arising from the human interaction. Neiw et al (1991) have also 
devised a stepwise process to fine-tune the fitting. In the initial matching phase, the cost 
function involves interpolations that only produce an approximate result. With a rough 
matching estimate resulting from tho first phase as an input, a final matching step then 
fine-tunes the solution.

More recently a new technique was developed to register surface data (Woods et al 1992) 
from PET on a voxel-by-voxel basis. To align two image datasets, the algorithm is 
calculating the ratio of one image to the other for each voxel and then iteratively moves 
the im ag^ relative to each other to mmimise the variance of this ratio. It is based on the 
assumption that if two image sets are accurately aligned then the value of any voxel in 
one image set is related to the value of the corresponding voxel in the other image set by 
a single multiplicative factor, R. If the sets are misaligned, R is no longer constant, but 
varies from voxel to voxel throughout the image. The alignment algorithm is, therefore, 
attempting to minimise this voxel-to-voxel variation. Modifications to this algorithm (like 
binarising the images, extracting the MRI brain contours etc.) can be implemented to 
transform this technique into an inter-modality (e.g. PET to MRI) alignment procedure. 
However, the technique requires that exactly the same volumes can be imaged 
adequately so that the alignment is successful.

3.4.3 Accuracy achieved by various methods.
Most of the simulated studies (e.g. phantom studies, or model data) claim that an 
accuracy comparable to the spatial resolution of the imaging device with the lowest 
spatial resolution can be achieved. Some researchers have even measured the geometric 
distortions of their scanning systems (e.g. MRI) in an effort to determine the inherent 
registration limits (Hill et al 1991; Van den Elsen and Viergever 1991). For MRI images, 
which are the ones with the best resolution, a maximum voxel displacement of 2.3 mm 
for transverse slices at the periphery of the head coils of view, with an average integral 
non-linearity of less than 0.8 mm were reported (HiU et al 1991). Keeping this in mind, 
the residual misfit between models of the external surface from MRI and PET phantom 
measurements, which was reported to be of the order of 1.5-2.0 mm (averaged over the 
surface) seems very reasonable (Mazziotta et al 1991; Pelizzan et al 1%9). In the same 
reports an accuracy of for rotation, 1 pixel (~1 mm) for translation and <1 pixel for 
scaling, was resulted when two copies of an identical image contour set were displaced 
by known amounts of rotation, translation and scaling. The same accuracy (-1.43 mm 
misfit/point, (Hill et al 1991)) was demonstrated by point matching teclmiques, but it 
was commented that "the registration accuracy will be better than this since a least 
square technique is used to derive the transformation matrix and, as more points are 
identified than the necessary to solve the transformation, there will be some averaging of
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errors". Finally, mean misregistration error of 0.6-0.7 mm, which is less than the used 
pixel size (1.745 mm) was achieved by the voxel-to-voxel method (Woods et al 1992) in 
PET studies.

3.5 Registration studies at the OU*

3.5.1 Motivation
As the point-matching technique was the easiest one to engineer and solve, this was 
universally used by most MEG groups world-wide. It was noticed, however, that the 0.5- 
1.0 cm accuracy achieved by the use of three markers (nasion, preauriculars) (George et al 
1989) could be reduced down to millimetres by procedures incorporating surface 
alignment techniques, so that the MEG/MRI matching accuracy can approach that of 
MRI/PET, allowing for more reliable multimodal imaging and/or intermodal 
comparisons (Walter et al 1992).

There was, therefore, recently a movement towards the use of the surface matching 
technique in MEG and EEG studies. Abraham-Fuchs et al (1991) and Towle et al (1993) 
used this technique as described previously (Pelizzari et al 1989) to register digitised 
points on the scalp obtained for MEG and EEG measurements respectively, with MRI 
images. Gevins et al (1990) also digitised the EEG electrode positions and minimised the 
mean distance for all electrodes (to the closest point on the scalp surface MRI contours) to 
align the EEG and MRI systems. An accuracy in the order of 2-3 mm was reported in all 
cases.

For all the reasons explained in paragraph 3.1 an accuracy on the 1.0 cm level would not 
be adequate in our studies. The accuracy described in the latter cases instead is desirable. 
Moreover, there were a couple of occasions where the use of three fiducials resulted in 
inconsistency. Figure 3-3 displays the situation where the fit of the pre-auricular and the 
nasion points (marked with arrows in (a)) is excellent (crosses in (b) but the description of 
the digitised scalp in the MEG system (red dots in (b) does not fit with the outlines as 
extracted from the presumably aligned MRIs (green contours in (b). This was probably 
due to the inconsistent definition of the fiduciary skuU landmarks in each acquisition 
(MEG and MRI). Notice that the same kind of discrepancy is resulted in two individual 
cases (sul^ects).

The need to move to a less sul^ective alignment procedure is, therefore, obvious. 
However, a point matching technique is always useful as an initial matching step, and

* Open University
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sometimes is the only one available. Thus, we developed two systems: one that uses a 

point-m atching algorithm, and another based on the surface m atching technique. In the 

following, w e are going to describe the im plem entation of each m ethod in detail.

(a) I

S u b je c t# ] S ub jec t #2

(b) /:

Figure 3-3: The arrows in (a) show the vitam in pills used to perform  the point-matching. 

The fit of the MEG co-ordinates of the pills (blue crosses in (b)) w ith their MRI 

ones (marked as little red circles in (b)) is perfect. However, the head shape

outlines in the system  (red dots) do not match the MRI scalp outlines (green

contours).

3.5.2 Point Matching
Two separate subsystems, nam ely "PM-ALL" and "PM " (basically acronym s of Point 

Matching), used under different situations, were developed to perform  the point 

m atching task. This is not due to the different nature of the problem  in each case, but it 

was only im plem ented to satisfy the w ays inform ation was sent from other labs w orld

wide, into our lab. The first subsystem , "PM-ALL", needs points w ith know n pixel co

ordinates (MRI) and their corresponding MEG co-ordinates to be given. No initial 

estim ate is required, and the scaling param eters are unknow n. On the other hand, scahng 

is assum ed to be know n for the second subsystem , "PM ", which also requires an initial 

estim ate for the transform ation param eters. The MEG co-ordinates of at least 3 points

that can also be identified on the MRIs are the inputs to "PM ". In the following, we

describe the principles and the perform ance of each system  separately.
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3.52.1 "PM-ALL"

3.5.2.1.1 The formulation

As already m entioned above, "PM-ALL" assum es that corresponding points are given in 

the MRI system  (pixels) and the specific MEG system  (in meters). The MRI slices are 

assum ed to contain ( 2 x N c ) x ( 2 x N c )  pixels w ith the ( N c ,  N c )  pixel being the centre of each 

MRI slice. Then a pixel, P', in the n th  MRI slice (Figure 3-4) will be

»•„, = r„{P;,P;) = r̂  +s,{n-nJe,+s^(P; -  NJe, + ŝ (P;̂  -  NJe, (3-10)

nl/}  s lic e

slice

Figure 3-4: A point P‘ in the n th  MRI slice and its representation in the MFC system, 

w here e i ,e ,,e 3 the unit vectors that com pose an orthogonal Cartesian system  (the MFC
A A A  A  A  A  A  A  A

system) and so 1 and e, 0% = e^-ej = Cj-Cj = 0, r„j the MFC vector of P ,̂ is the

origin vector of slice no (in other w ords the pixel ( N c ,  N c )  of slice no in the MFC system), 

si, St, S3 are the scale param eters along the three axes, and Pi*, Pzi the pixel co-ordinates of 

P*. Then if a second point Pi is given on the n th  MRI slice. Equation 3-10 can give:

-  r„j = s, (P; -  PJ ) Cl -f S2 (P2 -  Pi )e . (3-11)

or
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Rij =ir„i -  r„jp= sfiPi-pjf W i n - n f

A m inim um  of 2 points can give si, sz, however, a greater num ber of points (e.g. Ni) 

given in slice n, can be used to solve for si, sz in the least square sense i.e. m inim ising the 

error E:

E = 2 1 ;  IR, -s,^ (p; -  pj ) ' -  s,: (Pi -  Pi ) ' I' (3-13)
i=l j=i+l i<Ni

by taking = | y  = 0 and solving a 2 x2  linear system  of equations. If a num ber of points

are given in other slices (e.g. Nz points in slice nz), the process can be repeated by getting 

si', sz', and then averaging si, sz. Usually Si can be taken to be equal to sz (or both equal 

to their average) if w e know that the MRI slices are isotropic.

We can further use si, sr and Equation 3-11 to find the com ponent of each unit vector 
(e,,,e, ,e,„ etc.). This can Ire done by reform atting Equation 3-11 into:

= 5, {p; -  p; ) e „  + 5 , (/>' -  P i  (3-141)

= 5, (p; -  p; y,, + s, (p; -  P i  y ,,  (3-i 4ü)

= .r, (/>; -  P i  )e„ + (P i  -  P i  (3-14iü)

w here r̂  the x,y,z com ponents of (r„, - r „ j)  in the MEG system. Again forming

the errors (e.g. for Equations 3-14i)):

= I  Ê k ,  - ^ 2 ( ^ 2  (3-15)
1=1 .;=/-fl 

i<N\

and  letting = 0 w e can solve a 2x2 linear system  to get • Similarly we
*2x

get and (e ,,,? ; ,)  and we can, therefore, form the unit vectors e , , and  . The

third vector can then be formed by using:

63 = Cj X Cj (3-16)

So far w e have found (si, sz, e , , e , ,  ), and the rem aining unknow ns are (s3, r j .  If we

consider point to be in slice rn and point Pi to be in slice nj, then Equation 3-10 gives:

= tj -  Tj = 53{n. -  ri - ) €3 -f 5 , (P/ -  P̂ ' ) Cj + 52{P2 -  P i  ) ^2 (3-17)

or
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l-S-iif = ^ 3 ^ » , + s,\p;-P if+s,HP;-P if  (3-18)

w here only S3 is unknow n. Thus we get:

Again the value of S3 is optim ised by taking the average of all the possible combinations 

of points. This is in fact w hat "PMALL" does.

Finally, the origin vector r„ for slice no (arbitrarily defined to be a slice w ith N know n 

points on it) can be obtained from Equation 3-10 by letting n=no, and then averaging for 

all points. That is,

r =z ----------------------------------------------  (3-20)
N

We then have defined all the necessary param eters. Lastly, the origin centre r„ „ of the

nth  MRI slice, w hich is another necessary inpu t into our display system  (i.e. IMAGE ),

w ül be (see Figure 3-5):

=r.+(ti-n„)S=r^+ (n -  )ŝ  e, (3-21)

* IMAGE is a graphics enviroment developed at the O U  (Singh et al 1992); it is desinged to offer the user a 

set of appropriate graphical representations of MEG data, like, for example, MET solutions (or dipoles) with  

background MRI. The transformation matrix associating the MEG and MFU systems needs to be obtained 

externally (e.g. by one of the methods described here) and then ported into the system.
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Go d ire c tio no,n

Figure 3-5: The centre of the n th  slice is defined according to slice no and the third 

directional unit vector.

3.5.2.1.2 Results

We shall dem onstrate how  the above form ulation works in a situation where 18 

corresponding points w ere given. These w ere identified as w aterm arks (high MRI signal) 

in 3 MRI slices; each slice contained 6 such given points, m arked by arrow s in Figure 3- 

6 (a). Care w as taken, so that the MRIs w ere displayed in consistency w ith w hat the 

transform ation matrix found (e ,,  ) m eant w hen used by IMAGE.

Figure 3-6(b) shows the results obtained w hen sî ^̂ s?, while in Figure 3-6(c), si and sz were 

taken equal to their average in all the form ulae of the previous paragraph. The coloured 

dots are the points as given in the MEG system  (red shows points on the right side of the 

head, green shows points on the left). The fit in Figure 3-6(c) is perfect, while in Figure 3- 

6 (b) a small discrepancy appears in two of the slices. Notice that the m ost left slice was 

taken to be slice no (see previous paragraph).
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(a)

(b)

(c)

Figure 3-6: The fit of the MEG points to their points defined in the MRI system  (shown by 

the arrow s in (a)). The x,y scaling factors w ere assum ed to be different in (b), 

while they w ere taken to be equal in (c).

3 .5 2 .2  "PM "

3.5 .2 .2 .1  In G en era l

In this case the x-y scaling factors and the interslice distance of the MRIs are supposed to 

be known. An initial estimate, R o ,  for the rotation matrix, and, b o ,  for the translation are 

needed. It should be m entioned that this is not very crucial for finding the solution to the 

problem, but it is necessary to define these param eters so that the new  transform ation is 

correctly defined. In other w ords, the system  will try to find the best 0 x ,0 y ,0 z , that 

com pose R  (see Error! Switch argum ent not specified.. Equation 3-4) and the best A b ,  so 

that the new  rotation matrix, R% and the new  translation h ' are given by:

R '  =  R R b’ = b„ + Ab (3-22)

The system  is using the transform ation of points as defined by Equation 3-7, bu t w ith 

S=I=identity matrix, and P i = b o .  That is,
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P ' = R ( P - b „ )  + b„ + Ab (3-23)

For each MEG point its corresponding MRI point is the one closest to it. So the cost 

function, F (see Equation 3-9), is formed by sum m ing the squares of the distances 

between such corresponding points. Finding the param eters 8 x , 8 y , 8 z ,  and A b ,  involves 

m inim ising F with respect to these param eters.

3.52.2.2 Minimisation
The w ay that we initially tried to solve this m inim isation problem  involved num erical 

estim ates of the derivatives of F w ith respect to each param eter. For example, consider 

the 2 -dim ensional case w here only rotations around the z-axis (8 %) and translations by 

D x ,  D y  in the x,y directions respectively are allowed. Then if Soj is the initial distance of 

the jth MEG point to its corresponding MRI point, and Sj the distance when the MRI 

points w ere transform ed according to Equation 3-23 by small am ounts A 8 % ,  A D x ,  A D y  

then F could be approxim ated by:

f  = + + (3-24)
7=1

where

Then a system  of linear equations can be form ed by taking:

In the real 3 -d case of course we have a 6 x6 system  which can be solved to give 8 x ,  8 y ,  8 % ,  

Dx, D y ,  Dz. A lthough such a m ethodology w orked perfectly well w hen "ideal" data were 

tried, the system  often failed in the presence of noise. Forming the singular values of 

such a system  did not give any indication that the problem  could be resolved by a 

"Singular Value Decomposition" m ethod (Press et al 1988). This is probably due to the 

approxim ation of the derivatives in Equation 3-25. A possible way to avoid this could be 

to calculate the derivatives from  an analytical form (i.e. to get true derivatives) and not 

just to approxim ate them  w ith num erical differences. This is in fact w hat W oods et al 

(1992) use in their algorithm. In order to avoid the com putation of derivatives we used 

an algorithm  developed by Powell in 1964, but as it was im plem ented m ore recently 

(Press et al 1988).
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3.52.2.3 Results

The above m ethod works well and has been successfully used in a num ber of cases, since 

1993. We wish to present herein the results of some tests dem onstrating the usefulness of 

"PM". A set of MR images was rotated and translated by know n am ounts of 0x, 0y, 0z, bx, 
by ,bz and points obtained from the new  set w ere supposed to be the MEG points 

according to which the initial set should be registered. It has to be stated that these points 

were obtained by a "m ouse clicking" procedure in "IMAGE" and so contain a little 

am ount of noise, that w ould not be present if they w ere just m athematically obtained 

using Equation 3-23. Table 3-1 dem onstrates the results. The RMS misfit per point values 

were determ ined by taking the square root of the cost function after the latter was 

divided by the num ber of points, which was equal to three in all these cases.

Table 3-1: Results from  "PM " (Point-Matching). Three points w ere rotated and translated 

aw ay from the true positions (initial errors). PM tried to "bring them  back" to their 

proper positions. A t the end of the process the "final errors" w ere evaluated. Note the 

small final RMS m isfit/ point values.

Errors bx
(mm)

by
(mm)

bz
(mm)

0x
(deg)

0y
(deg)

0z
(deg)

RMS 
m isfit/ point 

(mm)

initial -15.0 +10 .0 +15.0 +8 .0 +4.0 -10 .0 28.68
final -0 .2 +0.3 +0.4 +0.1 +0.1 -0.1 0.30

initial +2 0 .0 -10 .0 +10 .0 +6 .0 -3.0 +8 .0 29.60
final +0 .2 +0.3 +0.4 +0.1 +0.1 -0.1 0.56

initial +5.0 +5.0 +5.0 -2 .0 -2 .0 -2 .0 10.40
final +0.4 -0.4 +0.7 -0.1 -0 .2 +0 .2 0.42

O bserving from  Table 3-1 the high accuracy that PM can provide, one may be guided to 

the w rong im pression that all the reasoning about im plem enting a surface m atching 

technique as discussed in paragraph 3.1 was false. However, it has to be em phasised that 

PM works as neatly as the above exam ple indicates, if the points identified in the two sets 

correspond to exactly the sam e landm arks. In m any cases it is sim ply impossible to do 

so. For example, in an auditory MEG experim ent, one or both preauriculars m ay not be
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accessible as the Dewar is placed directly above the tem poral area. Even if the same point 

is used, often this is done by different people, often at different days and sometimes in 

different laboratories. If an erroneous identification of points is given then inconsistencies 

like the one presented in Figure 3-3 m ay arise. Thus, we do not suggest point-m atching 

as a m ethod of choice in registering MEG recordings with MR images. However, we do 

recom mend it as a useful tool tow ards a good registration. This is, firstly, because it can 

provide a reasonably good (sometimes very accurate as well) initial estim ate of the 

param eters to be inpu t in a surface m atching technique. Secondly, it is a quick and 

accurate technique in sim ple tasks; for example, w hen different MRI incidences (e.g. 

sections) of the sam e subject need to be registered. This is dem onstrated in Figure 3-7, 

where sagittal and coronal sections of the same subject are involved. Vitamin pills 

m arking the nasion, the left and right pre-auricular points w ere easily identified in both 

sets. The coronal set was rotated and translated arbitrarily. After PM registers the two 

sets, points taken on the m id-sagittal line on the coronal slices, are joined and 

superim posed on the m id-sagittal slice. The points from the coronals fit the m id-sagittal 

scalp outline perfectly.

Figure 3-7: The rotated coronal slices w ere registered w ith the sagittal ones. Then points 

on the m id-sagittal line on the coronal slices w ere joined (red line) and 

superim posed onto the m id-sagittal slice. The contour defined by the coronal 

points fits perfectly w ith the scalp outline in the m id-sagittal slice.
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3.5.3 M EG-M RI Surface-M atching

In devising a surface-matching m ethod to register the MEG data w ith MRI images, we 

follow similar ideas to those already presented in previous paragraphs. First of all, we 

assum e that the head of the subject can be described as a 3D-object by both modalities. 

The latter means that the head shape outlines have to be taken from each MRI slice, so 

that a stack of such outlines can represent the head surface. The head m ust also be 

digitised in the MEG experiments. Obviously, the better the head surface is described by 

each m ethod the easier will be to register them; we shall come back to this point later. It 

is also clear that the head can be better described by the MRI contours than by the MEG 

points, so in the "head-hat" analogy, the MRI points represent the "head", while the 

MEG points represent the "hat". However, since the MEG co-ordinate system  is the one 

which w e always w ant to use after registration, it seem ed to us m ore reasonable to refer 

to this system. In other w ords we attem pt to fit the head (MRIs) into the hat (MEG).

We m ake use of Equation 3-7 again (with S=I) to transform  the MRI points {Pi} into the 

MEG system  ({P /} points). An initial estim ate for the rotation matrix*, R=Ro, and the 

translation vector, b = b o ,  has to be provided, while scaling is assum ed to be known. Then 

Pi^=bo in Equation 3-7, so w e end up  w ith Equation 3-23 again. We also use Powell s 

m ethod (the sam e as in point-matching) to m inim ise the cost function, F, as given by 

Equation 3-9, w here the sum  extends to the total num ber of MEG points.

The contribution to F for each MEG point is found as follows, a line connecting the 

specific MEG point. Pi, w ith the centre of gravity, C G , of the MRI points, (in the current 

position) is formed and the distances of the MRI points that lie in the subspace between 

Pi and C G  are calculated. If no MRI point w ith a distance smaller than 3 cm is found Pi is 

discarded from the calculation of F. If no distance is smaller than 1 cm, but for some 

distances, d, the relation 3 cm <d<l cm is true, then the squared distance of Pi to the MRI 

point lying closest to the P i-+C G  line is entered in F. If, however, there are MRI points 

that lie w ithin 1 cm distance from the Pi—>CG line, then a patch of all these points is 

form ed (Figure 3-8) and their average point is taken as the intersection of the above line 

w ith the head. The squared distance of Pi to this intersection point is then input in F.

It is obvious, however, that such a cost function will be a good m inim isation criterion 

close to the true solution, bu t may not describe the problem very well in positions far 

away from it. This w as noticed in our early attem pts to minim ise a 6 -dim ensional

Successive rotations o f R o  are performed using the axis-specific rotations of Error! Suntch argum ent 

n o t specified.. A t each step, R=R'Ro , where R ' is given by Error! Switch argument not specified, with

the proper step parameters.
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function using PoweU's m ethod, as it was em ployed in "PM ". So the following tricks are 

im plem ented. First, we are trying to fix the translation as m uch as possible. To do this, 

the corresponding MRI point for each MEG one is found (as described above) and the 

centres of gravity of the MEG points (G l) and their corresponding MRI points (G2) are 

calculated. The translation shift ( A b x , A b y , A b z )  is then evaluated by attem pting to m ake G2 

coincide w ith G l. The procedure is repeated and it only stops if the shift is small enough 

(e.g. its m odule is less than 1 mm).

MEG point

A disk of 1cm radius

cen tre  of gravity

MRI outlines

Figure 3-8: For each MEG point a "head" patch that corresponds to it is formed. Then the 
squared distance from the MEG point to the patch is contributing to the cost

function.

H aving roughly fixed the translation, a 3 -dim ensional m inim isation of F w ith respect to 

the three rotation angles is attem pted. Once F stops decreasing (in successive iterations) 

further than a specified limit, a 6 -dim ensional m inim isation is finally tried starting at the 

point (e.g. b x , b y , b z , 8 x , 6 y , 8 z ) ,  that is so far obtained. The iterations are term inated when F 

stops decreasing again further than a limit lower than the one previously set. The final 

answ er is accepted if the RMS misfit per MEG point is less than 3 mm.

In order to evaluate the m ethod we used again sim ulated data. That is, a set of MRI slices 

w as rotated and translated by know n am ounts of b o , 8 x , 8 y , 8 z ,  and various points on the 

scalp w ere taken; these assum ed to be the "MEG" points. In addition, the head contours 

of the original slices were obtained. Then the system  was asked to fit the two datasets. 

Table 2 sum m arises the results.
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Table 3-2; Results from M EG/M RI Surface-Matching. A set of points was rotated and 

translated aw ay from their true positions (initial errors). The Surface-Matching program  

was then asked to return  them  back to their original positions. At the end of the process 

the "final errors" were evaluated. Note that the values for the final RMS m isfit/po in t are 

less than 3 m m  in all cases.

Errors bx
(mm)

bv
(mm)

bz
(mm)

0x
(deg)

Gy
(deg)

0z
(deg)

RMS 
m isfit/ point 

mm)

initial +10.0 -10.0 +10.0 -5.0 +2.0 +6.0 14.18
final -0.14 -0.78 -0.10 -1.4 -0.1 -0.4 2.46

initial -15.0 +10.0 +15.0 +8.0 +4.0 -10.0 12.7
final -1.23 +0.08 +1.76 +1.02 +2.1 -0.18 3.0

initial +5.0 +5.0 +5.0 -2 .0 -2.0 -2.0 6.40
final -0.1 +0.66 -0.1 -1.3 -0.05 +1.0 1.40

Before criticising Table 3-2, it has to be stressed that the MRI interslice distance was 6 mm 

in all the cases. This is probably a severe limitation, since it drastically affects the 

calculation of the cost function, due to the formation of the patches (Figure 3-8). The 

num ber of MEG points used varied between 120 to 450. We did not observe a very 

significant role of this num ber of points, although as m entioned earlier, if the head could 

be described perfectly  in the MEG system  we could claim that a perfect fit (down to 1 

MRI pixel accuracy) m ay be found. Since for a highly symmetric object, such as a sphere 

or cylinder, clearly a unique transform ation cannot be found based only on m atching 

surfaces, points on the head that sufficiently highlight the lacking of such a perfect 

sym m etry (of the head) are very im portant in such a methodology. Additionally, points 

that lie in perpendicular directions and describe the head surface in a special m anner 

could also be very useful. This is proved by the following example.

A set of MRI slices was rotated and translated and 69 points lying on the MRI scalp w ere 

taken to represent the MEG points. No special attention was paid in the selection of these 

points. The registration results are given in Table 3-3 ("finall" row). An RMS misfit of

3.4 m m  was obtained. Getting additional points, which were lying on the m idsagittal line 

o r /a n d  the midcoronal slice (since the coronal slices w ere used throughout) im proved the
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fit quite substantially (final2 row). One should note that although the initial RMS 

m isfits/po in t were different (due to the different num ber of points used), the starting 

errors w ere the sam e in both cases, as seen in Table 3-3 (initl, init2). The results become 

more obvious in Figure 3-9 w here "MEG" points (red dots) on two MRI slices are given 

in the correctly transform ed set (Figure 3-9a). Figure 3-9(b) describes the results achieved 

by fitting the 69 points, while (Figure 3-9(c)) those achieved by fitting the 129 points. The 

correspondence of points in (Figure 3-9(a)) and (Figure 3-9(c)) is alm ost perfect while 

(Figure 3-9(b)) is obviously not a very accurate result.

Table 3-3: The significance of the "quality" of points; Correction of the same initial error 

is attem pted using different num ber of points. In the first case (69 points), no care was 

taken in the selection of the points. In the second (129 points), 60 additional points in two 

perpendicular directions (m idsagittal line, m idcoronal line) w ere added to the original 69. 

The fit in the second case is significantly im proved (compare rows finall and  final2) of 

the last column.

Errors #point
s

used

bx
(mm)

bv
(mm)

bz
(mm)

Ox
(deg)

0y
(deg)

0z
(deg)

RMS
m isfit/
point
(mm)

initl 69 +10 .0 -1 0 .0 +10 .0 -5.0 +2 .0 +6 .0 5.0
finall 69 -1.19 -1 .0 +2.7 -2.4 +2.4 -0.1 3.4

init2 129 +10 .0 -1 0 .0 +1 0 .0 -5.0 +2 .0 +6 .0 14.18
final2 129 -0.14 -0.78 -0 .1 0 -1.4 +0.1 -0.4 2.46
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(a)

(b)

(c) A

m

Figure 3-9; Visualisation of the registration result. Points identified on (a) are 

superim posed on (b), and (c). In (b) 69 points w ere used to perform  the 

registration (finall row in table 3), while 60 additional points (total of 129 points) 

lying on the m idsagittal and m idcoronal slices were used in (c) (final2  row in 

Table 3-3).
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3.5.3.1 Examples
In this section we shall try to visualise further the accuracy we have achieved with 

surface matching. In attem pting to do so, we deliberately start w ith the case that 

m otivated us to em ploy such a strategy, that is the inconsistency of Figure 3-3. Figure 3- 

10 shows how the problem  was resolved using the surface m atching utility. In the 

bottom  plate of Figure 3-10 the MEG headshape points fit well w ith the MRI skull 

contours. However, the fiduciary points fall off the range of the vitam in pills as m arked 

w ith circles in the MRIs.

Subject Subject 2

Figure 3-10: In the top plate, the headshape MEG points (dots) do not fit w ith the MRI 

skull outlines, despite the m atching of the MEG fiduciary points (crosses) w ith the 

MRI fiduciary points (circles). In the bottom  plate, surface m atching was 

perform ed to resolve the problem. Note the good fitting of the dots on the skull 

MRI outlines. The mism atch between the crosses and the little circles reveals the 

origin of the inconsistency.

The availability of a big num ber of MEG headshape points, not only offers redundancy, 

thereby perm itting surface m atching to be perform ed, but also helps in the visualisation 

of the result. The latter is necessary since the figure of RMS mism atch per point m ight not 

represent the situation sufficiently well, since a relatively high value (e.g. 6 m m  per 

point) m ight be the consequence of the high contribution of only a few "bad" points - hke
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for exam ple points lying in a small hair patch. Viewing the fit in consecutive MRI slices 

or in different pseudo-3D perspectives gives a m uch better im pression of the final result.

Figure 3-11 further illustrates the fit in the case of subject 2 in Figure 3-3 (or Figure 3-10) 

after surface matching. Once such a registration was perform ed (using a single set of 

MRI sections, e.g. coronal) the MEG data points can be selected and displayed on 

appropriate MRI slices. Figure 3-1 la  shows four coronal slices of one subject after surface 

m atching was attem pted. The MEG points that lie w ithin 2 m m  distance from each slice 

are displayed as red dots. The green lines are just connecting the nasion, left and right 

pre-auricular points. The fit of the MEG head shape points to the MRI scalp, from 

anterior (left) to posterior (right) is very satisfactory.

Performing point m atching ("PM") we then registered the sagittal (Figure 3-1 lb) and the 

axial (Figure 3 -llc) MRI sections w ith the coronal ones (the nasion, and the two pre- 

auricular points were used). The fit of the MEG points on the head edges is very 

satisfactory in all cases.

(a)

(b)

(c)

Figure 3-11: The MEG head shape points (red dots) were registered w ith the MRI scalp 

outlines, as the latter were extracted from the coronal MRI slices. Then a point- 

m atching was em ployed to register the coronal w ith the sagittal (in (b)) and axial 

(in (c)) sections. In all cases, the MEG points that lie 2 mm from the displayed 

MRI slices are draw n. Their fit w ith the MRI scalp is very satisfactory in all three 

cases.
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In Figure 3-12 we show another exam ple of registered MEG and MRI datasets. In this 

case, only axial MRIs w ere available (3 m m  interslice distance), and, therefore, the top of 

the head was not described by MRI. A big num ber of MEG points was, however, 

collected. The latter allowed for a very challenging visualisation of the actual result. Not 

all MEG points w ere used in the m atching process; only a smaller, but sufficiently 

distributed MEG set was used. The final m ism atch per point was 4.5 mm. As seen in 

Figure 3-12 the fit between MEG and MRI appears excellent in all different perspective 

views. One nearly axial view (last plot), however, reveals that the nom inal value of the 

obtained mism atch was correct, since there m ight be a small error (some 2-3 degrees 

probably) in one of the rotation angles. Such an error may well be regarded as acceptable 

given the reasons we address in the following section.

Finally, Figure 3-13 shows an exam ple w here surface m atching provided an excellent 

fitting, and confidence was m aintained throughout the visuahsation procedure. In this 

case, the actual value of the RMS mism atch per point was again 4 mm, and a total of 

some 2,500 MEG points w ere used. However, one can note a small patch of MEG pomts, 

which were obviously lying off the head surface, thereby explaining the relatively "high" 

figure of 4 m m  m ism atch per point.
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m

Figure 3-12: Visualisation of the registration result in different perspective angles. In the 

top, all the MRI outlines (green) are superim posed on the overall MEG headshape 

(red) built from over 12,000 points. In the m iddle and bottom  plates, the MEG 

points used in the surface m atching process are show n as big red dots 

superim posed on the MRI skull outline points (green as before). Note the lack of 

MRI points at the top of the head (due to lack of data during  MRI acquisition). 

The fit between MEG and MRI appears excellent in all views; however, the last 

figurine in the series, reveals that there m ight be an error of some 2-3 degrees in 

one angle (i.e. a m ism atch of some 4-5 mm).
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Figure 3-13: A nother exam ple of visualising the registration result in different perspective 

angles. MEG headshape (red) points are superim posed on MRI outlines (green). 

The fit between MEG and MRI appears excellent throughout. The RMS mism atch 

per point w as 4 mm. See m ain text.
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3.6 Discussions

3.6.1 In General
The accuracy we achieved in the sim ulations was in the 1.4-3.0 m m  range; such an 

accuracy is very satisfactory if com pared with the interslice MRI distances used (6 mm; 

30-32 MRI slices used in total) and the simple w ay of determ ining the distance of the 

MEG points to the surface of the MRIs. The num bers of MEG points used are com parable 

with those tha t other M EG/EEG groups use in similar techniques. For example, Towle et 

al (1993) used 150 digitised points on the scalp and 64 MRI slices to get an accuracy of 2- 

3 mm; Gevins et al (1990) claim a 2 m m  m ean error distance resulted in EEG experim ents 

w hen MR images w ith a 3 m m  intershce spacing w ere used; Kober et al (1995) also claim 

a 2 m m  accuracy achieved after fitting 300-2000 MEG points into 128 slices. Finally, 

W ang et al (1994) a total inaccuracy 3-6 m m  w hen dealing with real data.

Despite the good sim ulation indications, however, the actual registration figures we have 

obtained in the last 2 years in the analysis of "real" MEG data, are usually in the range 

between 3-5.5 mm^. These values are greater than the previously quoted ones, however, 

as W ang et al (1994) note, they do seem adequate due to intrinsic resolution of the data 

and images. In MR images, m isalignm ents are caused by sagging of soft tissue on the 

face and  difficulties in rehably identifying scalp surfaces in the m ost lateral and m ost 

superior MR slices. In the MEG headshape acquisition, soft tissue (i.e. face) also causes a 

small error, since one cannot guarantee the immobility of flesh w hen the digitiser is in 

touch w ith it*. Very "hairy heads" m ight also cause additional problem s, which can give 

rise to a few millimetres errors.

The latent assum ption of the correctness of the MEG points should also be addressed 

here. Usually, the headshape is acquired prior to the actual MEG m easurem ent: 3-5 

"fiduciary" points are clicked in order to determ ine the MEG co-ordinate system. Then, 

the w hole or parts of the head are digitised, assum ing the subject kept h is /h e r  head stiU 

thoughout the duration of the digitisation process. However, the w hole process m ight 

last a few to several m inutes depending on the num ber of the acquired points. At the

H ow ever, the "real da tasets"  w e have been u sin g  w ere a lw ays p a rt o f  an actual M E G  experim en t (e.g. 

a u d ito ry  odd-ball, C N V  etc). In other w ords, w e have never a ttem p ted  an y m odel experim en ts as such, in  

w hich  all the in d iv idu a l steps w ou ld  have been carefiilly  fo llow ed  to a llow  fo r  a proper reg istra tion  accuracy  

evaluation .

* O ne m a y  need to  consider the in vo lu n ta ry , tick  m ovem en t o f  a su b ject too, w hen the d ig itize r  touches the 

m o st sen s itive  po in ts o f  the face, like fo r  exam ple those in the v ic in ity  o f  the eyes, upper lips etc.
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end, the same fiduciary points are re-clicked, and the error is estim ated. Such an error, 

m ight be as little as 0.1 m m  but m ight be as m uch as 1.5 mm. If it is bigger than 2-3 m m  

the process should definitely be repeated, if the MEG data are considered to be accurate. 

After the subject is placed in the under the probe(s), the same as before fiduciary points 

have to be clicked again in order to obtain the sensor locations in the previously defined 

system. Usually, however, some of the points are not accessible, since they are covered 

by the probe(s). For instance, in an auditory experim ent, one or both preauricular points 

are covered. The transform ation of the sensor locations into the headshape system, m ight 

then be dependent on points along a 2D curve, like the m idsagittal hne, containing the 

nasion, Cz, and inion. This m ight cause problems, if the points clicked are not exactly the 

sam e ones. Redundancy is necessary in this case, and therefore a very detaüed procedure 

is established now (Dammers et al 1995), w hich is trying to avoid such drawbacks 

optim ising the overall process. A subject-specific m ask is, therefore, used, and the 

fiduciary points are m easured (using a flexible ruler) and m arked w ith a pen. Extra 

points on the face, which will not be covered by the probe, are also m arked, w ith the 

prospective that the sensor transform ations will be based on m ore than 3 points and 

points m ore widely distributed. This procedure is doable, also even if a helm et like 

system  is used, w here the w hole head (but not the face) is inaccessible. Finally, the 

forthcom ing release of the BTi helm et system  is supposed  to be having a num ber of coils 

placed on the head facihtating dynam ic head shape definition. It yet rem ains to be seen 

how  m uch im provem ent in accuracy will this process add.

We have dem onstrated in the previous sections that the RMS misfit per point is no t an 

absolute criterion:

• point m atching can give very good figures of RMS mism atch w hich m ay be 

completely w rong (see Figure 3-3).

• its value is averaged over the whole head surface; that is, it can have a significantly 

large value (e.g. 5 mm) due to some points only, while all the other points may fit the 

MRIs perfectly (e.g. Figure 3-13). Thus, pictures like those of Figure 3-11, Figure 3-12, 

and Figure 3-13 are very useful in judging the quality of registration results.

O ptim ising the way the distance to the MRIs for each MEG point is defined, for instance 

constructing a triangulated surface for the MRIs and then finding the intersection of the 

ray in Figure 3-8 w ith an appropriate triangle or its projection on a spherical surface 

(Kessler 1989), together w ith decreasing the MRI interslice distance (while increasing the 

total num ber of slices used), will further im prove the resolution achievable. Such an 

approach m ay resolve problem s like the slight nose mism atch in Figure 3-12, since 

obtaining the average point over a small radius m ight be inappropriate in rough
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anatomical regions. Furtherm ore, automatic techniques for outlining the head contour on 

the MRIs, w hich is currently perform ed m anually, will save time and also elim inate the 

possible errors from hum an interaction (although im posing com puter generated errors).

It should be m entioned here that, so far, no consideration was taken on reducing the 

registration com puting time. All the coding (including "PM ", "PMALL") was 

im plem ented in FORTRAN 77, but in the m ost standard  way, so that it can run under 

different com puter platform s (com pilers)/operating systems, like VAX/VMS, 1860s, and 

DEC Alpha W orkstations/U nix. Typical times+ elapsed for registering a "head" m odel 

of -2500 points, using -100-200 MEG points are between 5-10 m inutes on an A lpha 

W orkstation, 10-20 m inutes on an 1860, and hours on a VAX/VM S (although tim ing on 

the latter cannot be accurately monitored, since it is a m ulti-user fram ew ork system  at all 

times). Moreover, trying to fit the MEG points into the MRIs (i.e. keeping the MRIs sohd, 

and transform ing the MEG points) will decrease the com puting time further, especially if 

a tiling procedure is attem pted.

We finally w ish to em phasise that the m ethod of choice for registering MEG and MRI 

w ould be a com bination of a point m atching technique w ith a surface matching. Starting 

w ith point m atching will provide a first quick estim ate of the solution!, and such an 

estim ate can be used as a starting point in the stepw ise surface m atching we described. In 

addition, the locations of specific a p r io r i  know n landm arks (e.g. nasion, nose, inion, 

preauriculars) together w ith the availability of a big num ber of MEG headshape points 

will ultim ately provide a clue for the goodness of fit, which is not always absolutely 

obvious from the RMS misfit values. Figure 3-14 dem onstrates the above points w ith 

adequate clarity. Initially, w e have unregistered datasets (Figure 3-14 left), a very good 

estim ate is provided by point m atching (Figure 3-14 middle), and the fit is further 

im proved using surface m atching (Figure 3-14 right). In our experience, w henever point 

registration was considered as unrehable, surface m atching im proved the accuracy by 

1-2 cm, while in the general case, an im provem ent of 1-4 m m  was achieved.

Finally, the usefulness of point-m atching in simple cases w here different MRI sections 

need to be registered (e.g. see Figure 3-11) should also be appreciated, since it is very 

quick and can be accurate w hen corresponding points on the images are identified. We 

found it especially useful w hen registering different sections of MR images (e.g. coronals, 

sagittals etc.). We are going to show this w ith a last example, which possesses a clinical 

significance. It is draw n from the MFT analysis of an auditory evoked odd-ball

+ these are tim es o f  in teraction  and n o t C P U  tim es 

f  in fa c t som etim es, can be as good and accurate as a n y  other m ethod
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experim ent (loannides et al 1995b). In this experiment, three norm al subjects and one 

patient were studied. The patient suffered from intractable epilepsy and  had  undergone 

surgery to remove part of the right medial tem poral lobe. For all subjects, MFCs were 

recorded using a BTi N eurom agnetom eter consisting of seven, second order 

gradiom eters contained in a cryogenic Dewar. The stim uli were 50 ms tone bursts at 95 

dB, delivered to the subjects' left ear through a long, plastic tube. The stimuli, a 1 kHz 

frequent tone appearing w ith a probability of 0.8 and a 2 kH z infrequent tone (odd) 

appearing w ith a probability of 0.2, w ere delivered at a rate of one per second. The 

subjects' task w as to count and report at the end of each recording session the num ber of 

infrequent stimuli.
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Figure 3-14: Skull outlines in MRI (green) and MEG (red) co-ordinate systems: before 

registration (left), after point m atching (centre), and after surface m atching (right). 

Surface m atching im proved the fit for some 3.5 mm.

The MEG signal for each subject was analysed using MFT. The resulting estim ates of 

activity, at each time-slice, or integrated over fixed time intervals, w ere projected onto co

registered MRI slices of each subject. For the patient MRIs w ere taken both before and 

after surgery; he had participated in the odd-ball experim ent only after surgery. 

However, only axial post-surgery MRIs were available. These and  the pre-surgery axial 

sections were coregistered (using the combination of point and surface matching) w ith 

the MEG system  and hence w ith each other; the presurgical coronal and sagittal sections 

w ere then registered to the MEG system  using 3 points (nasion and 2 preauriculars). It is 

therefore, preferable to show the MFT estimates superim posed onto the early, and more 
com plete set of MRIs, so that the am ygdala-hippocam pus complex is seen (which had 

been rem oved by the time of the experiment). The area affected by surgery is seen in 

Figure 3-15 (a) in one axial slice from the MRI set after surgery, and is also m arked on 

three slices from the better set of MRIs obtained before surgery (Figure 3-15 (b,c,d)).
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Figure 3-16 shows early responses: the MFT displays show  instantaneous activity along a 

sagittal plane at the level of the right hippocam pus. For all norm al subjects exam ined, TB, 

KS (2 out of 3 shown), MFT analysis provides support for a very early activation in the 

depth  of the tem poral lobe; the precise tim ing of activation and the details of the 

distribution are different for each subject. Note the similarity for the responses to the 

frequent and infrequent stimuli. For the patient no activation is seen in the (removed) 

am ygdala and hippocam pal region (pink points outline the excision), but by 50 ms after 

stim ulus onset a strong activity is established on the right side of the m idline precentral 

area, which is usually associated with m otor control. This area is the m ost prom inent area 

of activity for the patient for both conditions. Unfortunately, similar data before surgery 

w ere not available, so it is unclear w hether the activity has shifted after surgery or it was 

displaced earlier by the original pathology.

In Figure 3-17 instantaneous MFT displays of the intensity are shown, for the response to 

the infrequent stim ulus just after the P2 peak, at three instances 190, 200 and 210 ms after 

the onset at the ear of the infrequent stim ulus. N ear m edial sagittal slices containing the 

hippocam pal am ygdala complex are displayed, for subject KS and the patient JH. For KS 

the activity follows anatomical structures as it does for the patient; for the patient, 

however, the activity stops w here the structure is absent.

Ca) Ch> CO lâi

Figure 3-15: (a) Axial MRI slice of patient JH after surgery; (b, c, d) Skull and brain 

tracings for axial, coronal and sagittal MRI sections of the sam e subject before 

surgery. After aligning all sections w ith the MEG system, the part rem oved at 

surgery is outlined in the 1 cm thick slice (a), and its co-ordinates are transferred 

across into the 0.6 cm thick com plete set of MRIs (thick line drawings).
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Figure 3-16: Instantaneous MFT displays for two norm al subjects, TB at 25 ms and KS 30 

ms after stim ulus onset, and for the patient JH at 50 ms. A sagittal plane is shown, 

through the am ygdala and hippocam pus w hich are shown in outline. The level of 

activity at each time-slice is shown as colour coded contour plot of the m odulus of 

the MFT estim ate for the prim ary current density | J(r,t) | (yellow > red > green); at 

the point of maxim al strength an arrow  is prin ted  showing the projection of J 

along the plane of the display. For the patient, the tracing of the brain outline and 

am ygdala and hippocam pus w ere obtained from MRl slices acquired before the 

surgery. The pink dots m ark the co-ordinates of the excised part that lie within 

4 m m  from the displayed MRl slice.
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Figure 3-17: Instantaneous MFT displays similar to those in Figure 3-16, bu t for the 

period just after the P2 peak. In the top row the activity in response to the odd 

stim ulus for subject KS appears to hover in the am ygdala region before funnelling 

through the hippocam pus at a latency of 200 ms. In contrast for the patient the 

activity arches tow ards the am ygdala region w ithout m aking progress, since the 

area w as rem oved as indicated by the pink region.

3.6.2 The basis for future developments
The result of a registration accuracy in the millimetre range can serve as the basis for 

im proving the ''quality" of the MFT solutions, by bringing in com plem entary anatomical 

inform ation to restrict the set of possible source configurations. For example, the source 

space could be restricted to be the volum e occupied by the cortex as this is delineated in 

the MRls of the subject. As techniques capable of reliably handling regions close to the 

centre of the head are developed, the source space can be m ade specific to deep brain 

nuclei like the thalam us or hippocam pus. Under such im provem ents, the MFT analysis 

could be reformed to tackle physiologically interesting questions such as "w hat brain 

structures have become activated at a specific instant' and w hat is the sequence of the 

activated structures over a time w indow  in a specific ex p erim en t'.

Moreover, the use of a standardised brain m odel for understanding the activation of the 

underlying anatom y seems now a realistic prospect. This w ould of course require further 

processing (registration) in order to register the subject-specific MRls w ith a com mon 

average or an idealised brain m odel (atlas). This could be accomplished by finding 

specific landm arks on the MRls (e.g. the bi-commissural line, the brain extrema) with



Chapter 3: Relating Structure and Function____________________________^
know n co-ordinates on an atlas system  (e.g. Talairach and Tournoux 1988). The latter 

w ould of course require to use points from different MRl sections. As the MRl data that 

w e have been using so far have been acquired from m ultiple incidences (e.g. axial, 

coronal, sagittal sections) the registration of these is an im portant prerequisite, for which 

w e are now  confident to claim that is done w ith high accuracy. However, this problem  

needs special attention, since the form ulation for a rigid body transform ation we applied 

so far, m ust be extended to include a "plastic" transform ation of the brain. In this case, 

the brain is scaled (stretched) along various directions in order to fit the standarised, 

general brain.

The developm ent of a standardised atlas will allow for intersubject com parisons in a 

specific experiment. Furtherm ore, data from different modalities (e.g. PET) can be fused 

under the sam e reference frame allowing for an interm odality com parison and exchange 

of information. Transform ing the individual datasets into a standardised anatomical 

platform  (brain atlas) w ould m ean that all brains will have the same anatomic 

appearance (Greitz et al 1991). Hence, all differences between individuals observed in 

MEG studies will be functional. This can be further extended to accommodate studies 

from different modalities such as PET, SPECT, fMRl. Ambitious w orld-w ide projects 

envisaging the merging of diverse functional im aging modalities w ith neuroanatom ical 

and neurochemical data into a com mon electronic database, are already on the way (Fox 

et al 1995; M azziotta 1995).

The relatively high precision the im plem ented m ethods could offer is also very 

im portant in neurosurgical studies. MEG can be used to clarify situations where the 

anatom y of a patient (as appeared in MRl) is altered due to specific pathology (e.g. a 

lesion or tum our). Presurgical planning can be substantially im proved if the MEG 

obtained inform ation is utilised to reveal the function of the pathologically distorted 

brain areas. Kamada et al (1993) used som atosensory evoked MEG studies to guide 

neurosurgery  operations of pathological som atosensory cortical regions. Consequently, 

the higher the accuracy of such a m ultim odal study is, the less hazardous the operations 

are.

In studies w here epileptic patients are involved, a highly accurate localisation of the 

spread of epileptic discharges w ithin the brain, as obtained by MEG, can aid stereotactic 
radiosurgery. Stereotactic radiation devices such as the gam m a knife can be used to 

destroy sharply circumscribed volum es of pathological brain tissue as small as 50 mm^ in 

a single session of radiation (Leksell 1971). H ellstrand et al (1993, 1995) studied the 

centres of focal epilepsy w ith MEG and successfully used the above device to treat 

epileptics.
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3.6.3 Synopsis
The m ethods presented in this chapter represent a set of tools which allow the 

quantitative integration of 3-dim ensional im aging datasets acquired w ith different 

modalities. A lthough the environm ent in which these m ethods w ere developed and 

tested w as for the purpose of M EG /M Rl fusion, no assum ptions w ere m ade so as to 

exclude the application of the techniques in other studies (e.g. EEG/CT).

The precision achieved is com parable to that achieved in registering other modalities 

(e.g. PET/M Rl). Such an accuracy is required to im prove the quality of the MEG (MFT) 

studies, to allow for m ultim odal com parisons, and finally to expand the MEG application 

range into clinically useful circumstances.



4. Inverse Problem

In the previous chapter, we have explored ways of com bining the MEG results w ith 

im ages of anatom y. The term  MEG results actually refers to MEG solutions. In order to 

obtain the MEG solutions though, one has to solve the so-called biom agnetic inverse 

problem . This is in fact the topic of the present chapter. We first state the nature of the 

problem , and also describe im portant associated concepts. We then  review  the various 

m ethodologies em ployed w orldw ide only to place M agnetic Field Tom ography (MFT) - 

the m ethod w e use throughout this thesis - in the general context of the biom agnetic 

field. MFT is finally described in greater detail at the end of the chapter.

4.1 In General
In the neurom agnetic inverse problem , the goal is to infer (or estimate) the distribution of 

cerebral currents from m easurem ents of the magnetic field (an d /o r its spatial gradients). 

In m ost practical cases, the inverse problem  entails a com parison betw een the actual 

m easurem ents and those predicted by a theoretical model, leading to the determ ination 

of an optim al set of (model) param eters. The optical param eter set is chosen so that the 

data and  associated constraints are "best satisfied". The expression "best satisfied" 

usually  contains as a m easure that the difference betw een theory and m easurem ent is 

minim al. If the source configuration has a fixed geom etry, the relative strength  and 

orientation of the prim ary current density at each point in space is constant, and only the 

overall strenght is allowed to vary, then a single MEG (EEG) sensor w ould  suffice to 

provide a precise description of the tem poral variation of source strength, irrespective of 

how  complex the generator and the conducting m edium  m ight be. In other w ords, the
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bioelectromagnetic inverse problem  can be uniquely solved (within a norm alisation 

constant) for fixed sources (loannides 1994).

H owever, the situation is m uch m ore complex if spatial variations in source activity are 

allow ed. As Helm holtz showed in 1853, it is im possible to uniquely determ ine the spatial 

d istribution of activity w ithin a confined volum e from m easurem ents of the surface 

potential a n d /o r  the magnetic field outside the body. To p u t it sim ply, there is an infinite 

set of different current distributions that could give rise to the same observed signals. The 

above statem ent expresses the "non-uniqueness" hurdle of the bioelectromagnetic 

inverse problem*

There are several reasons for this non-uniqueness. Firstly, there are prim ary  current 

d istributions that are either magnetically silent (B=0 outside the conductor, G), 

electrically silent (E=0 outside G), or both. A magnetically silent source that produces an 

electric field is a radial dipole in a spherically sym metric conductor (Figure 4-la) as we 

saw  in the second chapter. An exam ple of an electrically silent source that does produce a 

m agnetic field is a current loop (Figure 4-lb). A uniform  distribution of prim ary  current 

perpendicular to a closed surface generates neither electric nor m agnetic field outside 

(Figure 4-lc).

( a ) ( b ) ( c )

B = 0 E = 0 B = E = 0

Figure 4-1: Examples of silent sources, (a) a radial current dipole is m agnetically silent; 

(b) a closed loop of current is electrically current; (c) a uniform  distribution of 

current perpendicular to a closed surface is both m agnetically and electrically 

silent.

A n o th er  w a y  o f  describ in g  this, is by sa y in g  that the bioelectrom agnetic in verse problem  is ” ill-posed".
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Secondly, any one magnetic detector (e.g. gradiom eter, m agnetom eter) will only be 

sensitive to tw o out of three com ponents of the current density, so some sources are 

"silent" for particular detector geometries. Of course, by using m any different detectors it 

is possible to reduce this effect, bu t in each and every m easurem ent system  the problem  

of silent sources will remain.

Furtherm ore, it is possible for a complicated com bination of currents to mimic the fields 

generated from  a simple prim ary source. This is a cosequence of the superposition 

principle: if tw o or more sources are sim ultaneously active, then the overall field is the 

vector sum  of the individual fields. For instance, if tw o dipoles are close together relative 

to the distance at w hich the field is m easured, the resulting field is indistinguishable from 

that of a single different dipole. M oreover, the same field pattern  m ay be reproduced by 

some current distribution too.

Because of the non-uniqueness, we m ust restrict ourselves to searching for a solution 

am ong a lim ited class of source configurations. Confining the family of possible 

solutions, usually involves the injection of a priori inform ation into the inverse problem , 

w hich avoids non-uniqueness. M ethods for handling this restricted inverse problem  are 

the m ain topic of this chapter. We divide such m ethods into tw o general categories: first, 

those m odeling the data by assum ing a single or a small num ber of po in t sources being 

active at anyone time, and secondly those allowing for more realistic distributions of 

currents. It is not our intention to extensively describe every single m ethod used 

w orldw ide. We rather describe the m ost im portant ones in a short bu t succint m anner, 

and w e then focus on the charcteristics of M agnetic Filed Tom ography, w hich is the 

m ethod w e are going to utilise in this thesis. Before doing so though, w e have to discuss 

an  im portant physical concept that provides the connection betw een the m easurem ents 

and the sensitivity of the sensors to m odel the various sources. That is, the concept of the 

Lead Fields.

4.2 Lead Fields
A m agnetic (or electric) m easurem ent can expressed as a linear function of the prim ary 
current density J’’. Thus, if ni-(r) is the outpu t of the zth m agnetom eter located at r, then

there is a vector field 0 .(r ,r ') satisfying:

m. (r) = j  O,. (r, r' ) • (r' )du  (4-1)
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0 ,(r,r ')  is called the lead field; it describes the sensitivity distribution of the ith

magnetometer (Tripp 1983) and depends on the conductivity a=a(r) and on the coil 
configuration of the magnetometer* . The integral extends over the volume Q, which is 
usually termed as the source space, i.e. the space whore the primary current distributions 
are believed to by lying in. The output of the magnetometer is given of course by

m,(r) = 4 |B ( r ) < «  (4-2)

denoting the magnetic flux threading the detection coil of the ith magnetometer, divided 
by the area A of the pickup loop. The integration extends over the whole area of the 
detection coil.

The lead field as defined by Equation 4-1, is readily obtained if one computes the 
magnetic field B=B(Q,r'), resulting from any dipole Q at any location Tq. However,

knowledge of the conductivity profile a(r) is required so that the effect of volume 
currents can be properly taken into account. For Q located at r^, J(r) = Q 6(r-F g) and

so Equation 4-1 becomes:

5,(Q,rQ) = 0 ,(rQ )Q  (4-3)

Using Equation 4-3, all three components of the lead field can be obtained for any .
Furthermore, if the sensor consists of a set of planar coils with normals Dj, j=l,...,m , we

have:

B.(Q.rQ) = ZfB(Q.rQ) (4-4)
7=1 Sj

where the directions of the normals nj have been chosen to take into account the winding 
sense of the coils, so that à field satisfying B • iij > 0 yields a positive signal at the output

and vice versa.

When the conducting medium is modelled by a sphere, then the formulae of Equations 2- 
16 to 2-18 (Sarvas, 1987) can be used in association with the above two formulae to yield 
the expressions for the lead fields for specific sensor designs over a spherical conductor:

* The lead fields O f (r, r' ) of an electric measurement Vj are given by 17. (r) = J O J (r, r' ) • J** (r* )du
Q

2

where Vj = J e  • dl is the voltage between electrodes 1 and 2.
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0,.(r,rg) = -^^ |̂ Frg X€c«7+(ec«7-VF)rxrg j (4-5)

with F and VF given by Equations 2-17, and 2-18 respectively. By integrating over the 
gradiometer coils one can get a value for the lead field of an arbitrary gradiometer. If the 
conducting medium is modelled differently, then the magnetic field expression is 
different and so is Equation 4-5. For instance, Fieseler et al (1995) have calculated the 
analytic lead expressions for a homogeneous conducting spheroid, which is the simplest 
model with a more complicated geometry and reduced symmetry than the sphere.

In summary, lead fields are vector quantities affected firstly, by the relative location of 
source space and the detection coils (together with the coü orientation); secondly, since 
integration over the sensors is needed, the coil shape is of importance on the lead field 
pattern; and finally lead fields depend on the conductivity profiles, and hence different 
medium models have different effects on the lead field pattern.

4.3 Current dipoles
As already mentioned in chapter 2, when a small region of the brain is active, the 
resulting electromagnetic field is usually very close to that of a current dipole. The reason 
is that the dipole is the leading term in the current-multipole expansion and the field 
strength from higher terms dies off with distance more rapidly than that from the dipole 
(Katila 1983). Therefore, from a distance that is large compared to the extent of the 
source(s), any source configuration looks like a dipole, usually referred to as the 
equivalent current dipole (EGD).

Brenner et al (1978) were the first to reveal the dipolar appearance of the magnetic-field 
pattern due to a localised cortical current source underlying somatosensory evoked 
responses (fields). Since then, the analysis of MEG data has been largely dependent on 
models incorporating a single or more dipoles. Even today, the majority of MEG 
researchers still use such a simplistic model, although one can note a recently general 
movement towards more realistic models allowing for distributions of current. Although 
dipoles as such are not used as methods of study in this thesis, we shall briefly describe 
the dipole model analysis, mainly for historical reasons.

4.3.1 Single Current Dipole
In the early days of MEG, the estimates of the location, amplitude, and orientation of the 
dipole were based on a simple geometrical construction utilising the shape of the field 
map. Assuming that one measures B̂  on the plane z=z^ above a horizontally layered 
conductor, then the dipole parameters can be found from the pattern directly. The 
tangential location is midway between the field extrema, while its direction is
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perpendicular to the plane passing through the minirnurn and the maximum and parallel 
to the z-axis. The depth, d, of the dipole is related to the distance A between the extrema, 
with the formula d = A/V2 . In other words, the depth is about 71% of the measured

span of the extrema (Williamson and Kaufman, 1981). A similar approach can be 
followed in the case of a dipole embedded in a spherical conductor.

Since a radial dipole in a conducting sphere (or a dipole normal to the flat surface of a 
conducting slab) produces no external magnetic field/ one should note/ that any arbitrar)' 
radial dipole may be added to any derived tangential dipole (as estimated from the 
measurements) without distorting the field pattern observed*. Furthermore, the above 
treatment, assumed that only the radial component of the magnetic field is measured. 
The geometry of the skuU in certain brain regions and the placement of the sensor make 
it unlikely that only this component is measured, in which case one has to take into 
account tangential components of the magnetic field as well. The latter means 
incorporating volume current effects, for which Umoniemi et al (1985) have derived 
expression allo\\dng for an easy solution of the forward problem; the inverse problem 
then reduces to a search of parameters that produce results in best agreement with the 
measured data.

The most standard method of estimating the location and the direction of the current 
dipole (or even generally the configuration of any source) is by performing a nonlinear 
least-squares search. The dipole is assumed to be dynamic so that its location, orientation 
and strength are allowed to change with time; no temporal correlations are presumed, 
that is, each time instant (timesHce) is treated separately. This model is usually referred to 
as the moving-dipole model.

If m is the number of measurement locations (i.e. number of sensors), then assuming a 
conducting medium (e.g. sphere) and a dipole placed somewhere in a source space, one 
can calculate the theoretical values, b, (i=l,m), predicted by the specific dipole using 
analytic expressions (e.g. those of Equations 2-16, to 2-18) for each measurement location. 
Determining the correct dipole in the least-squares sense then involves rninimisation of 
the function G, with respect to the dipole parameters:

G = X (B ,.-6 ,f  (4-6)
1=1

* Such a radial dipole will contribute a strong signal to the EEG measurement, thereby highlighting the 
complementarity between electric and magnetic measurements.
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The gocxiness-of-fit, g, is usually given by:

(4-7)

If g=l, the model agrees completely with the data. If g=0, the model is irrelevant and 
does not describe the measurements any better than any oiher random model would. 
Deviations of g from 1 are caused by measurement noise, but also by the inadequacy of 
the source model. A value of g greater than 0.9 is commonly assumed to be good enough, 
and ususally values of 0.96 or higher characterise igood solutions".

The problem of determining suitable and adequate confidence limits for the single dipole 
model has been the topic of discussion by several researchers. A fairly recent review by 
Hamalainen et al (1993) highlights the most important aspects of the problem and 
contains full references. It is worthy to mention herein, the stringest selection criteria 
followed by various researchers in order to produce ECD solutions of clinical usefulness. 
For example, Vieth et al (1992) developed a method called Dipole-Density-Plot (DDF) 
capable of extracting concentrations of ECDs across time in a quantified way, by 
accepting only dipole localisations beyond a minimal singal-to-noise ratio (SNR) and 
beyond a minimal dipole density in a discrete spatial unit. Galen et al (1992) used signals 
filtered in the delta region (0-4 Hz) and correlation coefficients above 0.95 to study the 
slow wave ECD locations in patients.

We would finally like to emphasize a few more points of concern here. First, the 
uncertainties in the longitudinal direction (i.e. along the direction of the ECD) and in 
depth are higher than - usually double - those in the transverse directions (i.e. 
perpendicular to the dipole and its location vector). Second, since the modeling error is 
only weakly reflected in the goodness-of-fit measures, one always has to bear in mind 
that even if the fit is good the model itself might be misleading. The latter can be easily 
understood considering the resemblance between the field distributions produced by a 
single dipole, a side-by-side pair, and a dipole distribution along a Hne.

4.3.2 Multi-dipole models
The instantaneous state dipole, for which just a single timesHce of data is considered 
(typically at the peak of the observed MEG response), is the simplest of the dipole 
models. The obvious extension to the full temporal information is simply to treat each 
timesHce with a separate static model. At each timesHce the locations and moments are 
calculated for each dipole, independently of aU otiier timesHces (moving and rotating 
dipole). The next generaHsation can be accompHshed by assuming multiple, spatiaUy
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separated dipolar sources. If the distance between the individual dipoles is sufficiently 
large (usually more than 4 cm) and their orientations are favourable, or if the temporal 
behaviours of the sources differ, the field patterns may show only minor overlap and 
they can be fitted individually using the single-dipole model. This approach has been 
successfully pursued to separate out activities from the first and second somatosensory 
cortices (Hari et al 1984).

However, if there is a temporal overlap, or the sources are close together in space, then 
one needs to resort to a multidipole model. In this case, the separate treatment of each 
timesHce has to be abondoned and the spatiotemporal course of the signals as a whole 
has to be effectively taken into account.

Three kinds of such models can be found. Since some researchers beHeve it is more 
reaHstic to assume that different parts of the cortex with different cortical function are 
activated electricaUy under specific tasks (George et al 1989), one could model the dipoles 
to have fixed locations and but aUowing their orientations to vary with time (fixed 
location, unconstrained orientation). In the second model, the dipoles are not only at 
fixed locations, but they also have fixed unit orientation of their moments; the magnitude 
and the polarity of each moment are aUowed to vary though (fixed location and 
orientation). This comes from the argument that, physiologicaUy a dipole orientation 
should not rotate, because the dipole model represents a fixed neuroanatomical structure 
(Scherg and von Cramon 1985). FinaUy, the most general model contains both rotating 
and fixed dipoles.

Denoting the measured and predicted data matrices by and respectively, where 
j=l,...,n counts the meaurement points and k=l,...,m  indexes the time instants under 
consideration, one has to minimise the (least-squares) cost function:

C =

where x̂ ,...,x̂  are the unknown model parameters and ||-||̂  denotes the square of the 

Frobenious norm (Tr indicates the "trace" of a matrix i.e. the sum of the diagonal 
elements):

WIf = Ê Ê 4  = î>(R’'R) (4-9)
i=l J=1

Perhaps one of the greatest problems in this sort of analysis is determining the number of 
dipoles. If too few are assumed, then the calculated dipoles are biased by the missing 
ones; if too many dipoles are specified, then spurious dipoles are introduced, which may
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be indiscernible from the true dipoles. Since the computational cost and numerical 
sensitivity of most iterative minimisatioris increases dramatically with the number of 
parameters, then the choice of too many dipoles adds unnecessary computational 
burden.

Assuming p dipoles located at r̂ , (d=l,...,p), and neglecting the radial component of each 
dipole (i.e. dipoles embeded in a spherical conductor, and measurements being 
insensitive to radial components), one can allow p̂  constrained orientation dipoles, and 
Pj of unconstrained orientation (p=Pi+Pz). We are, therefore, seeking for r=p^+2p  ̂dipole 
source components - one for each constrained-orientation and two for each 
unconstrained-orientation dipole.

Under such conditions, the predicted data can be expressed as:

B = GRQ (4-10)

where G is an nx2p gain matrix composed of the unit dipole signals, R is a 2pxr matrix 
differentiating between constrained- and unconstrained-orientation dipoles (which 
becomes the identity matrix if only rotating dipoles ^ e assumed), and finally, Q is an 
rxm matrix containing the amplitude time series of the dipoles at each time instant.

But how is the correct choice for p̂  and p̂  accomplished prior to the miniinisation stage? 
De Munck et al (1990) suggested a method based on an analysis of the singular value 
decomposition (SVD) of the measured data to perform this task. However, even if one 
selects the proper number of dipoles, r, needed to fit the data, there is still the remaining 
problem of dividing this number into p̂  and p̂  components so that r=p^+2p2 (Mosher et 
al 1990).

In order to deal with this problem efficiently, but also solve the least-squares system  
(Equation 4-8), the so-called MUSIC algorithm (Multiple Signal Characterisation, 
Schmidt 1986) was introduced into the MEG analysis (Mosher at al 1992; Mosher 1993). 
This algorithm can be summarised by the following steps.

• Perform a SVD on the spatio-temporal data matrix M = UZV^ and identify the rank, 
r, of the signal subspace from the break in the singular value spectrum Z . Partition 
the left singular vectors, U = [U,U„], into bases for the signal U, and non-signal or
noise U„ subspaces.

• Over a grid of 3d-locations, calculate at each location the corresponding forward gain 
matrix of a "regional" dipole source located at the point, and compute its SVD, 
G = VqLqVq. For each location, evaluate the "MUSIC metric" for a fixed-orientation
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dipole, that is, the maximum eigenvalue of the expression in
brackets. Then, form 2d slices through the 3d space and plot the quantities 7̂  seeking 

for their maxima (peaks).

• At each peak, check to see if there are multiple closely spaced sources by computing

the "rotating" or "regional dipole metric" 7, = /||Zg||^ =
_ 2iTU GG with

F

G being the normalised gain matrix. Sources where 7, « 7,, « 1 must be represented

by a dipole with varying orientation. For fixed-dipoles (only), estimate dipole 
orientation by calculating the eigenvector associated with . Repeat this analysis

until p̂  fixed dipoles and p̂  rotating dipoles are found, so that r=p^+2p .̂

The appeal of this method is that "scanning" is performed quickly with a one dipole 
search, rather than the r-dipole search necessary in a complete fit. The method seems to 
produce reasonable results with both real and simulated data. However, if there are 
strongly correlating sources with overlapping field patterns, the predictions might be 
misleading. Thus, Mosher et al (1995), have also incorporated a Monte Carlo approach to 
testing the "goodness" of the various MUSIC peaks, after the data have been initially 
scanned. One should always recall though, that if the head (conductivity profile) and 
more importantly the source (i.e. dipole) models are incorrect, then the algorithmn would 
fail to explain the data - a statement which also applies, of course, to all other source 
models as well.

4.4 Current distribution models
Instead of working with point like source models as those described above, more general 
and realistic solutions of the inverse problem can be attempted. In order to avoid the non
uniqueness ambiguity though, one has to make some restrictions by including some kind 
of a priori information. In this case, however, the restrictions wQl not be associated with 
the model itself, but they might for instance Hmit the volume or generally the space 
where one should seek for sources. The first ever such attempt, was the minimum-norm 
estimates attributed to Hamalainen and Ihnonieini (1984). However, the first three 
dimensional current distribution reconstructions (MFT) were developed here at the Open 
University by loannides and collègues in late 80's to early 90's. Other methods started 
appearing fairly recently, but no other method has been tested that extensively with real 
data as has MFT been.

In the following, we will review the current literature on distributed source modeling. 
Apart from the Fourier-space method, all the others make use of the lead field definition 
of section 4.2. Under this concept, the non-uniqueness of the inverse problem can be
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framed as follows: only current distributions that yield ^ 0 for at least one i in 

Equation 4-1 can be detected.

4.4.1 Fourier Imaging
This imaging method is a matrix inversion reconstruction based on the Fourier 
transformed Maxwell equations in combination with sampling theorems (e.g. the 
Whittaker-Shannon sampling theorem). It was proposed by Dedlas (1985), who took tiie 
Fourier transforms of Maxwell equations (Equations 2-4 üi,iv) to obtain a set of linear 
equations relating the current and magnetic fields. By sampling the Fourier transform of 
the two fields and decomposing the magnetic field into two regions, the measurement 
region and a "forbidden region" over which the field cannot be measured (the forbidden 
region characterises the biological object, wherein the currents are located, i.e. head), a 
large set of linear equations can be formed. The unknowns in the equations are the 
samples of the Fourier transforms of the magnetic field in the forbidden region, and of 
the current field in a reconstruction region. The reconstruction space, is the region of 
interest, where the current density distribution is reconstructed - it is enclosed by the 
forbidden region (KuHmann and Dallas 1987).

In the algorithm, the reconstruction and the regions are discretised into sample cells; for 
instance, a whole simulation space could be composed of 32x32x32 equidistant pixels, 
divided into three parts consisting the three mentioned regions. The density of the 
sampling points is determined by the sampling theorem.

Such a formulation has the advantage that it provides simultaneous reconstruction of the 
internal current and magnetic fields It does not, however, eliminate the ill-posed nature 
of the problem or reduce the null space of the system matrix which leads to the infinite 
set of possible solutions. Early computer simulations reconstructed complex, but planar 
only, current distributions; they seemed to be quite robust, independent of any special 
generator model, and rather stable against external noise of the magnetic field (KuHmann 
and DaUas 1987). At a later stage, the method was successfuHy applied in three 
dimensions given a priori information about the depth of the sources. However, in the 
lack of such information, the determination of the depth, and therefore the correct current 
reconstruction, was based on a rather empirical, and inefficient rule of discontinuity in 
the imaged current density occurring just above the right location of the source 
(KuHmann et al 1989).

More recently, the method was extended to incorporate the calculation of volume 
currents for arbitrary conductivity distributions, but also to aHow for injecting more 
general a priori information that would resolve the undetermination of the equations set
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(e.g. one such assumption could be that the z-component of the current density is zero in 
the entire reconstruction region). The simulations though, were severely dependent on 
the different assumptions and approximations made (Dallas et al 1992). Moreover, the 
method has not been used with real data yet.

4.4.2 Lead Field Synthesis or Spatial Filter Imaging
Spatial filtering is a signal processing technique developed to enhance the SNR of 
spontaneous MEG measurements, and generally allow for the analysis of unaveraged 
MEG data (Robinson 1989; Robinson and Rose 1992). The spatial filter used by this 
method is a linear projection operation in which the target parameters (e.g. the co
ordinates and the current vector), spatial selectivity, and SNR are determined for each 
voxel of the source space (i.e. 3d brain volume) by an array of coefficients w, (i=l,...,M; M

is the number of physical sensors).

Given Equation 4-1, the filter output or "virtual sensor" for position and orientation 
parameters is then:

M
m,

1=1

= (4-11)
i=l

implying that the synthesized lead field (or spatial response of the virtual sensor) is

= f  (4-12)
<=1

The filter coeefidents are then computed through a minimisation of the difference 
between the synthesized lead field and an ideally selective delta function, defined as 
unity at target v:

. C = | [ * , ( r ) - 8 ’(r)] </r’ (4-13)

However, Robinson and Rose (1992) suggested alternative and more useful ways of 
obtaining the array of spatial filter coeffidents, though the use of a covariance matrix of 
the measured data and the fowrard solution for the physical sensors due to target dipoles 
at V, so that the interfering signal portion unrelated to the target parameters is 
miriimised. At the final stage, an image of either the time-integral or instantaneous source 
activity is created by projecting the measurements through an array of regularly spaced 
spatial filters, representing each voxel in the image.

Dipolar sources are identified by scanning the image for local peaks of signal intensity, 
and it has been shown with simulations that a localisation with 1 mm accuracy can be
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achieved. The method was also applied to real auditory data suggesting the existence of 
distributed rather than point-like sources for middle to late NlOO and P200 components.

Based on this methodology, Grummich et al (1992) developed an algorithm which they 
named Current Localisation using Spatial Filtering (CLSF). They used MEG 
measurements of a patient with a cerebral cyst to validate CLSF by showing the constant 
- in time - activation of a region close to the cyst.

More recently. Spatial Filtering was expanded and was given the acronym SAM 
(Synthetic Aperture Magnetometry) (Robinson 1995). In the SAM approach, one 
stipulates a source location (the "target") relative to an array of sensors. A set of linear 
beamsteering coefficients are computed using the measurement statistics (in the form of 
the covariance matrix) together with the forward solutions for each individual sensor. 
The measurements are then projected through the beamsteering coefficients. The result is 
a time-series estimating source activity at the target. In practice, one can easily (in real 
time) see single trial auditory evoked response, with no signal averaging or bandpass 
filtering. The constraint is provided by the MEG measurement, itself (Robinson 1995).

The same measurements can also be projected through coefficients specific to other 
targets. The result can also be displayed as a time-evolving source intensity map. The 
processing power needed is rather minor making SAM very promising. However, real, 
successful applications of this technique are yet to be seen.

4.4.3 Minimum norm estimates
When refering to current distributions as elements of a current space G - the source space 
Q into which J’’ is confined could then be a curve, a surface, a volume, or a combination
of discrete points - the inner product of two such elements Jf and JJ is defined by:

(jf ,J?)  = J j f (r )J f (r )d V  (4-14)
Q

The amplitude of a current distribution is defined by its norm:

- 1/2

j|j'(r)|'< fy  (4-15)
LG

The rninimum-norm estimate (MNE) (Hamalainen and Umoniemi 1984,1994) is a current 
distribution with the smallest possible norm that explains the measurements. It is the 
best estimate for provided that all prior knowledge about the primary current is
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limited to specification of the source region Q only, and if "best" is taken to mean that the
expectation value of the integrated error |  -  J^) dV is minimised.

Q

Given a set of M measurements m  ̂ one can only obtain information about primary 
currents lying in the subspace of G that is spanned by the lead fields. Using Equation 4-1 
and Equation 4-14, we can now express m. as m,. = (O,., i = 1,..., Af. In other words,

a magnetic field measurement is seen to constitute a projection of a current vector on the 
lead field. The current components that lie in the space not spanned by the lead fields (i.e. 
in the complement space of Q) are assumed to be zero (e.g. silent components). The 
current density estimate can then be expressed as a linear combination of the lead fields:

M
(4-16)

1= 1

where w, are the weights depending on m,. Forcing to reproduce the measurements, 

we obtain a set of linear equations M = Fw, with M = 

w = (wj, and is an MxM matrix. In this notation Equation 4-

16 can be written as

J L = w ^ 0  (4-17)

where 0  = ( 0 ] , 0 2 , . . . , 0 ^ y . The formal solution for the weights is w = F"*M. The

current distribution with the smallest norm* among those producing the measured
signals is given by

JL=w"^0 (4-18)

This kind of solution though, has the disadvantage of usually being very unstable, and 
the result being highly dependent even on small amounts of noise or numerical errors. It 
is therefore necessary to regularise the solution by suppressing those components of jf,,

that are "poorly coupled to the sensors". A widely used approach, is to truncate the sum 
of the components, so that those dominated by noise are zeroed. Another way, is to 
deliver weights to the different components according to their SNRs (Umoniemi and 
Numminen 1992). The regularised solution is then:

This is also known as the Moore-Penrose inverse.
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0  (4-19)

where F  ̂ is the regularised inverse of F .

It should be emphasized that this estimate is optimal only when the assumption about 
the source space is valid and no additional prior information is available. Therefore, the 
MNE is useful for routine displays and as a starting point for further analysis (Umoniemi 
1994).

In fact, this is exactly what Wang et al (1992, 1993) have recognised. They used the 
minimum-norm method, but assumed that the source space could be restricted to the 
cortical surface, represented as an L-shaped waU consisted of two vertical planes (Wang 
1993) and also by a two-sheeted hyperbolic cylinder modeling a sulcus (Wang et al 1995c) 
or even more such suld and gyri together (Wang et al 1995b). They also made the 
additional assumption that the current should always be directed normal to the cortical 
sheet (i.e. source space) for all the reasons presented in Chapter 2. In practice, they 
computed the inverse from a set of a big number of nodes distributed across the cortical 
surface and representing the locations of current dipoles that comprised the current 
image (e.g. 750 such dipoles, Wang et al 1995b)

This method was given the name Minimum-Norm Least-Squares inverse (MNLS) but is 
also known as "constrained rninimum-norm estimates". It was later expanded to include 
the time-dependent solution in a spatio-temporal model (Wang et al 1995a), where the 
temporal dimension was incorporated in the previous notation tranforming the column 
vectors of the measurements and solutions into matrices. This also allowed the 
calculation of time-averaged solutions and field powers in order to image "significant 
regional changes" in the spontaneous brain activity elicited in specific cognitive tasks 
(Wang et al 1993).

Although this technique seemed to produce robust images of current distributions, it has 
only been employed so far for the cortical mantle, thereby excluding the study of 
subcortical nuclei. Moreover, the representation of the source space as a subject-specific 
cortical surface contains obvious hazards for aU the reasons mentioned in Chapter 3. That 
is, the model will be expected to perform well, only and only if the coregistration of the 
MRl and MEG systems is very accurate, and if the subject was completely immobile 
during the MEG recordings.

Another interesting approach based on minimum-norm and régularisation methods and 
using morphologically constrained current density distributions, where the
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reconstruction space is limited to physiologically relevant structures, is the so-called 
Cortical Current Imaging (CCI, Fuchs et al 1995). This method also makes use of the 
whole temporal range instead of signle time-instants (Wischmann et al 1995). The cortex 
is segmented from individual anatomical data (i.e. 3d MR images - and so the previously 
mentioned precautions on coregistration errors hold true here too); the volume of interest 
is given by the sensitivity range of the MEG measuring device - usually a cylindrical 
volume attached to the cryostat. Subsequently, the points representing the segmented 
cortex are subscunpled into patches arranged as closely as possible on the manifold 
(Wagner et al 1995).

The computation of the CCI, which is a discrete approximation of the current density in 
the cortex, ivolves "design-dipoles" located at the cortical points with an orientation 
again normal to the calculated local surface are used to set up the lead field matrix. A 
depth normalisation is carried out by assigning each design-dipole a strength 
proportioned to the second power of its mean distance from the measuring coils. 
Therefore, only one linear parameter per reconstructed dipole is aimed, which is the 
strength relative to that of the design-dipole. An iterative scheme is also employed, 
where after each step, the points holding the smallest currents are discarded in the 
subsequent iterations. Each iteration uses a bigger number of points in consideration and 
a smaller number of currents. The stopping-criterion is usually the deviation between the 
reconstructed and the measured magnetic field. This method also seems robust and 
promising^, but only cortical reconstructions have been obtained so far, with only a 
limited number of physiologically interesting results.

Finally, another interesting and indeed very promising inverse algorithm called FOCUSS 
(FOCal Undetermined System Solution) has recently become available (Gorodnitsky et al 
1992; Gorodnitsky 1995), claiming that it can accurately resolve the depth and extent of 
sources, including point sources. The essense of the algorithm is the iterative application 
of weights derived from the previous reconstruction. Here again, the minimum-norm 
solution consists the initial step of the process; it is restricted, however, in an one-voxel- 
thick region along the surface of the model volume (the volumetric model may contain 
32x32x32 or 16x16x8 voxels determining a sphere sometimes grooving in the surface to 
represent the cortical suld). A procedure is then employed in which the weight vector is

+ The nwthod has been recently renamed into the prosonym "CURRY" (current reconstruction and 
imaging) and comprises a software package (developed in the Phillips GmbH research laboratory) and 
commercially distributed world̂ uride by Neuro Scan Inc (Neuro Scan News, 1995).
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replaced by the new solution, or multiplied by the new solution, or the normalised basis 
matrix* is multiplied by the new solution. This can be thought of as concentrating the 
solution around the true sources untill they are resolved sufficiently well. The 
reconstructions are performed in an hierarchical manner, where a coarse reconstruction 
grid in the beginning is systematically increased in resolution if there is an indication of a 
source in this region.

The algorithm was tested against simulated data, and it only failed on certain "difficult" 
source distributions. The problems under current consideration include the initialisation 
step, and the iteration stoppping-criterion. Improvements of the algorithm based on 
"genetic schemes" combined with stochastic processes are also under development 
(George et al 1995a).

4.4.4 Magnetic Field Tomography (MFT)
MFT was the first technique capable of recovering reliable estimates for the full three 
dimensional for the primary current density distribution. It was developed and 
implemented at the Open University, UK (loannides et al 1990a) and a review describing 
the logical and algorithmic steps of MFT has been published recently (loannides 1995b), 
together with a longer description highlighting the historical links with EEG which 
slowed down the development of MEG analysis (loannides 1994).

MFT is based on a probabilistic treatment of the inverse problem (Cl^ke and Janday 
1989; Clarke 1989), where the expected current density is expressed as a linear

combination of expansion functions:

JL(r) = X,Â i(>-M'-) (4-20)
1=1

where M is the total number of sensors, w(r) is the a priori probability weighting
function defined throughout the source space Q and incorporating any prior information
about source location, and are coefficients of the expansion functions. The latter can be

determined using Equation 4-1 and Equation 4-20 through a set of linear equations:

m ,='2V ,A j  (4-21)

where the matrix P is described using the definition of Equation 4-14:

* Each column of this matrix receives a source-voxel normalisation, based on the average distance from the 

particular voxel to all sensors.
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p.. = (O,., 0yw(r)) = j  0 . (r) • 0 .  (r)w(r)dV (4-22)
g

If P is suffiedentiy non-singular, it is obviously possible to invert Equation 4-21 and 
obtain the coeffident values A., and subsequently from Equation 4-20 the estimate for the 
current density.

However, some of the lead fields may inevitably be linear combinations of others, 
rendering P singular or almost singular. An SVD technique can be used at this point to
turn P into non-singular; another alternative was initially followed, where a smaller
subset of expansion functions is used, so that

JL(r) = Z A ^ ,(r M r ) . t < M  (4-23)
1=1

The choice of t and the selection of sensors is of importance though: one wants to avoid 
singularity, and, therefore, t could be chosen to be as small as possible, and sensors 
farther away from one another could be selected so that their individual lead fields are 
independent; if t is too small though, then spatial resolution is reduced, although the 
solutions become significantly stable. The choice of eHminating sensors was useful for 
carrying out tests investigating how resolution improved with increasing the number of 
sensors.

A way of controlling the resolution versus noise sensitivity is through régularisation; a 
régularisation parameter, Ç , is introduced so that,

M
(4-24)

k-\

Equation 4-21 is then replaced by the square system

m, = X P jA  (4-25)
7=1

where

(4-26)
7=1

For convenience, the dimensionless quantity Ç =ÇM/7r(F) is introduced in such a way 

that unity marks a rough divide between large and small values of currents. In practice, 

Ç is progressively decreased until the characteristic transition to large sensitivity to noise
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is reached; a value at least twice the critical value is then chosen*. For such a choice, P is 
positive definite and numerical problems are eliminated.

In the limit where Ç —> 0 , and w(r) is constant throughout the space, the method 

reduces to the mmimum-norm approach (Hamalainen and Umoniemi 1984) described 
previously. The effect of the régularisation process is achieved through the elimination of 
huge and physiologically meaningless currents. This becomes obvious considering the

system with M=f=l (we ignore for this purpose the relation Ç =ÇAf/rr(P), since we 

want to let PH tend to zero but retain a non-zero value for ). From substitutions into 

previous equations we get:

which leads to

JL(r) = :r ^ O ,(r )w (r )  (4-28)
“ii+S

Given that P„ cannot be negative - P is positive definite - the smallest value it can get is 
Zero. In that case will only have a maximum value rather than infinity, thereby

restricting the likelihood of huge current densities.

The first solution obtained g, is subsequently iterated by repeating the Inversion, with 
a new probability weight, which is the product JL.o^(r) - This weighting factor is 

applied to sharpen up the image. In fact, loannides et al (1990a) also carried out extensive 
tests in which the square or the square root of the first current density estimate was 
multiplied by the probability weight in order to form the product used as the weighting 
factor in the second iteration. It was empirically shown, that using the square lead to 
elimination of small but significant source elements, while using the square root 
provided too slow a convergence. With a weighting function proportional to the 
magnitude of the current density the iterative scheme converged within one iteration, 
leading to distributed solutions with fine detail. The major disadvantage of this scheme 
though, is fiiat it imposes heavy computational demands, because for each timeslice a

* In the current software implementation, the user varies ^  through the use of a "smothing parametsr", s, 

which is defined by ^  = 1 0 " '.
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new matrix must be computed; these have been satisfied in the OU implementation by a 
30-node transputer array (Liu et al 1993) and very recently by fast UNIX workstations.

The source space used with the above described algorithm can be extended up to regions 
from which physiologically reasonable activity produces signals just above tlie noise 
level; the depth is chosen so that sources throughout the source space can be correctly 
localised with a simple form for w (r). The definition of the source space Q is very

flexible and can be a cylinder, a (part of a) hemisphere with its curvature adjusted to 
follow the subject's brain or even any other shape that one may desire for specific 
analyses* (Liu MJ and loannides 1995). Although Q is a real 3d volume and the solutions 
continuous functions, Q is usually cut in 9 levels (each level is comprised by 17x17 pixels) 
and the solutions displayed along these cuts (tomes) often parallel to the plane or surface 
of sensors, so that the relative sensitivity within each slice is constant. Such displays are 
referred to as MFT images and they can then be fused with the subject's/patient's MRls, 
provided the success of the registration procedures described in the previous chapter.

A Gaussian shaped weighting function that increases monotonically with depth has been 
used so far, with the only adjustable parameter being the rate of decay, chosen through 
tests with computer generated points sources'*'. AU this function is doing, is that it 
stretches the lead fields towards depth, thereby redistributing the sensitivity - which is 
otherwise "wasted" in the area just below the sensors; it also improves the resolution in 
Q, and it is necessary for the recovery of deep activity.

The enhancement of deep generators though, is not complete, since the strength of a 
deep source is considerably reduced compared to the strength of a similar superficial 
source. In other words, we can "see" something deep, only if it is strong enough, and not 
simultaneously active with a superficial generator of similar strength. This should not 
lead to confusion, that MFT can recover either superficial or deep activity but not both. 
Provided that the superficial source is considerably less strong than the deep one, MFT 
can recover both even if they are simultaneously activated. Moreover, the overall 
uncertainty in relative strength at different depths does not change with time, and the 
time dependence of the solutions provides a reliable estimate of how the relative power 
between superficial and deep activity varies with time (loannides 1995b).

* For example, one could use M Rl slices to restrict the source space within the gray matter. However, such 

an approach has not been pursued so Jar.

+ The other adjustable parameter is the previously mentioned smoothing that controls the régularisation. 

Routine tests for both of these parameters are presented in the following chapter.



Chapter 4: Inverse Problem_________________________________________________________ ^

Although an algorithm incorporating temporal constraints has been presented (Alavi et 
al 1993) it has not been fully tested yet, and no such constraints have been used with
MFT so far. This is similar to the instantaneous dipole modeling with one major
difference though; although the current density estimate is obtained separately at each 
time instant activity seems to be varying smoothly with time. To put it differently, 
activity does not "jump" abruptly from region to region, but as one region becomes less 
active another one appears and gains strength progressively, to finally become the most 
strongly activated area and so forth. This is in agreement with the common sense in one's 
understanding of brain function.

Finally, in the MFT analysis, one usually displays the intensity P(r,t) = |7^^(r,r)| , with

the practical advantage of dealing with a (positive) scalar than a vector. Post-inversion 
processing can be applied to P(r,f) as a consequence of the fact that the intensity is
always positive. Integrals of intensity in space and time can be employed by MFT leading 
to i) measures of activations in time, A(t) , in a region of interest (ROI)* :

t+Ÿ
A{t) = \ df j P { T j ) d S  (4-29)

R D I

or ii) displays of temporal integrals of intensity /(r,t)

/(r .O - j f ( r / ) d C  (4-30)
«-Î

By selecting certain ROIs and/or time intervals 5f the dynamic aspects of brain activity 
wiU appear at different spatio-temporal scales.

In conclusion, MFT offers a powerful tool for solving the inverse problem. It can reveal 
the number and locations of activated areas, under the prior assumption that there exist 
only a small number of localised sources at any one time. Moreover, it offers the 
capability of studying both superficial and deep activity. A number of new techniques 
have recently been proposed and many of them follow identical or similar steps as MFT

* By ROI we imply n square, subregion of a source space level, but there is generally no limitation in this, so 

that Mimensional ROIs could be implemented in the future, provided that integration in the follwoing 

formula is curried out through volumes rather than planar regions dS.
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(e.g. the FOCUSS algorithm''’). However, the way the source space definition is coupled 
to the sensitivity profile of the sensors and the brain outline, the tests undertaken for the 
selection of the smoothing parameter and the probability weight - and in particular the 
way the latter is incorporated in the iterative process - together with the concept of using 
the intensity (or its spatio-temporal integrals) are original and unique to the OU 
algorithm. Up to date, MPT has been tested not only with computer simulated data, but 
also with evoked MEG responses (loannides et al 1993a), and with MEG signals 
generated by dipoles implanted in the head of an epileptic patient (loannides et al 1993b). 
In all these early studies MFT's localisation capability was compared with that of ECD 
models and it was found to be suprisingly good. It was also shown, that MET could cope 
with activity spread over different regions, a situation where the ECD failed. More recent 
MFT studies have shifted towards more realistic studies of normal brain function 
(loannides et al 1994), brain pathophysiology (loannides et al 1993c, loannides et al 
1995a), and especially, studies of single epochs signals instead of signals averaged across 
epochs (loannides et al 1995b). In fact, one of the main goals of this thesis, is to apply the 
single epoch MFT studies into pathophysiology (i.e. epilepsy) and extract any 
physiological significance. Before doing this though, we will present some MFT tests and 
simulations that demonstrate how the method is applied and what its strengths and 
likely limitations are.

+ Another recent method - not mentioned in our treatment before, is the so-called LORETA, standing for 

Low Resolution Electromagnetic Tomography (Pascual-Marqui et al 1994), originally LORETA developed 

for use with EEC data, but readily available for MEG as well LORETA also makes use of régularisation in 

order to produce "smooth 3d images with a relatively low spatial resolution". LORETA's implementation 

also uses MFT's original representation ideas on cutting the source space into equidistant levels along its 

depth and dividing each leivl into grid points. Similar ideas are also used in a similar method called 

PROMPs, which was presented by Greenblatt in the recent Biomagnetism Conference (Greenblatt 1996).



5. MFT tests and simulations

In this chapter we present some MFT tests and simulations in order to demonstrate the 
potential of MFT and identify its limitations at least as far as the implementation that is 
going to follow in the next few chapters is concerned. These tests cannot, of course, be 
exhaustive; they are performed in of support the MFT analysis of real data that follows. 
Both the spatial and temporal aspects of MFT are discussed. The first section describes 
"routine" tests which should be carried out by every "MFT practitioner". Attention is 
then paid on the effect the number of sensors has in the spatial resolution. We 
subsequently focus on the recovery of dieep activity from both unilateral and 
(simultaneous) trilateral measurements. Finally the spatio-temporal aspects of the MFT 
analysis are investigated through a set of dynamic simulations with a gradually 
increasing physiological significance.

5.1 "Training" the system
The first part of the MFT analysis involves extensive use of computer generated data. The 
task is to define the correct values for the "free MFT parameters", these are the decay of 
the Gaussian probability weight (or generally any other probability function) and the 
appropriate régularisation parameter (or smoothing as mentioned before). To accomplish 
this, a number of model inversions are carried out with different decay factors and 
different smoothing; the set of parameters that leads to the best reconstruction of known 
sources which are uniformly spread throughout the source space volume, is thereafter 
selected. This stage is a rudimentary analogue of the training session in neural network
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studies (loannides 1994). After both parameters are fixed, no further modifications are 
allowed: they are kept constant in any subsequent inversions of real data.

These tests are compulsory in the MFT analysis, and are carried out in a routine basis 
every time a user needs to analyse a new experiment. We do feel, however, that their 
presentation here is necessary for two reasons: first to provide support for the validity of 
our results, and secondly, because they have never been demonstrated before in a 
compact and detailed manner utilising visual examples.

5.1.1 Source space configuration and display definitions
The source space definition and the probability weight can be considered as a means of 
introducing large scale anatomical or physiological constraints. In addition, the source 
space, where the primary currents are confined, should be consistent with the overall 
sensitivity profile of the sensor arrangement In the early days of MFT, the source space 
consisted of a 2-dimensional disk, or part of the surface of a sphere, or a 3-dimensional 
cylinder. In more recent applications, a part of a 3-dimensional hemispherical volume 
with its boundary outlining as well as possible the cortical surface below the sensors is 
commonly used (Liu MJ and loannides 1995). The depth or extent of the source space is 
determined by the sensor characteristics, their geometrical configuration, and the noise 
level in the measurements.

The thickness of the Dewar is typically some 1.5 cm while the thickness of the scalp, the 
skull, and the cerebrospinal fluid layer is approximately 1.5-2.0 cm  Assuming that 
detection of neural activity 9-10 cm away from a sensor is too weak with present 
technology, the depth of a source space should not exceed the value of 6.0-7.0 cm, if one 
wants to maintain good localisation accuracy at the superficial levels as weU as acceptable 
reconstructions of deep generators. From the practical point of view, it is difficult to 
maintain resolution throughout the volume if the depth is greater than say 6 cm for a 37 
channel system

Such an example is shown in Figure 5-1 where the horizontal bars on the left represent 
the planar arrangement of the 37-channels of the Siemens KRENIKON system  The 
source space is designed to cover the left hemisphere of the subject, but also follow as 
closely as possible the cortical surface below the sensors*. For display purposes, the 
hemispherical volume is cut at regular intervals, and activity is computed and displayed

* A sphere is usually fitted to the subject's brain (on the side of the sensor array) from multislicc hŒIs and 
the source space depth is then extended according to the sensor coverage and noise level in the 

measurements.
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as a contour plot. Each cut is rotated so that it is flat on the page and displays at 
successive depths are placed in order, with the most superficial (level 9) at the top and 
the deepest (level 1) at the bottom. In this specific case, the distance between the most 
distant levels is 5.4 cm, making the overall thickness of the source space to be 6.1 cm  All 
contour plots used in dus thesis, represent the square of the estimated current density. 
The colour scale displayed at the utmost right is also universal for all the thesis results: 
yellow corresponds to strong activity, while blue to low activity.

One should note, that although the different levels correspond to different radii, they are 
all represented by the same cross section in such a display due to our software's 
inheritance of dealing with constant cross section cylinders. Furthermore, a cross will be 
taken to mark the position of a "test current dipole" at a specific depth. By placing MFT 
solutions at successive time instants next to each other, we obtain a spatio-temporal 
display. We shall use such displays in the following sections to indicate the various test 
dipoles as different time-instants.

We finally highlight the conducting medium modelling: a sphere fitted to the local (to the 
sensors) curvature of the inner skull surface is taken as the conductor for all the reasons 
explained in the second chapter. A projection of the sphere onto the plane of the specific 
MRI outline is depicted by a circle in Figure 5-1, while a small dot represents its centre.
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Figure 5-1: An exam ple of MFT m odelling and display. Left: the source space is part of a 

3 -dim ensional hem ispherical volume, represented as 9 sectional cuts. The distance 

between the m ost superficial level (9) and the deepest level (1) is 5.42 cm; the 

overall thickness of the source space is 6.1 cm. H orizontal bars indicate sensor 

positions. The circle depicts the projection of the conducting sphere on the specific 
MRI outline plane, while the small dot the conducting sphere centre. Righ t: each 

level is rotated so that it is flat on the page; displays at successive depths are 

placed below each other. Activity is shown as a contour plot. A cross indicates the 

position of a test current dipole (see next section). Far righ t: the colour scale 

convention used throughout this thesis: strong activity is plotted in yellow, weak 

in blue.
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5.1.2 Selecting the proper parameters

Having defined a reasonable source space for a specific experim ental set-up, the next step 

is to adjust the decay of the probability w eight and the sm oothing param eter. These are 

undertaken one at a time. The process is initialised by generating a set of current dipoles 

distributed throughout the entire source space. The forw ard problem  is then solved for 

this set, so that a sim ulated signal is generated for the particular experim ental set-up. 

Given such a signal, the problem  is to reconstruct the current sources that gave origin to 

the specific signal. To sim ulate real experim ental conditions, a 10% random  noise is 

added in the values of this signal file. In the following examples, a ^'standard ' set of 

dipolar sources will be used, containing 18 single dipoles and 9 two-dipole-combinations. 

Care is also taken so that none of the dipoles possesses a radial com ponent.

We use a zero sm oothing value to start w ith ( 5  = 0 ^  <^= 1.0 ). If a uniform  probability 

w eight is used, then as m entioned before, the sensitivity is "w asted" in the region 

directly underneath the detector array. This m eans that very superficial sources will be 

correctly recovered, but little or nothing can be said about even slightly deeper ones . In 

this case, MFT shares a great deal of similarity w ith the m inim um -norm  estimates 

m ethod, but is still m ore robust due to the régularisation and iteration procedures. Figure 

5-2 displays reconstructions of the standard  current dipole set, that dem onstrate exactly 

the above statement.

The picture is changed dram atically if a probability w eight that increases monotonically 

w ith depth  is used. We have only been using simple Gaussian forms for the probability 

function. The formula used for a G aussian function is:

g(r) =  e   ̂ (5-1)

For To w e usually (always in this thesis's material) choose the centre of the conducting

sphere. It is also possible to vary the probability w eight w ith em phasis in different 

directions. That is, a probability w eight is chosen for reconstructing sources in depth  (e.g. 

in the direction, or z-direction in Figure 5-1), while another different probability

w eight can be selected for reconstruction of sources in a plane (e.g. e^, e^ , or xy-plane). 

So, a probability biasing only along the third direction (depth) will be:

* O ne shou ld  note  that deep m eans a w a y  fro m  the sensors (or deep source space levels); so deep generators  

m a y in fa c t be cortical, depending  on the source space orientation.
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= g ' (5-2)

while that along a plane will be:

g(r„fi) = e (5-3)

One can use either Equation 5-1 or a com bination of probabilities according to Equation 

5-2 and Equation 5-3. We have observed that for a probe with a flat surface (i.e. planar 

arrangem ent of sensors, like that of the KRENIKON system) the simple form of Equation 

5-1 is sufficient, and there exists no special need to use the com bination of Equation 5-2 

and Equation 5-3. For a curved system  though (i.e. like the BTi MAGNES probe(s)), the 

latter choice produces a better reconstruction quality. In the following, despite the use of 

the KRENIKON set-up of Figure 5-1, we shall m ake use of the com bination of 
probabilities, bu t 1 , 2 will be kept constant at the value of 5 cm. Varying I 3 we get a

series of pictures w ith different depth  enhancem ents. In Figure 5-3 depth  enhancem ent is 

too strong, while in Figure 5-4 is a bit weak. The solution w ith the best choice is shown in 

Figure 5-5.

Keeping the decay factors constant, we then try inversions with variable sm oothing 

param eter. For the sake of simplicity w e shall only show reconstructions of the second 

half of the dipole set. Three different choices are shown: in Figure 5-6, the choice of 

sm oothing results in reasonably good reconstructions; in Figure 5-7, one is aim ing for 

finer details; trying to obtain too m uch detail in the presence of noise, results in artefacts, 

as Figure 5-8 dem onstrates. A lthough régularisation seems correct even in Figure 5-7, we

usually double the limiting value of the régularisation param eter, f ,  so as to avoid 

amplification of noise in m ore noisy situations than the sim ulated one (10%). Doubling 

gives the sm oothing the value used in Figure 5-6.

H aving obtained the correct régularisation, one can fine-tune the probability weight, by 

trying inversions w ith smaller steps of decay factors, bu t using the proper smoothing. 

The final result is show n in Figure 5-9, assuring that the system  is virtually "trained". 

The values for the two free param eters (decay and régularisation) are now  fixed, and are 

the ones to be used in any subsequent inversions of real data corresponding to the same 

experim ental set-up. Alteration in the senso r/pa tien t positions (even if one selects the 

sam e source space), requires repetition of the "training" procedure.
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Figure 5-2: Reconstructions of the standard current dipole set using unitary

régularisation and uniform  probability weight. Note that although very 

superficial dipoles are correctly reconstructed, sensitivity is w asted in the region 

underneath  the sensor array, and as result nothing can be said about non- 

super ficial sources.
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Figure 5-3: In these reconstructions À^ =  4.5 c m , and deep sources are correctly

recovered, but superficial and m iddle-depth ones are "pushed" deeper. The 
depth-enhancem ent is too strong, and À^, the probability decay param eter, needs

to be higher.
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Figure 5-4: Reconstructions where deep and fairly deep sources are not correctly 

recovered (the effect is m ore obvious in m iddle levels), while very superficial ones 
are fully benefited. The depth-enhancem ent is weak 6.0 cm, and the decay

needs to be decreased.
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Figure 5-5; Reconstructions w here the depths of m ost sources are correctly recovered; In 
this case À , =  5 3  c m ,  and it is the appropriate choice.
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Figure 5-6: Inversions with the selected probability decay factors, but for sm oothing 

s=1.0. The reconstructions seem reasonably correct.
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Figure 5-7: Inversions with the same probability, but for smoothing s=1.3.
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Figure 5-8. The sam e probability is used, but sm oothing s—2.0. Trying to make too fine 

reconstructions in the presence of noise results in eventual loss of detail. This 
sm oothing value is definitely unacceptable.
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Figure 5-9: The final result w ith properly defined probability decay and sm oothing 

param eters. These are, Â, =  5.2 cm, and 5 = 1.0 ^  ^  = 0.1. These values are now  

fixed, and are the ones to be used with any real data of the sam e experim ental set

up.
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5.2 Sensor number effects in MFT estimates
In this section we attem pt to understand  how the MFT estimates of activity are affected 

w hen the num ber of channels of a given probe used in the analysis is reduced. The main 

reasons we wish to do so are twofold. First, because some of the MFT analysis presented 

in this thesis is based on recordings w here a few MEG channels (i.e. 7 out of 37) w ere not 

functioning properly, and as a consequence are not included in the analysis. 

Furtherm ore, we believe it is one of the ways to dem onstrate the robustness of MFT as a 

m ethod of MEG analysis, especially w hen unaveraged or single epoch ("noisy") data are 

concerned. The endurance of the MFT estimates in the presence of noise and in relation to 

the num ber of sensors was also discussed in the early publications of the m ethod 

(loannides et al 1990a). However, those estimates w ere relied on the source being a 

circular disk, that is only the 2-dim ensional case was considered. Herein, we expand 

some of those conclusions in the case of the 3-dimensional MFT reconstructions.

In order to achieve this, we m ake use of the experim ental set-up already used in the 

previous paragraph (set-up 1), in which some of the 37-sensors are om itted on purpose. 

This leads to two distinct set-ups: set-up 2, w ith 19 sensors, and set-up 3 w ith 13 sensors 

only. The specific arrangem ents are displayed in Figure 5-10. A lthough different sensor 

configurations would, in general, dem and different choices for the probability weight, we 

have observed that the same choice w orks reasonably well for all three configurations.

A proper treatm ent of this issue w ould require formal analysis using the sam pling 

theorem  (e.g. N yquist 1928; Shannon 1949). Such analyses have been widely used in the 

MEG literature to obtain optim al sensor configurations (i.e. channel separation and 

geometrical arrangem ent) for various probes, so that neurom agnetic field sam pling is 

maximised and aliasing is elim inated (see for exam ple Hoenig et al 1991; A honen et al 

1993). O ur approach will be different, sim pler but more focused on the specific MEG 

exam ples we wish to study. We once m ore use the standard  dipole set and the displays 

as defined before.

For the sake of clarity, we start w ith reconstructions of noiseless data. The full probe (i.e. 

set-up 1) was used in Figure 5-11, while set-ups 2 and 3 w ere used in the production of 

Figure 5-12 and Figure 5-13 respectively. The message in these figures is that, MFT 

perform s quite well even when the sensor num ber is significantly reduced. The main 

effect as this reduction occurs is some kind of "blurring" in depth^. In other words, the 

obtained solutions cannot be very focal; they are instead distributed in m ore levels of the 

source space, despite the fact that the point of m axim um  activity m ight still be recovered

Although one could argue that blurring is generally present in all set-ups anyioay.
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successfully. This "blurring" is alm ost absent in the case of deep generators, but becomes 

obvious for m iddle-depth and even m ore prom inent for superficial dipoles. In addition, 

one w ould expect the set-ups with fewer sensors to be less accurate in the localisation of 

superficial, in particular, sources, but such an effect cannot be clearly seen in these 

displays.

Sagittal views from left

Set-up 2Set-up 1
0 .1-

E 0 . 0 -
#  * •

- 0 .1-

p
I  I  I '  

0.1 0.10.0- 0.10.0- 0.1
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Figure 5-10: The num ber of sensors in set-up 1 (37) is progressively lowered to obtain set

ups 2 and 3 w ith 19 and 13 sensors respectively. Big dots represent projections of 

the sensor positions on the source space display. The big circle corresponds to the 

bottom  source space level, while the small to the top (superficial) one - the small 

dot is the centre of bottom  level. A m iniature triangle depicting the note helps in 

the definition of posterior (P) and anterior (A) directions.

An im portant question then naturally arises: w hy should one bother building expensive 

m ultichannel channel systems, w hen even oligochannel probes (of the same head- 

coverage) are capable of providing satisfactory solutions? The answ er relates to the role 

played by noise and is shown in the following two Figures, w here 20% random  noise was 

added in the signals*. We show the results for deep dipoles where the effect is more 

obvious. As the noise level increases, set-ups with less sensors become m ore vulnerable 

to noise. So, for instance, the MFT estim ates are very satisfactory w hen all channels are 

used (Figure 5-14) but become less satisfying w hen only one half of the sensors is used 

(Figure 5-15 top) and even less w hen one third of the sensors is in use (Figure 5-15 

bottom). This can be easily seen in the 7th and 10th dipoles (columns) of set-up 3 (Figure 

5-15 bottom), w here the shape of the actual solutions is distorted. This is a serious effect.

Reconstructions zvith 10% added noise did not shoiv prominently the differences described next.
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since a focal solution m ight appear as distributed in m ore then one distinct regions. One 

should, however, appreciate the fact the MFT is still able to localise m ost of the dipoles - 

which are themselves an inherently stringent test for MFT, since the m ethod is optim al 

for distributions of current rather than point sources - in the presence of 20% noise and 

w ith two thirds of sensors not functioning.

In support of the latter statem ent, w e also include in Figure 5-16 the displays for the m ost 

superficial dipoles for set-up 3. A lthough again some distortions can be seen in some 

dipoles (a fact that accounts for the "few" w idely distributed sensors, in a very noisy 

environm ent), MFT proves to be quite robust by being capable to recover quite well even 

some of the doublets. This robustness against noise (in addition to the test presented in 

the original versions of the m ethod, cf loannides et al 1990a), together w ith the obvious 

fact that a small num ber of missing channels does not affect the MFT estim ates 

dramatically, are contributing to our confidence in successfully using MFT in single 

epoch data analysis.
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Figure 5-11: Reconstructions of the standard dipole set for set-up 1 (noiseless data).
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Figure 5-12: Reconstructions of the standard dipole set for set-up 2 (noiseless data).
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Figure 5-13: Reconstructions of the standard dipole set (no noise) for set-up 3.
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11.00

Figure 5-14; Reconstructions of "deep" dipoles in the presence of 20% random  noise for 

set-up 1.
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Figure 5-15; Reconstructions of the "deep" dipoles in the presence of 20% random  noise 

for set-ups 2 (top) and 3 (bottom).
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Figure 5-16: Reconstructions of the superficial dipoles in the presence of 20% random  

noise for set-up 3.
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5.3 Recovering deep activity
In this paragraph we present some sim ulations to test MFT's capability to reveal deep 

activity. Section 5.1.1 discussed points one should bear in m ind w hen designing a 

"proper" source space. This design, however, does not in any way exclude the possibility 

of sources being outside the presum ed source space. So, an interesting question could be 

framed as follows: how are the MFT solutions affected when strong deep sources outside 

the assum ed source space are present? In other w ords, w hat w ould happen if some 

strong generators were active in the right cerebral hem isphere and the source space 

covered only the left one? We attem pt to approach this issue under two distinct cases: 

first, assum ing unilateral m easurem ents (i.e. m easurem ents from only one side of the 

head), and secondly, considering bilateral (simultaneous) recordings.

5.3.1 Unilateral case
We start w ith a sim ulated experim ental set-up of the KRENIKON system  placed over the 

subject's left tem poral area (we shall assum e noiseless data in the following). Figure 5-17 

shows the positioning of the subject w ith respect to the probe, the source space used, and 

also outlines of some anatomical structures. Dipoles (marked by thick arrows) are placed 

in various regions, m ainly deep ones. Use of one cortical dipole is only included to help 

in the discussion to follow. In the top plate, the dipole is placed progressively deeper: at 

left h ippocam pus (LHi, corresponding source space position is between levels 3 and 4), at 

brain stem  (level 1), and at right hippocam pus (RHi, outside source space). The two 

thalami are also involved. Some two dipole com binations are allowed, as explained in the 

caption. Conductivity is m odelled by a sphere fitted to the curvature of the left inner 

skull surface.

In Figure 5-18 we display the solutions for the assum ed dipoles. As it can be seen, 

sources within the source space are satisfactorily recovered*. One should note the 

difference in the shape of the solutions, when a single generator is present as opposed to 

the case w here a pair of generators is active (see, for instance, the difference between the 

first and the last plot, bu t also that of the left m ost m iddle and the centre bottom  

figurines). W hen strong generators are present beyond the bottom source space level, 

solutions appear as "focal" (in the coronal perspective) deep activity, that could be 

attributed to the cerebellum for example. W ould it be possible to distinguish between

* It should be recalled that we are dealing with the "most favoured" MEG case, assuming non-radial 

sources only.
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activity that originates from the actual source space volum e and activity that is generated 

further beyond it? To tackle this question, we devised a novel w ay of applying MFT.

Given that such deep activity is identified in the original source space, we then design a 

new  source space that accommodates all the deep anatomical structures of interest. Given 

that this source space involves larger distances from the sensors, enlarging the current 

source space a bit deeper w ould not be a reasonable suggestion, since the latter w ould 

affect the localisation accuracy in superficial levels. We, therefore, choose a small 

cylinder, occupying a volum e just about enough to cover the regions of concern. Routine 

tests are, of course, perform ed from the beginning, so that the probability decay factors 

are properly readjusted to correctly recover activity in this region.

A planar projection of this new source space can be viewed in Figure 5-19, together w ith 

the "new " estim ates of activity. Using the cylindrical source space, we can distinguish 

both left and right hippocam pi and thalami. More im portantly we can now see w here the 

"focal deep" activity appearing in the previous plots is com ing from. This procedure can 

be imagined as a "focusing process": w e have indications that som ething is activated m 

the depth of the original source space, and we "re-focus our lens (the lead fields 

m ultiplied by the new  probability weight) over that deep region, in order to make sense 

of the on-going reality. Image "blurring" due to the large area occupied by the deepest 

level(s) of the hem ispherical source space can also be resolved in this way.

We can only "see" such a deep activation though, only if the current generator w ere 

strong enough, and m ore im portantly if no other m ore superficial generator were 

present. If RHi is activated sim ultaneously w ith LG or LHi then we cannot recover RHi 

using inform ation from one side of the head only. So, for instance, if both hippocam pi are 

present, the solution is very similar to that of the activated brain stem.

A nother obvious d isadvantage manifests itself w hen superficial cortical activity is 

present. In such a case, activity is just projected on the top cylindrical level (cf m ost 

central plot in the bottom  plate of Figure 5-19). However, this process will only be used 

during  the tim e instances that deep activity is identified in the original source space. In 

other words, w hen inform ation from the original source space is sufficient, the cylinder is 

neglected. Extensions to deal w ith sim ultaneously activated sources are under 

consideration, bu t will not be discussed further.

One should of course realise the inherent limitations of such a process. Although, from 

Figure 5-19 it appears that one can distinguish between RHi and RTh activations, m uch 

more w ork is needed for defining the influence of small perturbations to either noise or 

modelling (e.g. w rong conductivity profiles). To p u t it differently, w e shall only trust the 

level of activation in the bottom  levels of the cylinder, bu t not the actual localisations. The
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cylindrical estimates were obtained using the same as before conducting m odel (i.e. a 

sphere fitted to the left side). A ttention m ust be, therefore, paid since we are dealing with 

very "central" head regions w here one is not certain w hat the correct conductivity profile 

m ight be. Realistic head m odelling a n d / or conducting ellipsoid approaches (Fieseler et al 

1995) m ight be more appropriate bu t will not be pursued  herein. To simulate, though, the 

kind of error that one could expect, we shall attem pt another simplified test, assum ing 

that the conducting sphere m odel is always valid, bu t the centre of the sphere is 

unknow n.

The "old" conducting sphere centre is, therefore, shifted by (-1 cm, +1 cm, -1 cm) in all 

three directions (x,y,z). The forw ard problem  is then solved for the previous sources, but 

w ith the new conducting centre, in order to generate a signal. Inversions are then 

attem pted for the latter, bu t using the old conducting centre. We have carried out the 

inversions for both source spaces, but we only show here the deep-cylinder estimates, 

w here the situation is a bit easier to view.

The cylinder plots in Figure 5-20 show the solutions w here the sam e conducting model 

was used in both the forw ard and inverse problem s (in fact the solutions are the same 

w ith those used in Figure 5-19). Figure 5-21 dem onstrates the case w here the inconsistent 

definition of the conducting centre was intentionally introduced, as m entioned above. 

Only minor effects are indeed observed, w ith the m ost obvious one being that of the 6th 

"time-slice" (i.e. RTh activation). So, an error of some 1.73 cm in the conducting centre 

involves very small distortions. The unansw ered question, of course, is w hat happens 

w hen the conducting m edium  is no t a sphere.
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Figure 5-17: Simulation of unilateral recordings w ith the KRENIKON system. Skull and 

brain MRl outlines of a subject are show n together w ith approxim ate MRl 

outlines of the thalam i and hippocam pi. The original source space is part of a 

hem isphere, and covers the left hem isphere. Dipoles are show n as thick arrows 

and are placed in various anatomical regions (from top left to bottom  right): left 

hippocam pus (LHi); brain stem; right hippocam pus (RHi); left cortex (LC) and 

RHi together; left superior thalam us (LTh); right superior thalam us (RTh); RHi 
and RTh together; LC; LHi and RHi.
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Figure 5-18: C ontour plots of the squared current density estim ates of the previous 

sources using the hem ispherical source space. Successive MRl slices differ by 

6 mm, and are selected according to the position of the m axim um  activity 

(m arked by a dot). Sources w ithin the source space are satisfactorily recovered; 

w hen strong generators are present beyond the bottom  source space level, 

solutions appear as "focal" (in this coronal perspective) deep activity.
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Figure 5-19: Plots w here the current density estim ates are obtained w ithin a centrally - to 

the head  - placed smaU cylinder after the probability decay factors w ere properly 

readjusted. Provided that conductivity modelling is correct, w e can now  see 

w here the "focal deep" activity appearing in the previous plots is com ing from.



Chapter 5: M FT tests and simulations 228

1.00 6.00

^ 0

( ^ 0

a #

©

Figure 5-20: Recontructions of the previous sources w ithin the small central cylinder 

using the same conducting centre for both the forw ard and inverse problems.
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Figure 5-21; Small central cylinder recontructions of the previous sources w here the 

conducting sphere centre for the forw ard problem  had a difference of (-1 cm, 

+1 cm, -1 cm) from the one used in the inverse procedure.
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5.3.2 Bilateral Measurements

In this section w e assum e that the KRENIKON system  is a "tw in probe system " (2x37 

channels), that is, it consists of two identical Dewars that can be placed over each side of 

the head, so that both lateral aspects of the head are covered. We will now exam ine how 

the previous generators are recovered with MFT w hen recordings from the right probe 

only are available - as com pared to the case of the left probe reconstructions, and w hat 

can be done w hen both probes are sim ultaneously used. We em phasise here, that similar 

tests have been perform ed w ith the BTi twin MAGNES system  (2x37 channels), w here a 

real experim ental set-up was utilised, and the results were very similar indeed w ith the 

ones presented below. The decision to dem onstrate the results from the hypothetical 

"tw in KRENIKON" system  rather than the more realistic twin MAGNES case, was taken 

so that continuity and coherence w ith the previous section is maintained.

For the purpose of the sim ulated twin KRENIKON system, the right probe, as 

m entioned, was "designed" identical to the left one, and was the m irror im age - relative 

to the subject - of the left side. The familiar "sm all" cylindrical source space was used 

again in all conditions. The conductivity profile, as "seen" from the right probe, was 

m odelled with a conducting sphere fitted to the inner skull surface of the right side; in 

the case of sim ultaneous bilateral recordings, the sphere was fitted to both sides together 

- however, we shall discuss the im portance of this point later on.

In order to display all the details of the MFT solutions, w e use the familiar cylinder plots, 

bu t rotated in such a m anner, so that each row corresponds to a given timeslice (e.g. 

either a single or a double dipole source). In this way, the left and right sides of the 

source space become easier to view; in addition, it is m ore obvious which level of the 

source is regarded superficial relative to the sensors. For completeness, we show in 

Figure 5-22 the reconstructions in the small cylindrical source space of the former dipole 

set in the case of the unilateral m easurem ents from the left.

If the sam e sources are m easured from the other side of the head only, the scene changes 

to that of Figure 5-23. In this case, right cerebral hem isphere sources are localised 

successfully, and the level of activation in the left side is also correctly recovered. RHi 

(rows 3 and 7 in Figure 5-23) and RTh (rows 4 and 7 in Figure 5-23) activations can now 

be easily discriminated. On the other hand, w hen both RHi and LHi are sim ultaneously 

active (last row of Figure 5-23) only RHi can be seen this time (accordingly, the same 

effect was noticed in the recordings from the left side, w here only LHi could be 

recovered). It should be em phasised here, that activation of left cortex (LC) does not 

affect the solutions - especially w hen a right side generator is present (row 4 in Figure 5- 

23); w hen LC is solely active the solutions appear as low m agnitude patterns which
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w ould be lost in the presence of any noise level (this is not clear though in row 8, because 

each row is individually normalised).

We now assum e that the two probes record sim ultaneously and are both utilised in the

MFT reconstructions. The conducting m edium  was m odelled by a sphere fitted to both

sides of the head. The centre of this very sphere w as used in both forw ard and inverse

problems. The sm oothing param eter used was the sam e as in the previous

reconstructions (i.e. s=1.0) and the decay param eter for the G aussian probability w eight 
w as /13 = 3.2cm . Figure 5-24 shows the set-up conventions used together w ith the

solutions. In this case, both sides are recovered in one go even if there are sim ultaneously 

activated sources in each side. The only problem  is that the solutions are a bit distorted, 

due to the proxim ity of the conducting sphere centre. That is, the conducting sphere 

centre is almost at the centre of the head since it is fitted to both sides. Therefore, its 

distance from the left hippocam pus (or thalamus), for example, is less than w hat it w ould 

have been if the sphere was fitted to the left side only (the difference in this specific case 

is approxim ately 2.5 cm). This effect appears in the MFT solutions as some sort of "edge 

distortions". These distortions are neither dependent on the size of the source space, nor 

on the num ber of the sensors used*.

A lthough it can be claimed that in the com bined probe case inform ation about both sides 

is recovered in one go, there is no substantial benefit, since m ore accurate inform ation for 

each side can be available by separate inversions (compare, for instance, the "timeslices" 

containing the left (or right) hippocam pal dipole in all three reconstructions, i.e. Figure 5- 

22, Figure 5-23, and  Figure 5-24). The advantage of using both probes together in 

association w ith a small cylindrical source space in the centre of the head, could be 

revealed if two distinct conducting centres are used: one for the left, and one for the right. 

In the latter situation, each side w ould be correctly reconstructed w ithout any distortion, 

and conductivity m odelling w ould probably be closer to reality. Such reconstructions 

w ould be expected to be m ore powerful, since two different probability weights could be 

used, one for each conducting centre. It is through this kind of m odelling that more 

reliable inform ation about deep sources can be recovered. Unfortunately, however, this 

option is currently not available in our lab, and is, therefore, not pursued.

* Simulations were repeated with a bigger central cylindrical source space covering a larger volume in the 

centre of the head. This is now more reasonable, since information is available from both sides. The number 

of sensors was also varied; a hexagonal array of 2x19 sensors was selected, so that only sensors that are 

projected zinthin the cylindrical cross-section are used. Omission of a feiv channels did not affect the 

solutions. In all cases the results were the same.
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Furtherm ore, combinations of signals or signal transform ations w ould probably boost 

such a methodology. For example, sum m ations of readings for nearby sensors w ould 

elim inate any "superficial com ponents", while enhancing deep sources. Clearly, more 

w ork along these lines is necessary. A num ber of changes are envisaged w ith the use of 

bilateral m easurem ents and the helm et systems; bu t since in the major part of this thesis 

is concerned w ith real data from one side (in fact, bilateral recordings are only used in 

C hapter 8), these changes will not be discussed further.

Finally we em phasise that our strategy in localising deep activity is sum m arised by the 

following methodology: if the hem ispherical source spaces from both sides (left and 

right) identify /indicate the sam e localisation(s) for "deep" activation and the 

localisation(s)/levels using a small, central cylinder (with one conducting centre into 

account) are in consensus, then som ething has to be definitely active dow n in that depth!
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Figure 5-22: Reconstructions of the dipole set defined in Figure 5-17 using the left probe 
only. Each horizontal row represents one timeslice (i.e. a single or double dipole). 

In this perspective is easy to visualise which cylinder level is proxim al to the

sensors side.
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Figure 5-23; Same as before, but using the right probe only. The conductm g sphere is 

fitted to the right side only. All the right side generators are recovered 

successfully; w hen left side generators are active, the level of activation is 

correctly recovered. However, w hen both LHi and RHi are sim ultaneously 

activated (last row), only RHi is "seen". This inversion com plem ents the 

inform ation obtained from using the left probe alone.
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Figure 5-24: Same as before, bu t using both probes together in the MFT process. The 

conducting sphere is fitted to both sides. Both side generators are recovered; 

however, the im ages are distorted a bit, due to the proxim ity of the conducting 

sphere centre. The advantage of using such a com bination is that one can obtain 

information about both sides in one inversion, rather than com bining elements 

from two separate (left and right side) inversions.
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5.4 Dynamic simulations
We have already m entioned in the previous chapters that timeslices are com puted 

completely independently  from each other in the current MFT im plem entation. In the 

sort of exam ples we have used in this chapter, there was no syllogism concerning the 

evolution of time. To p u t it more simply, we have used physiologically m eaningless 

cases, w here the left hippocam pus could be active for just one m om ent, but completely 

"sw itched off" in the next timeslice during  which all the activity w ere transferred to the 

right hippocam pus. This was a consequence of the fact that we have, so far, dealt only 

w ith the spatial aspects of the MFT analysis relevant to our work. We now  extend the 

simulations further to include the time characteristics of the various activated sources, 

thereby testing the tem poral elem ents of our analysis. We follow the route of going from 

the more simple to the more com plicated and at the sam e time m ore realistic cases. In all 

the sim ulations presented below, it is assum ed that the sam pling frequency of the 

instrum ents is 1000 Hz, that is, the time step is 1 ms.

In order to perform  such sim ulations, a software suite was developed, that allows the 

user to design h is /h e r  own "dynam ic brain". The user decides how m any regions can be 

of interest (ROls) in a specific experim ental set-up. A set of fixed-orientation dipoles are 

then placed in the various ROls (usually one dipole per ROl). The strength of each 
dipolar source { Q I )  is allowed to change with time. For the purpose of the present

simulations, w e have im plem ented a G aussian-shaped tem poral variation, w here the 
user is free to choose the decay factors (2^)  of each activation, as well as the exact 

timings for the maxima of each activation ). Each dipole can be chosen to be activated 

once or several times, ( /=  l,...,/7 ), w ith sam e or different decay factors, 

{i  =  (the decay factor determ ines how sharp /sm o o th  an activation can be).

At each time instant, the overall strength of each dipolar source, is then given by:

a(0=Sav*"' (5-4)
/=1

Given that N  such dipoles are active at each timeslice =  the forward problem

is solved for a given sensor set-up and a given conductivity profile. MFT is then asked to 

reveal not only the position of each source, but also their tem poral characteristics.

Since the actual pow er of MEG as a functional brain im aging technique is the 

com bination of its (fair) spatial and (excellent) tem poral resolution, we consider these 

tests of im portance in the MEG analysis, since they are going to indicate w hether or not a 

technique of analysis (MFT in our case) is capable of divulging the detailed tem poral 

behaviour of diverse anatomical regions.
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5.4.1 Recovering the temporal aspects of a single source
We start w ith the sim plest case, w here a single source is present at any time instant. In 

particular, we will assum e that unilateral m easurem ents are perform ed, w ith the 37 

channel BTi MAGNES system, placed over the tem poral area of a subject, and the source 

being active is the hippocam pus (located some 4 cm deep in the right hem isphere). We 

further suppose that the hippocam pal dipole obtains its m axim um  activity at 10, 33, and 

65 ms, with decays of 5, 10, and 20 ms respectively. To dem onstrate the MFT results, we 

make use of two concepts described in chapter 4, in addition to the familiar cylinder 

plots. These are, the m easures of activations in time (Equation 4-29) and the displays of 

tem poral integrals of intensity (Equation 4-30). Figure 5-25 shows the MFT results in such 

a fashion.

The "experim ental" time runs for some 83 ms, and displays of the intensity integrated 

throughout the w hole period are show n in association w ith the subject's anatom y (Figure 

5-25 left). The ROl - indicated by a rectangular - covers the hippocam pus and the 

evolution of activity within this ROl is illustrated on the right. Two cases are examined: 

first reconstructions from noiseless signals (Figure 5-25 bottom), and second, 

reconstructions when 20% random  noise is added to the signals (Figure 5-25 m iddle and 

top). In each case, the green curve shows the actual activation profile of the dipole 

(draw n using Equation 5-4), while the blue one, is the MFT activation curve. The cylinder 

plot at the top part of Figure 5-25 corresponds to the 20% noise case. The dipole is always 

located between levels 4 and 5 (but is projected onto level 4 since is m ore closer to it), and 

the ROl is obtained from level 4.

One can note the minor effect the significantly high noise content has on the MFT results. 

Moreover, the MFT activation curves, seem to describe the dipole profile quite well in 

both cases. The only difference between the actual dipole profile and the MFT activations 

is that the former is, in general, "w ider" than the latter, an effect that is probably 

associated w ith the intrinsic difference between a dipole and an MFT distributed solution.

Finally, as can be noticed in the cylinder plot (Figure 5-25, top), the solutions are a bit 

spread over different levels. Provided that the "routine tests" w ere properly perform ed, 

the m axim um  of the current density w ould occur in the correct level (between levels 4 

and 5 in this particular case). So in fact, one can first identify this level and then study it 

in detail: outline the region of interest, and recover its underlying dynam ics throughout 

the w hole time period.
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Figure 5-25: A dipole, located at the hippocam pus of a subject, is activated at 10, 33, and 

65 ms w ith activation decays of 5, 10, and 20 ms respectively. The dipole strength 

profile is illustrated by the green curve. Top: the 9-level MFT solutions for the 

whole period (every fourth timeslice is shown) w hen 20% noise is added to the 

signals produced by the dipole. Middle and bottom: on the left, integrals of 

intensity throughout the whole period are superim posed on the subject's MRl 

outline (bottom for the noiseless case, m iddle for the 20% added noise case); the 

MFT m easures of activation w ithin the rectangular ROl are displayed on the right 

(blue curves). The dipole is m arked by crosses in the cylinder plots and by arrows 

in the intensity displays.
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5.4.2 A superficial and a fairly deep source
In this section we test MFT's perform ance in the case w here the previous hippocam pal 

dipole, is activated in the presence of another, more superficial source. In particular, we 

assum e that the second source is located at the subject's parietal cortical area* (in the 

same cerebral hem isphere w ith the hippocam pus). The two regions are now allowed to 

be activated distinctly - w ith various activation decays - as well as in concert, and the 

same as before experim ental set-up is used.

Figure 5-26 shows the MFT results in the presence of 10% added noise. On the right, the 

reconstructed activation curves for the parietal (orange) and hippocam pal (blue) regions 

are in turn com pared w ith the actual dipolar profiles; the top figurine combines the two 

activation curves for a better com parison. The ROls together w ith the integrals of 

intensity over the periods m arked by dashed vertical lines (during w hich each source is 

solely active) are given on the left part of the figure.

A num ber of facts become obvious from Figure 5-26. First, as expected, MFT can recover 

each source w hen it is solely active. Secondly, w hen the sources are activated 

sim ultaneously, the two MFT activations curves are peaked together. Furtherm ore, one 

can observe the sm ooth transitions from one region to the other. Sequential shifts of 

activity are depicted quite nicely in the MFT activation curves: as activity in one region 

starts declining and reappears in another region - e.g. 5 ms later - one activation curve is 

depressed while the other is peaking. The m ost difficult case is presented in the period 

from 55-80 ms w hen the parietal dipole obtains two sequential m axima at 65 and 75 ms, 

w ith decays of 20 and 10 ms respectively; in the m eantim e the hippocam pal area is 

subjected to a sharp (5 ms decay) activation at 70 ms. Even in this case, one can note the 

peak of the hippocam pal activation in between the two broader parietal activations.

A slight MFT defect that is also revealed w hen Figure 5-26 is exam ined carefully is that 

there are m inor contributions from  one region to the other, associated w ith the spread of 

the MFT reconstructions over different levels noticed before. In this particular case, one 

can note small peaks in the hippocam pal activation w hen the hippocam pal dipole is 

silent, but the parietal one is activated. These peaks are m uch smaller in m agnitude 

though, from those representing an actual hippocam pal activation. The "reflection" of 

one region into the other, is dependent on the relative strength (and distance from the

* G iven that the 9th level o f  our source space is the m o st superficial one, this area is taken to be a t level 8. 

That is, w e  n ow  have dipoles a t the 4 th  and the 8th source space levels. The parieta l d ipole is a t location  

(0 .0 2 ,-0 .056 ,0 .06 ), w h ile  the h ippocam pal a t (0 .004 ,-0 .027 ,0 .018 ); all co-ordinates are w ith  respect to the 

B T i head based M E G  sys tem  - u n its  in m eters. The resu ltin g  distance between the tw o  sources is 5 .3  cm.
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sensors of course) of the various sources. In this example, the strength ratio follows the 
relation Qû ppo jQpanetai -  10/3 and m inor reflections of the parietal activation are seen on

the hippocam pal one. If the relationship were Qmppo jQparietal = 100/3, then the reverse 

w ould have been observed.

Before w e proceed into m ore complicated examples, we m ention here that the vertical 

axes in the activation curves are defined in arbitrary units - this is a consequence of the 

fact that the physically m eaningful m agnitude of the actual current density is lost during 

the MFT iteration process. Therefore, only relative m agnitudes are of im portance and not 

the absolute values. A further MFT deficiency is apparent here, since not all the peak 

maxima are fully recovered - especially for the deep source. However, one should recall 

that in the presence of noise (e.g. 10% here) all the peaks w ould not necessarily be equal 

anyway.

0 .1-
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Figure 5-26: MFT results in the presence of 10% added  noise. Right: the reconstructed 

activation curves for the parietal (orange) and hippocam pal (blue) regions are in 

turn com pared w ith the actual dipolar profiles; in the top graph the two 

reconstructed activation curves are themselves com pared. Left: the two ROls 

together w ith the integrals of intensity over the periods m arked by dashed 

vertical lines.
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5.4.3 Three nearby, fairly deep sources

Let us suppose that there are three nearby sources at the depth of the tem poral lobe, 

placed along the subject's main hippocam pal axis. In particular, we assum e that the first 

dipole is just anterior to the hippocam pus and m ore specifically in the am ygdaloid 

region, the second one is right at the m iddle of the hippocam pus, and finally the third is 

at its posterior end. We start w ith the sim plest case w here the dipoles are separately 

activated at a given time instance*; their strengths w ere taken to be equal.

Simulations w ere perform ed w ith the three dipoles having the sam e orientation, but also 

w ith the m iddle one having a slightly different one. In both cases the results w ere similar, 

but w e only show  in Figure 5-27 the results from the latter case. The task in question is 

w hether one can distinguish the three sources or no t by using the MFT activation curves 

w ithin small ROls centred over each dipole^.

As can be inferred from the MFT activation curves at the bottom right of Figure 5-27, 

each area is liable to contributions from the other nearby sources. However, the overall 

m axim um  of each activation occurs at the tim e that the specific source possesses its 

m axim um  strength. This is not true though for the m iddle source; so it seems that it is 

not probably very safe to attem pt to distinguish between the m iddle and the 

posterio r/an terio r sources. On the contrary, one can discriminate reasonably well 

between activity in the anterior and posterior hippocam pal ends, since the activation 

m axima of each of these two regions are correctly recovered and the contribution of one 

region on the other is considerably low w hen com pared with the real m axim um  of the 

actual region. This provides the background for the observation of transitions from the 

anterior (e.g. am ygdala) to the posterior of the hippocam pus, w hen real data are 

analysed (see Chapter 7).

In each case, the integral over a finite time of the MFT intensity (and the same applies for 

the instantaneous MFT displays) is spread over a region, which covers m uch of the

* Measurements are performed unilaterally over the temporal area of the subject, using the KRENIKON 37 

channel system, and 10% random noise is added on the signals.

A subtle remark, ivhich also applies to the rest of the results in this thesis, is that the number of grid 

points in each source space level is fixed (i.e. 17x17). However, when a hemispherically shaped source space 

is used, the superficial levels are inevitably smaller than the deeper ones. As a consequence, there are a lot of 

"zero-valued" pixels in the first few  levels; these are not yet eliminated from our software, so as to increase 

the resolution in the top levels. In other words, one can use the full grid (17x17) to cover each superficial 

level, rather than basically having a 17x17 grid at the bottom and an effective 10x10 grid at the surface. 

This may prove to be very important in the fiiture.
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hippocam pal structure. However, the point w ith the m axim um  intensity (yellow 

coloured) is in good agreem ent w ith the position of each dipole (black arrow) as can be 

noticed in the top part of Figure 5-27 (despite a small deflection in the first one), a point 

which we shall come back into at the end of the section.

But w hat w ould happen  in more complicated situation w here the previous sources 

w ould be active separately but w ith overlapping activation profiles, or even 

sim ultaneously active, and furtherm ore, sequential shifts of activation (e.g. anterior- 

posterior-anterior) w ould occur? To tackle this question we devised a m odel that 

facilitates all the above and can be seen in Figure 5-28. The sam e as before sources and 

ROls are used, but the tem poral evolution of each source is now  different (see m iddle 

row of Figure 5-28). The overall activation patterns obtained can be viewed in the bottom  

right of the figure. Since we declared confidence in discrim inating the posterior and 

anterior areas using the MFT activation curves, we w ould like to concentrate on these 

two areas only.

In Figure 5-29, we display the model strength profiles for the previous two regions (left) 

together with their corresponding MFT activation curves (right), in smaller time intervals, 

so that tem poral differences become clear. W hen the two areas are sim ultaneously 

activated (dashed profile parts), the MFT activation curves are peaked together and there 

is no time lag in their ascending or descending valleys. This is true for diverse decay 

factors (activation time widths). However, w hen a sequential activation occurs in the two 

regions, it is nicely reflected in the MFT curves, which show a distinct time lag in the 

rising or falling of the two peaks. It is w orthy to mention, that given the presence of 10% 

noise, one should not anticipate to recover the tem poral evolutions exactly. In such cases, 

signal filtering im proves the whole im age and the peaks of each source become more 

clear.

Having discussed all the above, one m ay be under the im pression that the tem poral 

resolution of MFT m ight be very good, however, nothing m uch can be claimed about its 

spatial capabilities, since the "spread" of the solutions in that depth (nearly 4.5 cm deep 

in the cerebrum) is extended over the w hole hippocam pal structure. That is, very little 

could be said regarding the spatial propagation of activity in that fairly deep level. 

Nonetheless, a com plem entary concept proves to be useful in this situation. That is, as 

already m entioned a while ago, the transitions of the point w ith the m axim um  integrated 

or instantaneous intensity itself. To dem onstrate this we shall use two time intervals in 

the previous model: the period between 10-30 ms, and also the period between 30-50 ms.

The changes in the m agnitude of the instantaneous intensity w ithin a given image can be 

displayed by connecting areas of strong activity w ith arrows. This translates into an
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im age of the sequential shifts of strong activation, thereby providing hints of how  the 

various anatomical regions of the brain m ight be connected. Such an illustration is given 

in Figure 5-30. In the first epoch (10-30 ms) activity is supposed  to be propagating from 

the anterior, through the m iddle, to the posterior parts of the hippocam pus, while in the 

second one (30-50 ms), we expect a shift from posterior to anterior and back to posterior, 

as can be inferred from Figure 5-29. This is indeed w hat is observed in top row of Figure 

5-30, w here these "connectivity images" are displayed (left and right for the first and 

second epochs respectively). The previous expectations are confirmed w ith minor 

deflections due to the presence of random  noise^ . For com pleteness, the integrals of 

intensity over the specific epochs are also included in the bottom  of Figure 5-30 which do 

not seem to be that informative, bu t one should appreciate that their slightly different 

shape/  orientation indicates the overall trend in the sequence of transitions over the 

particular periods.

^ We anticipate that i f  integrals of intensity over some 3-5 ms are used to obtain these shifts, the picture 

will become much clearer.
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Figure 5-27: Top: dipoles (arrows) along the hippocam pal axis and integrals of intensity 

over the periods that each source is distinctly active - m arked by vertical dashed 

lines below, are superim posed on MRl outlines. Middle: m odel profiles for each 

dipole. Bottom: ROls and intensity integrated over the w hole period (left) and 

MFT activation curves (right).
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Figure 5-28: The sam e display as in Figure 5-27 bu t for a m ore complicated tem poral 

evolution of the three sources.
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Figure 5-29: M odel strength profiles for the anterior and posterior dipoles (left) together 

w ith their corresponding MFT activation curves (right), in smaller time intervals, 

so that tem poral differences become clear. W hen there is a sim ultaneous 

activation (dashed parts), the MFT activation curves are peaked together. W hen 

there is a sequential transition in the activation there is a time lag in the ascending 

or descending valleys of the MFT curves.
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Figure 5-30: Top: the changes in the m agnitude of the instantaneous intensity are 

displayed by connecting areas of strong activity w ith arrows. This translates into 

an image of the sequential shifts of strong activation, thereby providing hints of 

how the various anatomical regions of the brain m ight be connected. On the left, 

the interval 10-30 ms of the m odel in Figure 5-28 is illustrated where activity 

propagates from the anterior, through the m iddle, to the posterior parts of the 

hippocam pus. On the right, the interval 30-50 ms of the sam e m odel is given w ith 

sequential shifts of activity from p o ste rio r^an te rio r^p o ste rio r. Bottom: integrals 

of intensity over the specific epochs. Note their slightly different 

shape/o rien ta tion  which indicates the overall trend in the sequence of transitions 

over the particular periods.
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5.4.4 Bilateral hippocampal activation
We finally exam ine in this section the case w here both hippocam pi are activated during  

the sam e "recording"; we allow for separate as well as sim ultaneous activations w ith 

different time constants (decays). Simultaneous bilateral m easurem ents w ith the twin BTi 

MAGNES system  are assum ed. MFT is perform ed w ithin a central cylindrical source 

space (both probes - 2x37 channels - are used in one go) and conductivity, as m entioned 

before, is modelled by a single sphere fitted to both head sides*.

The results are show n in Figure 5-31. In the two bottom  rows of the figure, each MFT 

activation curve is com pared with its corresponding m odel dipole profile, as usual, while 

in the top row the two activation curves are plotted together in order for the tem poral 

differences to be highlighted. It can be noted that each activation curve describes its 

m odel very well; the different decay constants of the two activations are also reflected in 

the solutions. No contributions from one hippocam pal region are observed in the other, 

and both sources can be recovered sim ultaneously. Furtherm ore, the tem poral features of 

each region are reflected in the MFT activations regardless of the specific characteristics 

of its hom ologous contralateral region. Notice, for example, the behaviour of the 

activation curves around 150 ms as com pared with that around 260 ms. In the former 

case, a sharp (5 ms time constant) left hippocam pal activation occurs together w ith the 

m uch broader (30 m s time constant) activation of the right hippocam pus, while in the 

latter, both hippocam pal regions undergo a broad activation (30 ms time constant).

In addition, sequential activation shifts are also nicely depicted in these curves, w hen 

activity is interplayed between the two regions over a few milliseconds time (see the first 

50 ms, for instance). Such interplays of activation are better viewed in Figure 5-32, w here 

the left (bottom) and right (top) hippocam pal M FT/m odel activations are plotted 

together w ith a "depth-tim e-plot" (middle). In the latter, the activity is integrated across 

the cylinder levels and the integrals are displayed as contour plots of average intensity 

(across depth  and time); this com prises a convenient w ay of sum m arising the changes in 

the levels of activation over long time intervals. All the above points become clear in 

Figure 5-32: w henever a broad activation occurs, the contour plot occupies a w ide area; 

shifts of activation from the left (bottom-side) to the right (top-side) now  become more 

obvious.

In conclusion, MFT's perform ance is quite satisfactory in this particular case, recovering 

well much of the underlying spatio-tem poral information. However, one should always

The same conducting centre was used for both the forward and inverse problems.
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be aw are of the intrinsic lim itations associated with this kind of m odelling as discussed 

previously in section 5.3.2.
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Figure 5-31: Results from modelling bi-hippocam pal activation. The MFT activation 

curves (red) are com pared w ith their corresponding m odel dipole profiles of the 

right (bottom) and left (middle) hippocam pus (green). Integrals of intensity over 

10 ms (marked by vertical dashed lines) and ROls are presented on the left parts. 

The top row shows the dipole positions inside the cylindrical source space (left), 

but also the two hippocam pal MFT curves for effortless comparison.
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Figure 5-32: Left: cylindrical source space and sensor positions for the two the twin 

MAGNES BTi system. Right: MFT activation curves (red /b lue) and m odel dipole 

profiles (green) for the left (bottom) and right (top) hippocam pus. In the m iddle a 

depth-tim e-plot illustrates contour plots of average intensity across depth  and 

time (as integrated across the cylinder levels). The changes in the levels of 

activation over the w hole time interval are sum m arised in this way. Interplays of 

activation between the two regions (left and right) are easily observed, as well as 

the length (time constant) of each activation. The two horizontal lines m ark the 

approxim ate level of the two dipoles in the 7 cm high cylinder.



6. MFT study of Unaveraged Interictal Epileptic 
events

6.1 Introduction and Historical Remarks

Epilepsy is a Greek w ord formed form two com ponents: "epi", which m eans upon, and 

"lepsy", w hich comes from the root "lamvano", m eaning to seize. Medically, a person with 

epilepsy is someone w ho is subject to recurrent interruptions of brain function (seizures 

or fits), due to sudden  disorderly nerve discharges. Epilepsy is not, however, a "nervous" 

condition in the generally accepted sense of the w ord (McGovern 1982). To p u t it 

differently, "there is no disease nam ed epilepsy" as N iederm eyer (1993c) authoritatively 

states. Rather, epileptic seizures are abnorm al reactions of the brain caused by num erous 

and diverse diseases, in w hich the entire brain  or parts of it m ay be involved. The type of 

seizure is largely determ ined by the actual extent of brain involvement. The basic 

disorder is m ost com m only localised in the brain, however, functional failure of other 

im portant organs outside it and associated metabolic-toxic changes m ay also lead to 

encephalopathies and, therefore, epileptic seizures (N iederm eyer 1993c).

The very first descriptions of epileptic phenom ena are traced back to the ancient Greek 

times. In fact, the first attem pts to disconnect such phenom ena from any kind of 

superstitious beliefs, but also to associate and explain them  in term s of natural causes are 

found in the H ippocratic collections around 400 BC (Translated by Jones, 1981):
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‘7 am about to discuss the disease called ‘sacred'. It is not, in my opinion, any more 

divine or more sacred than other diseases, hut has a natural cause, and its supposed 

divine origin is due to men's inexperience, and to their wonder at its peculiar 

character... "

M odem  epilepsy research w as initiated by Jackson and Gowers, w ho described and 

distinguished different types of epileptic fits. However, the breakthrough w as certainly 

accomplished by Berger, w hose endless efforts m ade possible the m easurem ent of brain 's 

electrical activity under both physiological and pathophysiological conditions. The role of 

the EEG in clinical epilepsy w as first discussed by Gibbs, Davis and Lennox (Gibbs et al 

1935), but K aufm ann (or else Rostovtsev), a pioneer in experim ental epilepsy, w as the 

first to postulate that "abnorm al discharges indicate abnorm al neurons" (Brazier 1973). 

Their w ork, together w ith the stim ulation observations during  brain surgery by Penfield 

and Jasper and  m any others established a firm basis for the scientific diagnosis and 

classification of epileptic seizures (Pockberger, 1995).

Recent investigations suggest that about 1% of the general population suffer chronically 

from epileptic seizures (Speckmann et al 1992), m aking it m ore than two million people 

of all age groups in the US alone (Shin and M cNamara, 1994). C urrent medical therapy is 

largely sym ptom atic and not always satisfactory. Antiepileptic drugs can control seizures 

in m any patients, bu t they m ay be ineffective in m ore than half of the patients in certain 

kinds of epilepsies. Removal of epileptic tissue can cure a select population, and new 

drugs are forthcom ing, b u t for m any epilepsies there are no prophylactic regim en or easy 

cure (Shin and M cNamara, 1994).

6.2 Terminology

6.2.1 Seizure types and electric patterns^

Epilepsy is a syndrom e of episodic brain dysfunction characterised by recurrent 

unpredictable spontaneous seizures. Partial seizures begin in a localised brain region, 

w hereas generalised seizures show  w idespread involvem ent of both hem ispheres from the 

outset. A lthough the sym ptom s based classification of seizures is a "thankless job" 

(Niederm eyer, 1993c), a general classification list does exist, as it w as compiled by the

+ “...they devise many fictions of all sorts, about this disease among other things, putting the blame, for 

each form of the affection, upon a particular god. If the patient imitate a goat, if he roar, or suffer 

convulsions In the right side, they say that the Mother of Gods is to blame. If he utter a piercing and loud 

cry, they liken him to a horse and blame Poseidon... If he foam at the mouth and kick. Ares has the blame..." 

(From the Hippocratic Collectûms,'The Sacred Disease'; translated by Jones, 1981).
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"Com m ission on Classification and Terminology" of the "International League against 

Epilepsy" back in 1981, and m ore recently revised to incorporate new  features such as 

aetiology and age of onset in addition to the different com binations of seizures (1989). 

There is no point in describing such a list in great detail but it is w orthy to m ention 

herein some of the m ost frequently m et exam ples of generalised seizures, w hich are 

absence (petit mal), myoclonic (see chapter 8), and  tonic-clonic (grand mal) seizures.

D epending on w hether or not the level of consciousness is affected, partial seizures are 

divided into complex, simple and also partial seizures evolving to secondarily generalised 

seizures. Most complex partial seizures (CPS) are believed to originate from  the tem poral 

lobe and  hence are called temporal lobe seizures. Patients frequently have m ore than one 

kind of seizure. For instance, w hen sim ple partial seizure precedes a complex partial 

seizure, it is referred to as an aura. Complex partial seizures constitute a m ajor percentage 

of epilepsies and  are rather disabling as a consequence of im paired consciousness. They 

are often medically intractable in that doses of m edications w ith tolerable side effects wUl 

not satisfactorily control the seizures.

The time period of a seizure is referred to as ictal, w hile that betw een seizures as interictal. 

D uring the latter interval, epileptic discharges are continued, bu t they m ay be very short- 

lasting and, therefore, not lead to any kinds of typical sym ptom s. O ther com m only used 

term s include convulsion, im plying ictal behaviour w ith vigorous m otor activities, and 

status epilepticus, denoting a very prolonged seizure or seizures occurring so frequently 

that full recovery of brain function is not retrieved interictally.

EEG has revolutionised the entire field of epileptology, and  is still today the m ain tool 

used in the diagnosis and  investigation of epileptic cases. Epileptic discharges, m anifest 

them selves through "special" electric patterns that give rise to certain EEG signals. Some 

term inology has naturally  accom panied such epileptic signatures and  the sam e kind of 

"language" has inevitably been followed in the MEG epilepsy research. It is im portant to 

give here some of these definitions, since we shall be using them  extensively in this and 

the following few chapters. We only, how ever, deal w ith the m ost basic definitions 

concerning the interictal period - the period studied in this thesis*.

• A spike is a transient, clearly distinguished from the background activity, w ith pointed 

peak (of variable am plitude) and  a duration from 20 to under 70 msec (IFSECN, 1974). 

Discrimination against background is aided by their high peaks or faster character (i.e. 

the shorter duration) (N iederm eyer, 1993b). Spikes have m any characteristics in 

com m on and yet there are also rem arkable inter- and intra-individual variations.

Actual plots of the various patterns as recorded by MEG will be given at later stages.
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• A sharp w ave  is similarly a transient, clearly distinguished from the background 

activity, w ith  pointed peak (of variable am plitude) but w ith a duration of 70-200 msec, 

i.e. m ore than approxim ately 1/14* to 1/5* of a second (IFSECN, 1974). Some sharp 

w aves though m ay exceed the m axim um  length of 2 0 0  m s and others m ay become 

m ore complex. Spikes and  sharp w aves are epileptically/neurophysiologically closely 

related phenom ena (Hellstrand 1995); both of them  are typical paroxysm al discharges 

and highly suggestive of an epileptic seizure disorder, although both phenom ena m ay 

occur in patients w ithout a history of seizure disorder (Niederm eyer 1993b). Sharp 

w aves are usually  found as random  focal discharges; m ost anterior tem poral spikes 

are, in strict sense, sharp w aves. This is also true for m ost benign Rolandic spikes of 

childhood.

• A spike and w ave com plex  is a pattern  consisting of a spike followed by a slow wave. 

There has been evidence that such a complex is not just sim ply an association of a 

spike and slow wave, but it represents an  alternating succession of excitation and 

inhibition. D epending on the frequency of their appearance, there is a distinction 

between classical (3/sec), slow (1-2.5/sec) and fast (4-5/sec) spike w ave complexes 

and also the smaller 6 / sec spike w ave discharge, justified on the basis of different 

clinical-epileptological correlates of each type (Niederm eyer 1993b).

6.2.2 Epileptic zones and relevance of interictal recordings

An epileptic  focu s  is sim ply an area of the cerebral cortex w here a considerable num ber of 

neurons are involved in the epileptic process. This theoretical definition though m ight 

no t be adequate as a basis for successful epilepsy surgery, since pathologically 

discharging neurons m ight be w idespread and  the com plete rem oval of the affected area 

w ould lead to considerable neurological and neuropsychological deficits in the patient, 

certainly unjustifying the need for quality life im provem ent (Eiger 1992). Furtherm ore, 

the term  focu s  m ight be m isleading having different m eanings for different investigators. 

For exam ple, although an EEG spike focus represents the m axim um  o f an ex tensive area of 

cortex involved in the generation of the epileptiform  discharge, some have used the term 

in a m ore literal fashion im plying a focal point of epileptogenicity (Liiders et al 1993). In 

the light of the considerable controversy concerning the definition of the epileptic focus a 

different approach has been proposed based on the identification of different zones and 

lesion in the epileptic cortex (Liiders and  A w ad, 1992).

According to that approach, a prerequisite for a successful epilepsy surgery is the 

epileptogenic zone, w hich the brain area to be rem oved in order to cure epilepsy, thereby 

granting seizure freedom. U nfortunately, this zone cannot be adequately defined by any 

current m ethodology, and therefore its boundaries have to be outlined in hypothetical



Chapter 6: M FT study  o f Umveraged Interictal Epileptic evm ts____________________________1A5

term s as punctually as possible, in order to have the m axim um  benefit for the surgical 

candidate while reducing the possible functional deficits to the m inim um  (Eiger 1992).

The irritative zone is defined as the area w hich generates the interictal activity. It is usually 

larger than the epileptogenic zone, since it is believed that interictal epileptiform 

discharges are mostly arising from a rather extensive cortical area. This area is associated 

w ith the recordings of the sharp transient signals defined in the previous section. 

However, there has been evidence suggesting that some epileptogenic zones m ay extend 

beyond irritative zones or even exist in the absence of any detectable irritative zone 

(Liiders et al 1993).

The pacemaker or ictal onset zone, on the other hand, is the brain region w hich the actual 

seizure originates from. Visual inspection of the clinical semiology of a seizure is the only 

way to define the beginning of a seizure by other m eans than electrophysiological 

techniques. The relation betw een the irritative and pacem aker zones is difficult to 

determ ine. It seems that the latter is w ith in  the former; appropriate placem ent of invasive 

electrodes may, therefore, detect the actual location* . It is also possible that this zone 

represents the area of cortex w ith  the lowest threshold for seizure generation, bu t after its 

resection other cortical areas of relatively higher threshold for seizure generation (but still 

at an abnorm ally low level) could become ictal onset zones (Liiders et al 1993).

The epileptogenic lesion is defined as the anatom ical lesion w hich is responsible for causing 

the seizure disorder originally. N euroim aging techniques prove to be invaluable in 

determ ining such lesions. As a rule of thum b, the epileptogenic zone m ay be adjacent to 

or covering an area in w hich the lesion is located; resection of the lesion itself m ay 

successfully elim inate seizures, bu t in other cases, a lesion m ight not even be related to 

the epileptic disorder.

The ictal symptomatogenic zone is the part of the brain  which, w hen activated, initiates the 

epileptiform  sym ptom s characterising the patien t's  seizure onset. The clear definition of 

this area can be again as problem atic as the pacem aker zone itself, and  experience shows 

that only rarely there exists a good overlap betw een the two zones. Finally, the functional 

deficit zone, is the brain area w hich interictally shows an abnorm al functioning 

determ ined by neurological a n d /o r  neuropsychological exam ination or functional 

neuroim aging. This zone can be the result of an  anatomical destruction of the underlying

* However, the clear cut definition of the very first beginning of the seizure and, therefore, the smallest brain 

region involved in seizure activity, is difficult to obtain and can lead to a misjudgment due to the li?nited 

number (spatial sampling) of invasive electrodes (Eiger 1992).
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brain tissue or it may be a consequence of the interictal discharges themselves. However, 
its determination is of considerable value for the definition of the epileptogenic zone.

As mentioned before, the epileptogenic zone is the area whose removal would be 
necessary for complete abolition of seizures and, therefore, should be the target area for a 
successful surgery/radiosurgery. All the other zones defined above give information 
about the approximate location and/or latéralisation of abnormal cortex that could 
become an ictal onset zone, but there is no clear evidence as yet to suggest that any of 
them can be consistently used to delineate the boundaries of the epileptogenic zone. So, 
how is the area of cortex to be removed actually defined? The following principles are 
used as general guideUnes by most centres world-wide for the definition of the cortex to 
be removed (Liiders et al 1993):

• The ictal onset zone is always removed, with some exceptions in cases of clear 
structural lesions. Invasive recordings are performed for the definition of the ictal 
onset zone.

• Epileptogenic lesions are always removed.

• In neocortical cases with no clear lesion on neuroimaging, it is common practice to 
obtain invasive recordings and to remove the ictal onset zone including areas of early 
propagation, and also adjacent cortex that shows frequent and high-amplitude, long- 
duration spiking (provided is not located over a normally functioning cortex). 
Removal of the entire irritative zone is usually inappropriate; the symptomatogenic 
and functional deficit zones are useful for guiding the invasive monitoring strategy, 
but not good indices of the epileptogenic zone boundaries as such.

How does MEG fit in all these? As mentioned in the previous chapters, movement in 
general is a problem in MEG, so one faces the particularly difficult problem in epilepsy 
studies because, as discussed above, the most important data for localising epileptogenic 
regions are ictal events that are generally associated with movement to one or another 
degree. Furthermore, the logistics concerned with MEG recording over considerably long 
time periods - usually involving outpatients on therapeutic levels of anti-epileptic drugs 
(Ebersole et al 1995) - make it even more complicated to capture seizure activity. As a 
consequence, most studies have to be performed interictally. However, there have been a 
few studies from purely electrographic seizures and seizure onset just prior to 
movement.

The first study of the latter kind was performed with a single channel MEG system 
conducted for a patient with frequent seizures and it was shown that the magnetic field 
patterns associated with those seizures agreed well with the intracranial localisations 
(Sutherling et al 1988). Ebersole and co-workers (1995) recently reported on multichannel
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seizure recordings of five patients with intractable complex partial epilepsy and 
confirmed that the MEG localisations of initial ictal onsets of complex partial seizures 
were in agreement with invasive EEG recordings, but, most importantly, were within the 
irritative zones de&ted by interictal data.

But, how relevant are interictal MEG recordings? Since the localising validity of temporal 
interictal epileptiform abnormalities in general has been the subject of much debate 
(Quesney et al 1993), it is important to review here the latest interictal MEG findings. 
Stefan et al (1994) recently reported a MEG study (Siemens 37 chaimel system) of 22 
patients with definite temporal lobe epilepsy, as defined by invasive and non-invasive 
EEG, MRI volumetry, (see next section), ECoG and surgical outcome. They found a 
satisfactory correlation (less than 1 cm) between the MEG localisations and lesion 
margins (7/8 patients with tumours and good surgical outcome) or atrophic hippocampi 
(8/9 patients with temporal or hippocampal atrophy) Similar results were obtained by 
Ebersole and colleagues (1995) using the bihemispheric BTi probe system (2x74 channels) 
and detecting and localising focal areas of MEG epileptiform activity when structural 
neuroimaging (MRl/CT) were without focal abnormalities. Another recent report based 
on 50 seizure surgery candidates (Smith et al 1994) suggested that interictal MEG was in 
good agreement with video EEG monitoring with surface electrodes both ictally and 
interictally and Electrocorticographic (ECoG) recordings during surgery; in addition 
MEG has been very helpful in avoiding invasive - and expensive - EEG studies typically 
used in presurgical evaluation.

Ebersole and Smith (1994) compared interictal spike MEG patterns of 13 temporal lobe 
epileptics with seizure onset results from intracranial monitoring; a good correlation 
between MEG localisation and seizure onset was found when the latter was localised, but 
also a correspondence between certain MEG patterns with non-localised onsets. Studies 
by Eliashiv et al (1994) have also indicated that interictal MEG spike latéralisation and 
localisation were in concordance with depth-electrode irritative and ictal onset zones in 
extra-temporal lobe patients, and may additionally md in targeting previously 
unsuspected brain regions for further investigations. Furthermore, Stefan et al (1992) in 
the first ever conducted combined multi-channel (37) and surface EEG seizure recordings 
in correlation with intraoperative ECoG and MRI, SPECT, and PET, localised the 
interictal activity in the same region as the ictal seizure onset, with later spread to other 
regions, in three patients which were all seizure free following surgery. Finally, 
Hellstrand et al (1993) were the first to apply the stereotactic gamma irradiation 
technique for treating "focal epilepsy". Their approach was based on the assumption that 
stereotactic interictal MEG truly mirrored spatially and temporally the onset and spread 
of focal epileptic activity. Their successful treatment results suggested that the above
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concept was valid: since the seizures were abolished when the interictal MEG centres of 
epileptic activity were irradiated, it seemed that the interictal MEG recordings carried 
information about the sites important for developing the ictal onsets sites, too.

In conclusion, presurgical MEG investigations could be applied in reducing invasive 

recordings in tumoral focal epilepsies and mesial temporal atrophy/sclerosis, but also 
guiding the actual invasive procedures and providir^ information concerning the spatml 
relation of the epileptogenic region, lesion or functionally important zones (e.g. by 
presurgical MEG mapping of somatosensory and auditory cortices and language centres) 
(Stefan et al 1994) but also ruling out multifocal subjects or subjects with sources localised 
unacceptably close to functional cortex and to guide electrodes (Galen et al 1995).

6.3 Epilepsy Neuroimaging and MEG
A number of neuroimaging techniques are available to complement electrophysiological 
findings/methods when evaluating patients with intractable localisation-related 
epilepsies and epileptic syndromes prior to possible surgical treatment; such techniques 
assess both structured and functional abnormalities. CT has been used as the main tool for 
such purposes for long time, but MRI has been proven to be better in the detection of 
small epileptogenic lesions, and especially in the determination of the already mentioned 
hippocampal atrophy. MRl-conducted hippocampal volumetric assessment has also 
made significant inroads in the preoperative investigation of temporal epileptics: normal 
subjects show a bilateral symmetry of these structures, while - sometimes very small - 
asymmetries are demonstrable in patients with previously cryptogenic temporal lobe 
epilepsy (Boon 1994). In addition, proton (̂ H) MRS may also be used in these cases 
showing significant reductions in signals (or ratios) of specific metabolites (e.g. N- 
acetylaspartate, NAA) characteristic for epileptic groups as opposed to normals (Gadian 
et al 1994).

Functional bradn imaging methods such as PET and SPECT have been playing a useful 
role in the presurgical assessment. Since seizures are associated with pronounced 
changes in the cerebral blood flow (CBF), there is a global increcise in CBF during 
generalised seizures; with partial seizures increases are more localised, and may 
correspond to the epileptogenic "focus" as defined by electrophysiology. Interictally, 
areas of reduced regional cerebral blood flow (rCBF) may be seen, often corresponding to 
the main focal EEG abnormcdity (Lancet 1989). SPECT findings have been more 
consistent in cases of intractable complex partial seizures. In the latter cases, Duncan et al 
(1993) report hyperperfusion of the whole temporal lobe during the seizure, followed by 
hyperperfusion of the h^pocampus and simultaneous hypoperfusion of the lateral 
temporal structures up to 2 min postictally; from 2-15 min postictally hypoperfusion of



Chapter 6: MFT study cf Umveraged Interictal Epileptic events____________________________lff9

the whole temporal lobe was noticed. Quantification analysis - in addition to the visual 
image inspection - may improve the assessment quality (Friberg and Lonborg-Jensen, 
1994). PET results broadly parallel the SPECT studies but they add information about 
hyper/hypo-metabolism (Franck et al 1986; Theodore 1995), which is of course closely 
linked to changes in iCBF. In ictal studies, however, PET often shows complex multifocal 
patterns of altered metabolism reflecting both the site of onset and the subsequent spread 
within the hemisphere, in contrast with SPECT findings that most commonly show a 
single focal area of hyperperfusion (representing the zone of maximum iCBF increase) 
(Lancet 1989). Finally, the use of PET-radionudides that selectively bind to 
benzodiazepine receptors, that are localised to neurons, might prove very useful in 
differentiating between various categories of patients with partial seizures (Savic 1995).

Finally, fMRl can also be used to depict signal increases in cortical regions and in the 
major draining vessels during seizures (Jackson et al 1994). Moreover, it permits more 
complex functional presurgical brain mapping, supplementing invasive techniques such 
as operative cortical stimulation and intracarotid amobarbital tests (Morris et al 1994). 
However, fMRI has not been shown to be any useful yet in the detection of 
subdinical/interictal activity in order to gain much wider application in epilepsy 
investigations.

Despite the considerable interest in the previous modalities and the wide availability of 
some of them (i.e. SPECT), these techniques lack the temporal resolution to capture fast 
neuronal activity changes. Although seizures of hippocampal origin can remain localised 
long enough for the above modalities to be accurate, neocortical temporal and extra
temporal lobe seizures may routinely propagate rapidly and perhaps too rapidly for such 
techniques to provide a dear picture; moreover, interictal activity may propagate over 
considerable distances in tens of milliseconds making its tracfô undetectable with "slow" 
modalities (Ebersole et al 1995). Only EEG and MEG offer suffident temporal resolution 
to accurately follow epileptic activity.

The first ever epileptic MEG recording, conducted by Cohen 24 years ago, demonstrated 
that hyperventilation-induced slow waves could be detected in a patient with 
psychomotor seizures using a single channel magnetometer in a magnetically shielded 
room (Cohen 1972). Since then, a number of other cases have been studied in several 
laboratories. MEG has been used to locate both single sources and multiple irritative 
areas (Barth et al, 1982,1984).

Those early MEG measurements relied on repositioning the single chaimel probe around 
the head. Under such conditions, averaging single events of interest, e.g. spikes, spike- 
wave complexes, was necessary: the signals were collected over long time periods, often
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hours, to generate an extensive coverage sufficient for localisation. Typically 
electroencephalographic (EEG) recordings produced the triggering events for the 
averaging procedures. However, the possibilities of analysing the propagation of activity 
over time were vay  Innited.

Today's multichannel MEG systems have opened new avenues to study the spatio- 
temporal evolution of epileptic activity more faithfully and, therefore, duiir^ the last few 
years, MEG has become a tool for localising zones of epileptic activity in different regions 
of the human brain (Hellstrand et al 1995; Paetau et al 1992; Sutherling et al 1991). 
Despite the numerous MEG successes in epilepsy^ , one of the most serious limitations 
has been the source model used in virtually all dinical studies to date, namely, the single- 
equivalent current dipole (BCD). This fact has now been realised in the biomagnetic 
community (see for instance e-mail messages in BioMagList, summer 1995), and, 
therefore, in parallel with the advances in SQUID technology, elaborate methods have 
been and are currently being developed to identify the generators of the epileptiform 
signals.

6.4 Studying interictal epileptic events with MFT
As mentioned before, a number of investigators (Sato 1992; Baumgartner et al 1992) have 
underlined the potential in modem multichannel MEG systems to directly analyse 
interictal epileptic data without any signal averaging. However, the equivalent current 
dipole (ECD) approach has usually been employed to pursue such studies (Hellstrand et 
al 1993,1995; Stefan et al 1995). The description of on-going activity that the ECD model 
provides is crude. It is too sensitive to noise, and only gives a reasonable source 
localisation through short segments of the period studied. This leaves most of the event 
unexplained. Since there is ample evidence that a single event of epileptiform activity 
extends to more than one area of the brain, corresponding to more than one zone of 
epileptic activity (Graf et al. 1984; Sutherling and Barth 1984; Baumgartner et al. 1992; 
Laxer et al. 1993) any single-ECD model is liable to give rise to misleading localisations, 
especially when used in association with unaveraged events where the signal-to-noise 
ratio (SNR) is not particulcirly high.

Even in the early days of MEG, results obtained with sii^le channel prob^ based on 
EEG triggered averaging were indicating involvement of distinct brain areas interictally. 
In an interesting study, both scalp and sphenoidal EEG spikes were used as triggers for

+ These were the fortunate consequence that ECD modeling of many epileptic events was “sufficient" if 
appropriate acceptance criteria were applied to the resulting solutions.
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averaging the magnetic spikes (Sutherling and Barth 1989). Different latencies were 
observed for the two triggers suggesting propagation of the discharge between different 
parts of the temporal lobe. Given the requirement for studying the unaveraged epileptic 
data, in addition to die usual involvenent of extended brain areas in the generation of 
epileptiform activity, it is sensible to expect that robust distributed source model 
methodologies such as MFT should perform better.

Furthermore, MFT is an ideal tool for separating deep and superficial activity as we 
showed in the previous chapter. As we also demonstrated there, small, but 
physiologically significant, temporal diffœ nces in the activation of diverse brain regions 
of interest (ROls) can indeed be studied with MFT. Both the above points are believed to 
be of great importance in epilepsy, as inferred from earlier sections of this chapter, 
renderir^ MFT a novel way for the study of epileptogenesis.

In the following, we first describe the material and methods used in our analysis; we then 
establish the links with previous epilepsy MFT work referring to a comparison between 
the ECD and MFT solutions, and comparing solutions obtained with two different source 
space models, namely the partial hemispherical and cylindrical volumes, for the same 
datasets. We then indulge in the analysis of unaveraged epileptiform events 
demonstrating spatio-temporally coherent results, thereby proving the feasibility of 
studying unaveraged pathophysiological datasets with MFT.

6.4.1 Materials and Measurements

6.4.1.1 Case history (Patl)

Our first case (Patl) was a 35-year-old male patient with a history of pharmacoresistant 
epilepsy of a complex partial type (CPE) since the age of 20. Clinically, he suffered from 
daily seizures with absence periods of 5-10 minutes. His MEG sessions (5 min on either 
side of the head while he was resting with eyes closed) were stereotactically performed to 
make concomitant radiotherapy (gamma irradiation) possible (cf Hellstrand et al 1993). 
However, only the left-sided data were available to us, and consequently this is the 
dataset to be used in the following analysis.

6.4.1.2- Recordings and Methodology

MEG signals were recorded over the left temporal lobe of the patient. EEG recordings 
with surface electrodes covering the frontal, temporal, central and parietal aspects of the 
brain were additionally performed, as were measurements of the ECG (extremity leads). 
The 37-channel Siemens KRENIKON system was used to record the MEG signal with an 
acquisition rate of 400 Hz and on-line band-pass filtering 0.5-70 Hz. Only 29 of the MEG
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channels w ere valid though, and  our analysis is, therefore, based on the signals of those*. 

Figure 6-1 shows the probe arrangem ent in relation to the patient together w ith the 

geom etry of the sensors in a plane parallel to the left tem poral region of the patient. The 

positions of the m issing channels are easily inferred.

An MRI investigation w as also perform ed using the sam e w ith the MEG stereotactic 

frame. This allowed the registration of MRI and  MEG (using the techniques described in 

section 3.5.2.1) and the later fusion of inform ation from the two m odalities under the 

same co-ordinate system, that is MEG-probe system  (see A ppendix A for some details of 

the Siemens co-ordinate system).

Coronal view from  front

0 . 1-

0 .0 5 -

- 0 . 0 5 -

0 . 3 0.2

Sagittal view from left

0 .1-

0 .0 5 -
E

0.0 -

- 0 . 0 5 -

0.1 0 . 0 5  0 . 0 0 . 0 5 ■0.1

z /m

Axial view from  above
- 0 .1-

- 0 .1-

0 . 3 0.2
z /m

x /m

vy^

Figure 6-1: The sensor set-up (central, left tem poral) relative to the patient in a coronal, 

sagittal and axial aspect. H orizontal bars (coronal and  axial sections) and  dots 

(sagittal section) are used  to m ark the channel positions in the MEG co-ordinate 

system. Bottom right: an interictal sharp w ave event is displayed in a planar- 

channel layout. O nly 29 out of the 37 channels are used; the rest are left out as 

invalid.

* A s shown in the previous chapter, the degradation of the MFT "images" due to the lack of some channels 

is small.
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In the following, w e m ake use of three different sets of data: the raw  set (no other filtering 

apart from the on line band-pass 0.5-70 Hz); the filtered  signals, yielded after additional 

digital band-pass filtering from 1.5-47.5 Hz, and application of a M agnetocardiogram  

artefact correction algorithm  (Abraham-Fuchs et al 1992); and finally the averaged  set, 

obtained by averaging several "sim ilar" (filtered) epileptiform  events as identified by a 

spatio-tem poral m atching technique (Abraham-Fuchs et al 1990).

The spatio-tem poral m atching technique (as applied in the commercial Siemens software) 

is based on the idea that identical shapes of spikes/sp ike-w ave complexes tem porally, as 

well as spatially (w ith respect to MEG channel distribution), represent activities of nearly 

identical generators w ith "com parable propagation paths". Thus, averaging events w ith  a 

high grade of tem poral and spatial correlation should not, in principle, result in a mixture 

of different events, bu t rather revelation of the relevant centres of epileptic activity (Stefan 

et al 1992).

"Similar" epileptiform  events are com pared by a com bined correlation of tem poral and 

spatial electric and m agnetic patterns. First, a set of successive m agnetic field m aps is 

selected (by an  expert) as representing an  epileptiform  event of interest (e.g. spike or 

sharp wave); this is nam ed as a tem plate even t. Then the spatial and  tem poral inform ation 

in this time w indow  is com bined into one "tem plate vector" of dim ension N (num ber of 

active MEG channels, e.g. 29) by M (num ber of timeslices in the interval of interest, e.g. 

M=40-200, corresponding to 100-500 ms). Subsequently, this tem plate w indow  is m oved 

in time over the entire range of m easurem ent data, and  the correlation coefficient of the 

tem plate vector w ith  the corresponding vector in each time instant is calculated. 

Deviations from  the random  (uncorrelated) G aussian distribution of the correlation 

coefficient values are indicated as peaks, representing similar events. Such events (above 

a significantly high, bu t arbitrary, correlation coefficient threshold) are then aligned and 

averaged to obtain the average signal (for a m ore detailed description see Abraham- 

Fuchs et al. 1990). The process is visually sum m arised in Figure 6-2.

6.4.1.3 MFT analysis

MFT w as first applied  for P atl by loannides et al (1993c) in order to study the average of

39 sharp w aves lasting 275 ms. Solutions w ere obtained w ith in  a 3-dimensional

cylindrical source space w ith its third axis (depth sym m etry axis) along the direction of

the m ost central sensor (i.e. sensor num ber 8  in Figure 6-1). The cylinder w as 5.5 cm deep

and  had a cross section w ith a radius of 4 cm . Conductivity w as m odelled w ith a sphere

"fitted" globally to the brain volum e (i.e. both sides); the probability w eight w as of a 
sim ple G aussian form (along the z-direction only) w ith a decay factor, = 0.04m ; the
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régularisation param eter was chosen to be Ç = 0.05. The purpose of that study was to 

com pare the MFT solutions of the average sharp wave with those obtained w ith the ECD 

model using identical conducting centres. A m ore recent study (loannides et al 1995a) 

extended the earlier MFT results by analysing the corresponding raw and filtered sharp 

wave signal, for a single event.

Since then, the MFT analysis in our lab has been im proved w ith the introduction of 

partial hem ispherical volum es for use as source spaces (Liu MJ and loannides 1995). We, 

therefore, repeated the analysis for a partial hem ispherical volum e fitted to the patient's 

left cerebral hem isphere^. In so doing, apart from reconfirming previously obtained 

results - and, thereby, building up  confidence for the correctness of our analysis - we also 

had the chance to test the stability of the MFT solutions for the same (three) datasets 

under different source volum es, probability w eights and  régularisation param eters. 

Furtherm ore, w e also used a different conductivity profile: the conducting sphere fitted 

to the curvature of the inner skull surface of the left (ipsilateral to the m easurem ents) side 

only.

In the following, w e present the com parison of the ECD solutions w ith  the MFT results in 

the case of the hem ispherical volum e, followed by the com parison of the MFT solutions 

for the cylindrical and  hem ispherical volum es. The same conducting centre (that of the 

globally fitted sphere) w as used in both  cases in order to avoid complications. A part from 

these tw o sections, how ever, the rest of the MFT results presented in this chapter w ere 

obtained w ith the left-fitted sphere, as described above, since this is believed to be a 

better model, for the reasons outlined in the second chapter of this thesis.

So, in sum m ary, we have three distinct analysis m odels as show n in Figure 6-3. The one 

in (a), as described above and used by loannides et al (1993c), that in (b) facilitating a 

direct com parison betw een ECD and MFT, bu t also betw een (a) and  (b), and  finally the 

one in (c), w hich is believed to represent the underlying reality m ore faithfully and  is 

used in presenting the rest of the MFT analysis. In both (b) and  (c) the régularisation

param eter was chosen to be Ç = 0.1 ; the same as in (a) sim ple G aussian probability 
w eight w as also used w ith  a decay factor, X3 = 0.0425m in (b) and A, 3 = 0.05m in (c).

A number of other events - apart from the originally used one - were also studied in an attempt to home 

into the spatio-temporal details of the tune course of each event and obtain any "cross-evejtt" systeînatics.
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190 m sec long template identified "similar" event

At*»'

0 .5  s e c
Average of 7 similar events

Figure 6-2: Sum m ary of the spatio-tem poral correlahon technique: an epileptiform  event 

of interest {tem plate event) - a sharp w ave in this exam ple - is selected. This 

tem plate w indow  is subsequently m oved in time over the entire m easurem ent set, 

to identify any sim ilar  events. Such events are then aligned and averaged to obtain 

the averaged signal, like the one show n on the bottom. Note the im provem ent m 

the signal-to-noise ratio for the averaged signal, even after use of only 7 events.
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Figure 6-3: The three distinct analysis models. In (a), the source space is a cylinder and 

the conducting sphere is "fitted" to both brain sides (analysis as presented in 

loannides et al 1993c). In (b) a partial hem ispherical volum e is used as source 

space, while the conducting m odel is identical to that in (a). In (c), the source 

space is identical to that in (b), but the conducting sphere is fitted to the inner 

skull surface of the left side only. The projection of the source spaces onto a 

patient's MRI slice are outlined in red (all 9 levels shown), while those of the 

conducting spheres in blue. A blue dot denotes the conducting centre, bars on far 

left m ark the sensor positions. Note the w ater m arkers outside the skull which 

com pose part of the stereotachc system  and w ere also used in the M RI/M EG 

registration.

6.4.2 MFT - ECD com parison
As we already m entioned, earlier MFT studies of interictal epileptic activity com pared 

ECD* and MFT results for a 275 ms long sharp w ave event com posed by averaging - as 

explained above - by 39 similar sharp waves. The full epochs w ere extended for about 1 

sec on either side of the m iddle point of each (aligned) event. We com plete the 

com parison here by displaying the results in association with the patient's MRls - earlier 

studies used only cylinder plots - using set-up (b) in Figure 6-3; a com parison in the case 

of the unaveraged (filtered) sharp wave is also included to probe the discussion 

concerning the disagreem ent of the two m ethods and also "prepare the grounds" for the 

single epoch analysis that follows.

The average sharp wave is show n in Figure 6-4 (all channels are superim posed). The 

short periods m arked by two light vertical lines contain the timeslices to be used for the 

com parison: the early period (most left vertical lines) is studied in the m iddle row, while

* standW iterahue muerse so/who» sriigme, tlie (iipo/e (C;#M 1985), was wsed to

calculate the ECD results. This algorithm consists a standard utility of the Siemens software state.
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the period containing the signal m axim um  of the sharp w ave (two m ost right lines) is 

given in the bottom. The MRI sHces for display are selected according to the 3D co

ordinates of the position w ith the m axim um  current density value, which is also m arked 

by a red  dot (the actual value of the current density m odulus is printed below each 

display). The solutions from all 9 levels of the source space (the extrem es of which are 

outlined in red) lying within 4 m m  on either side of the defined plane are then 

superim posed on the MRI slice. The position of the ECD solution is also projected on the 

same slice as a blue dot, and its goodness of fit, the correlation coefficient value, is given 

on bottom right corner of each display. More num erical details are given in Table 6-1 and 

Table 6-2.

As inferred, the agreem ent between ECD and MFT solutions is quite satisfactory: the 

MFT distribution always includes the ECD localisation w ithin its "boundaries" and the 

current density m axim um  alm ost coincides w ith the ECD point w henever the ECD 

solution describes the data well (i.e. w hen the correlation coefficient is greater than 0.96 

e.g. at t=995 ms). Even in the depth, w here the MFT solutions are blurred, and, therefore, 

the position of the current density m axim um  should be interpreted w ith caution, we still 

have a good agreem ent in the displays (although there is some 2  cm difference in the y- 

co-ordinate, that is, in the direction perpendicular to the MRI plane). We have to 

em phasise, how ever, that com paring the actual position of the m axim um  MFT solution 

w ith the current dipole is not a "fair deal" for MFT, since it is biased against the 

distributed source, collapsing all inform ation to a point. However, the agreem ent we 

obtain is w orth showing, and thus, we tabulated the results in the corresponding Tables.

D isagreem ent between ECD and MFT is expected w hen the activities involved are m ore 

w idespread, or w hen m ultiple areas are coactivated simultaneously. The latter is w hat 

actually happens around t= 1 0 0 0  ms and up  to t= 1 0 1 0  ms: a second, more superior 

cortical area is becoming active, but is less strong than the first area. This explains w hy 

the ECD fit to the data is progressively d ropped  dow n to 0.931 from 0.97. This area is not 

seen, however, in the MFT solutions on the displayed MRI slice since it is located in a 

much m ore superior slice; it is, however, indeed observed w hen the familiar cylinder 

plots are reviewed (these are not display here, but this point is going to be discussed 

further while explaining Figure 6 -6 ).

But how  w ould the two m ethods perform  w hen considering unaveraged data? W hen the 

filtered (but unaveraged) tem plate sharp  w ave event is studied the fits to the data 

provided by ECD are lower in general. This is partially arising from the noise content of 

the data (in addition to the above reasoning). In Figure 6-5, we have selected for display 

two tim e segm ents w here an ECD solution w ith sufficiently high fit (better than 0.9) is 

obtained. Note the poorer values for the correlation coefficient of the ECD fit and that the
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same trends w ith the case of the average signal are observed (middle row). At the bottom  

row, however, the disagreem ent between the two m ethods is gradually worsening, due 

to the sim ultaneous activation of more than one centre. Note that this disagreem ent is 

w orse than the average signal case, since the noise content of the data together w ith the 

co-existence of another active centre m ake the ECD to be completely out of the 

"distributed source boundaries".

The latter point becomes more prom inent in Figure 6 -6, w here another time interval of 

the sam e filtered signal is selected. In this case, MFT reveals a deep area becoming active 

in the presence of a superficial centre of activation. The MFT solution varies sm oothly as 

activity in the deep area becomes apparent and eventually dies off. The ECD localisation 

in this case is completely out of place overall, w ith a very low fit to the data (m iddle row) 

or no fit at all (bottom row). One should also note the generally expected trend 

(loannides et al 1993c) that, w ith the activity becoming distributed, the depth  of the ECD 

localisation is increased (see both Figure 6-5 and Figure 6-6 ).

W hen the completely unfiltered and unaveraged sharp wave event is taken into account 

(raw signal) the ECD failed to provide sensible soluhons to the m easurem ents. MFT, 

how ever, perform ed similarly well even in this case as will be discussed in detail in 

section 0. Before w e do that, we com pare the results obtained with this hem ispherical 

source space w ith those obtained from the cylinder (i.e. set-ups.(a) and (b) respectively in 

Figure 6-3).
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Figure 6-4: Top: the average of 39 similar sharp waves (all channels are superim posed). 

Light vertical lines m ark the short periods used for the MFT-ECD com parison, the 

early period (most left vertical lines) is stud ied  in the m iddle row, while the 

period w here the signal m axim um  of the sharp  w ave occurs (two m ost right lines) 

is given in the bottom. The MRI slices are selected according to the position of the 

m axim um  current density (red dot, actual value of its m odulus is printed below 

each display). Each display is norm alised separately (as far as colour scale is 

concerned). The source space extrem es are outlined in red. MFT solutions lying 

within 4 mm on either side of the MRI slice are displayed. The ECD localisation is 

also projected on the same sUce as a blue dot; the corresponding correlation 

coefficient value, is given on bottom  right corner of each display. For details see 

also Table 6-1 and Table 6-2.
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Table 6-1: Localisation details for ECD and MFT for 4 timeslices of the average sharp 

wave shown in the top row of Figure 6-4 (time period is m arked by the two light vertical 

lines on the left). The corresponding solutions can be seen in the m iddle row of Figure 6 - 

4. The MFT localisation details have been obtained from the position of the m axim um  

m odulus of the current density. Note the generally good agreem ent between MFT and 

ECD.

method latency (ms) x(m) y  (m) z (m)

ECD 995.0 0.289E-01 0.48E-02 0.330

MFT 995.0 0.297E-01 0.49E-02 0.327

ECD 1000.0 0.210E-01 0.49E-02 0.323

MFT 1000.0 0.297E-01 0.49E-02 0.327

ECD 1005.0 0.186E-01 -0.2E-03 0.316

MFT 1005.0 0.197E-01 0.49E-02 0.320

ECD 1010.0 0.104E-01 0.27E-02 0.304

MFT 1010.0 0.964E-02 0.49E-02 0.307

Table 6-2: Same as in Table 6-1, but for another period w hen deep activity is identified 

from both m ethods (time period m arked by the two right m ost vertical lines). The 

corresponding solutions can be seen in the bottom  row of Figure 6-4. Note the generally 

good agreem ent between MFT and ECD, despite the expected blurring of the MFT 

solutions in depth.

method latency (ms) x(m) '4 ^ '- y  (m) 2  (m)

ECD 1090.0 0.186E-01 0.165E-01 0.280

MFT 1090.0 0.197E-01 -0.51E-02 0.280

ECD 1095.0 0.180E-01 0.75E-02 0.281

MFT 1095.0 0.197E-01 -0.51E-02 0.286

ECD 1100.0 0.208E-01 0.112E-01 0.280

MFT 1100.0 0.297E-01 -0.51E-02 0.286

ECD 1105.0 0.208E-01 0.210E-01 0.279

MFT 1105.0 0.297E-01 -0.51E-02 0.286
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Figure 6-5; Top: the unaveraged filtered signal w ith the tem plate sharp wave event 

shown between the two light vertical lines (signals from the strongest channels 

only are shown for better clarity). The two rectangles m ark the short periods used 

for the MFT-ECD comparison: just prior to the tem plate event and around the 

peak. The early period (left rectangle) is studied in the m iddle row, while the 

period around the peak (right rectangle) is given in the bottom. Rest of 

annotations follow the conventions in Figure 6-4. Note the generally lower ECD 

correlation coefficients than those obtained in the average signal (SNR was better 

there), and the disagreem ent between MFT and ECD in the bottom  row, 

indicating another centre of activity in another location (not revealed here 

though). Also note the "deeper" ECD localisations in the bottom  row.
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Figure 6 -6 : Same as in Figure 6-5, but for another interval (see rectangle) during the 

filtered signal (tem plate sharp w ave event), during which a deep area is becoming 

active at the presence of a superficial source. The ECD localisation is completely 

out of place, fitting the data more and poorly until it fails to provide a sensible 

solution (three dots in the place of the correlation coefficient). The MFT solutions, 

on the contrary, vary sm oothly as activation of the deep area appears and 

gradually dies off.
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6.4.3 MFT source-space comparison: cylinder versus partial hemisphere

The issue of com paring different three dim ensional volum es for use as source spaces in 

MFT, together w ith the introduction of the partial-(hem i)sphere-shaped volum es was 

originally discussed by Liu MJ and loannides (1995). They com pared three source space 

volumes: a small cylinder, which was completely "inside" the brain but leaving a 

considerable part of the more superficial cortex uncovered, a large cylinder, covering the 

superficial parts well, but also inevitably including some non-brain regions, and finally a 

hem isphere. Moreover, that study used com puter generated data as well as real averaged 

MEG data from a simple auditory experim ent conducted with num erous probe 

placements of a 7-channel system. O ur attem pt here is to confirm those results by 

studying the case of the small cylinder w ith the partial hem isphere (i.e. (a) and (b) in 

Figure 6-3) and com plem ent the old conclusions by em ploying analysis of real 

m ultichannel and unaveraged data.

We have im plem ented the com parison using all three m entioned sets of data and the 

same conclusions apply to all of them, bu t for the purpose of this section, we have chosen 

to concentrate on the filtered set only. Generally speaking, the solutions obtained with 

the two source spaces look very similar indeed, despite the different probability weights, 

régularisation param eters - as m entioned in section 6 .4.1.3 - and reconstruction volumes^. 

Their projections on the patient's MRI slices have the sam e fo rm / shape both in 

superficial and deep levels; their MRI localisations are either the same, or nearly the 

same, bu t in any case they only differ at the m ost by one MRI slice or less than 6 m m  

(interslice MRI distance is 6 m m  in this case, bu t the actual result w ould have been better 

given images w ith smaller interslice distance). A typical exam ple is show n in Figure 6-7 

and Figure 6 -8  com paring three timeslices 10 ms apart for the superficial and deep levels 

respectively, in an interval during  which activity appears in both superficial cortex and 

deep structures simultaneously.

However, the above statem ents hold true with one assum ption. That is, activity as 

revealed with the use of the small cylindrical source space, is well w ithin the boundaries 

of the cylinder. If activity is outside the cylinder or very close to its edges, then, as it was 

noticed originally (see Liu MJ and loannides 1995), we are led to fuzzy solutions which 

usually give artefacts at the near (to the sensors) side levels.

We dem onstrate this effect in Figure 6-9 and Figure 6-10. In the former a full set of 5 ms 

apart timeslices is shown (marked with a rectangle within the tem plate signal) for the

This finding, although expected, is important, as it demonstrates the applicability of the logic of "training 

the MFT process in the early session".
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cylinder (middle) and partial hem isphere (bottom), while in the latter we focus on three 

of the timeslices and observe the differences on the MRl projected solutions. It is easy to 

see from Figure 6-9 that the hem isphere solutions are, in general, less fuzzy and lead to a 

better localisation* . In addition, ambiguities encountered in cases of close-to-cylinder- 

edge activities are resolved (e.g. see solutions at latencies 1055-1060 ms and 1105- 

1110 ms). Moreover, the superficial artefacts m entioned before, are elim inated by the 

w ider coverage the hem ispherical source space affords. The latter is better visualised with 

the use of the MRl projected solutions in Figure 6-10. Note the sm ooth developm ent of an 

activation just at the posterior boundaries of the cylinder - bu t well w ithin the 

hem isphere - which leads to superficial artefact in the cylinder case (see the m iddle 

timeslice) which is absent, of course, in the hem isphere solutions.

The results w e have show n in this (and the previous) paragraph  confirm previously 

draw n conclusions, extend some of the early observations in real, unaveraged, 

m ultichannel MEG data, and m ore im portantly, provide confidence for the correctness of 

our results. We are now going to concentrate on the analysis of unaveraged (raw) data 

for the tem plate we exam ined so far, bu t also for a num ber of other tem plate events (and 

associated similar events), always for Patl, and from now  and on using set-up (c) in 

Figure 6-3.

* One should note that the level appearance is not the same in the two source spaces. In other words, the 9th 

level of the cylinder does not correspond exactly to the 9th level of the hemispherical space; it is actually 

between levels 8 and 9 as one may have carefiilly noticed in Figure 6-3.
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Figure 6-7: Com parison of the solution obtained from the cylindrical and partial 

hem ispherical source spaces. The filtered tem plate signal is used throughout. 

Solutions are projected on the patient's MRl slices in the way used so far, bu t 

considering only the top 3 levels of the each source space (levels 7-9). Note the 

similarity of the corresponding solutions and the nearly same MRl localisations 

(there is one MRl slice difference in the second and third column, see text). The 

three timeslices are 10  ms apart during  an interval at which activity appears in 

both superficial cortex and deep structures sim ultaneously (1: t=1040 ms; 2: 

t=1050 ms; 3: t=1060 ms).
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Figure 6 -8 : The same as in Figure 6-7 but considering the deep levels only, that is, levels 

1-4 for both source spaces. Note the similar shape and localisation obtained with 

the two source spaces and also the different current density values due to the use 

of completely different sets of reconstruction param eters (the sam e holds true for 

Figure 6-7 as well). Instances shown: 1: t=1040 ms; 2: t=1050 ms; 3: t=1060 ms)
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Figure 6-9: Top: filtered tem plate signal (superim posed are the strongest channels). A 

rectangle m arks the time interval used below (sharp wave w ithin light vertical 

lines). M iddle and bottom: 5 ms apart plots for the cylinder (middle) and 

hem isphere (bottom). It is easy to see that the latter are less fuzzy and better 

localised. Ambiguities encountered when activity is close to the cylinder-edges 

together w ith "the superficial artefacts" in the cylinder case are elim inated by the 

w ider coverage the hem isphere provides (see text).
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Figure 6-10: Elimination of the superficial artefacts by the w ider coverage afforded by the 
hem ispherical source space. Note the sm ooth developm ent of an activation just at 

the posterior boundaries of the cylinder - but well w ithin the hem isphere - which 

leads to superficial artefact in the cylinder case (see the anterior end of the m iddle 

column) which is absent in the hem isphere solutions.
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6.4.4 The study of unaveraged interictal events

As we have already m entioned before, the ECD solutions for the filtered and raw signals 

fitted the m easurem ents poorly, and were different to the dipole solutions extracted from 

the averaged data. The MFT solutions for the unaveraged data m aintain the form 

displayed in the MFT solutions for the averaged data. This similarity, however, is not 

m aintained at each and every timeslice as activity from other areas is also present 

(loannides et al 1995a). But as the intensity is integrated over fairly long time intervals 

the solutions extracted from the filtered and raw  signal begin to resemble each other and 

also those extracted from the average signal. In order to dem onstrate this effect, we shall 

exam ine the deep and superficial levels of our source space separately.

The following two figures show  integrals of intensity over 20 ms for the first 80 ms of the 

sharp w ave event w e have exam ined so far: in each figure, the top row  corresponds to 

the solutions for the averaged signal, while the m iddle and bottom  rows to those of the 

filtered and raw signals respectively. In Figure 6-11 we display the solutions for the 

superficial levels (levels 7 to 9) of the source space while in Figure 6-12 those for the deep 

ones (levels 1 to 4). One can note the similarities in the three sets of solutions bu t also the 

differences which become m ore evident if we take into account the MRl slice num bers. 

As the integration interval becomes longer and longer some of the differences at 

individual timeslices disappear and the solutions of the three sets look m ore and more 

alike, as can be seen in the next three figures. In particular. Figure 6-13 and Figure 6-14 

deal w ith integrals over 50 ms (we use the same form at w ith the previous two figures), 

while in Figure 6-15 we show solutions integrated over 100 ms - both superficial (top) 

and deep (bottom) levels are included in the sam e plot in this case: averaged on the left, 

filtered in the middle, raw on the right columns. The agreem ent between the three sets of 

data in the latter figure is remarkable.

How long integration intervals one should use to observe such similarities though is a 

question w ithout a clear answer. We believe that this is very m uch dependent on the 

specific characteristics of the signal under consideration, in other w ords how fast or 

slowly the activation patterns change. Moreover, it is not guaranteed that the integration 

interval of choice (i.e. the one showing the similarities) in a certain tem plate event will be 

the "gold-standard" for the rest of events, since differences in the individual signal 

signatures are expected.

To extend the discussion in the tem poral dom ain we shall involve the familiar activation 

curves. In order to do this, we shall display the 1 0 0  ms integrated solutions in sagittal 

views and by "outlining" the two strongest areas of activation (one superficial and one 

deep) w e shall exam ine their tem poral behaviour, as it appears in the averaged and raw
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solutions. The left part of Figure 6-16 shows the integrated solutions for the superficial 

(level 9 , top) and deep (level 1 , bottom) level, and for the solutions extracted from the 

average (left) and raw (right) signals. The two sets of rectangles denote the ROls for the 

areas of activation. The right half of the figure displays the activation curves in the two 

ROls: the superficial on the top, and the deep on the bottom  (averaged in blue, raw  in 

red).

Com paring the two activation curves of the deep region, it appears that the average does 

not reflect the underlying reality faithfully. For example, the activity leading to the sharp 

wave m axim um  in the average signal exhibits an explosive build up  at the deep level. 

This is absent in the corresponding activation curve from the unaveraged signal. Instead, 

the subcortical activation, at the time of peak activity in the average signal (i.e. around 

1 1 1 0  ms), coincides w ith the last subcortical burst of activity before an interval of low 

activation. The latter was characterised as "a period of almost com plete inactivity" when 

the activation of the filtered signal w as taken into consideration (cf loannides et al 1995a) 

and it was speculated that it was probably this period of silence following a (focal) deep 

activation that it w as picked up by the spatio-tem poral template.

In order to tackle this issue properly we have exam ined a num ber of other tem plate 

sharp w ave events (raw and averaged) together w ith their corresponding similar events 

(raw)*; analysis for two series of them  will be presented herein. In so doing and by 
show ing elements of spatio-tem poral consistency, we will prove that the analysis of 

unaveraged epileptic events is indeed feasible, thereby extending the conclusions of 

previous single epoch analysis of auditory responses in healthy subjects (Liu 1995) to 

pathophysiology. At the same time we shall provide hints about the potential of the 

spatio-tem poral tem plate technique (Abraham-Fuchs et al 1990).

The two tem plate events w e are going to present here were 172.5 ms and 187.5 ms long 

respectively. For the first one, 10 similar events were aligned and averaged to obtam the 
averaged tem plate epoch+ (template period between 912.5 ms-1085 ms), while only 7 for 

the second one (tem plate period between 907.5 ms-1095 ms). MFT analysis was 

perform ed on 6 similar epochs for each set in addition to the raw  and averaged epoch of

each one.

* zue s/zow M  exam zM e eac/z  o /  t/ze szmzVzzr e p o d z s  co m p rzszzzg  t/ze specz^zc t e m p / a k  guezzt w e  Izaue

examined so far; however, such data were not available to us. On the contrary, such details were available 

for other template shrp wave events, and so our analysis will be based on those.

+ Each epoch was 2 sec long: the middle point of the events were used as "centres", and the epochs were 

extended for 1 sec on either side of their "centres".
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We noticed that the sam e regions w ith those of the previous tem plate w ere also 

appearing to be active in these sets too (other areas w ere also seen active, especially in the 

solutions of the unavereraged signals). We therefore kept the same ROls as in Figure 6-16 

for the MFT activation curves. For the first set, w e observed the same kind of 

disagreem ent in the tem poral evolution of activity between the raw and averaged epoch. 

That is, the time of the peak activation of the deep region as appearing in the averaged 

record did not correspond to significant activation of the region w hen the raw 

(unaveraged) record was considered. However, w hen the results of the 6 similar epochs 

w ere also reviewed cause of this effect became much more clear. In Figure 6-17 we 

present these results using both activation curves of the deep region (middle column) 

and tim e-depthplots (right column) along with signals of one MEG channel (left column).

The top two rows in Figure 6-17 correspond to the averaged (blue signal and activation 

traces) and raw (red traces) tem plate epochs respectively, while the following 6 rows to 

the 6 similar epochs. The activation of this deep region is peaked during  the time interval 
denoted by the pink rectangle. During this period and despite the apparent "silence" of 

the sam e region seen in the raw  template, some of the epochs reveal a consistent 

activation of the region w ithin this specific time window . This is also seen in the column 

w ith the depthplots: some of the epochs are well correlated (and aligned) w ith the 

averaged one, Uke for exam ple epochs 2, 3, 4, 6 (rows 4, 5, 6 , 8 from the top), while some 

others, like 5 (row 7) are not. The same effect can be observed during  another smaller 

interval containing the second major peak of the averaged activation (marked with 

brown). Some of the epochs "agree" well w ith the behaviour of the averaged record in 

both intervals (i.e. epoch 3 ), others better in one interval than the other (i.e. epoch 2 ), 

while some only in one (i.e. epoch 5). So, it seems that the peaks appearing in the 

activation of the averaged record can be explained by the cum ulative effect of activations 

at each individual epoch (with varying am plitudes) during short time w indow s. In other 

w ords, the spatio-tem poral m atching technique m ight be correctly identifym g and 

aligning correlated epochs. Furtherm ore, it seems that actual deep activity is "picked up" 

by the spatio-tem poral technique rather than the silence-periods following focal deep 

activations as speculated initially.

Verification of these conclusions was obtained w ith the second set of epochs as displayed 

in Figure 6-18. In this case, averaged and raw tem plates w ere in consensus regarding the 

activation of the sam e deep region. All of the studied similar epochs appeared to be also 

in agreem ent during  the short time interval of the main peak (pink rectangle), suggesting 
again a cwmw/ahug # c f  at zMzfzuWwaZ epoc/is gzuzng nsg to f/ig appearance of f/ic
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averaged peak*. In order for the spatial (anatomical) coherence am ong the averaged /raw  

tem plate and the different similar epochs to be better dem onstrated, we present in Figure 

6-19 integrals of intensity for the deep levels over some 2 0  ms - 1 0  ms on either side of the 

latency t= 1 0 2 0  ms, that is nearly the peak time of the activation for the averaged 

template. The agreem ent is generally very good, although some epoch variability is 

clearly evident (see epochs 2, 3, 4). The latter, how ever, can be partly explained by the 

effect the central point of the intensity integration induces, since the latency 1 0 2 0  ms is 

not exactly "central" in our time w indow  for all epochs.

Similar results can be obtained for the superficial levels and ROl. The tim e-depthplots in 

this case, however, are not very helpful and are going to be omitted. Figure 6-20 shows 

the activations of the previously selected superficial ROl during  the various events of the 

first set of epochs (their corresponding deep activations were given in Figure 6-17). As 

can be noticed, the tem poral evolution of the superficial activity is m ore capricious than 

the deep one, but again the built up  of the peaks in the averaged record (the two main 

ones are marked) can be explained along the lines of the m entioned framework, i.e. 

resulting from variable am plitude activations of the ROl throughout the various similar 

epochs. Longer integrals of intensity result in m ore useful displays in this case; such 

integrals over the first 80 m s of each event are given in Figure 6-21 for the superficial 

levels of the source space. The concordance am ong the various events is clear (note also 

the MRl slice num ber which w ith only one exception ranges from 10 to 13, i.e. giving an 

overall range of less than 1.8  cm slice range).

All the above results, provide hints that the spatio-tem poral m atching technique 

accomplishes a useful operation in the identification and alignm ent (for averaging 

purposes) of single interictal events. O ur initial goal was to fully test this algorithm  

through the use of data from other patients as well. However, some commercial 

(Siemens) software changes m ade it unclear w hether the results for other patients w ould 

be exactly under the same fram ework or not (Hellstrand 1995). This and the given 

limitation of not having access to the software (an d /o r source code) ourselves deterred us 

from our original intentions. However, we shall use inform ation from the Siemens 

program  to roughly obtain the "tem poral w hereabouts" of the various interictal events, 

bu t we shall not assum e that the individual events are properly aligned.

To conclude, we have used MFT to identify aspects of spatio-tem poral coherence am ong 

the various "sim ilar" epochs, and hence explain at fundam ental level how the

* The two smaller peaks of the average could also be explained under the same scheme but with weaker 

effects.
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unaveraged interictal events built up  the average. As we have dem onstrated, MFT (MEG) 

allows single epoch processing which provides a direct w ay of studying consistency and 

variability of pathological brain function. Moreover, as in the case for norm al auditory 

processing, a consistent picture seems to emerge: the average is m ade up  of contributions 

which occur interm ittently and at variable latencies. Features in the average appear to be 

the outcome of higher aggregation of similar events in some epochs, each feature arises 

from contributions of different epochs. Nevertheless, as w e have shown, the average 

portrays a valid sum m ary in two ways (loannides et al 1995b):

• if the activity in an area is integrated over a period of time, then the averaged and 

single epoch integrals agree m ore and m ore as the interval of integration increases, 

despite huge variability from m om ent to m om ent in single events.

• Dom inant features in the MFT solutions extracted from the averaged event are seen in 

the MFT solutions of single, unaveraged events, although in the latter are usually 

buried in a stronger m ore variable background. This is seen both in superficial and 

deep activity.
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Figure 6-11: integrals of intensity over 20 ms for the first 80 ms of the sharp wave event 
we have exam ined so far corresponding to the solutions extracted from the 

averaged (top row), filtered (m iddle row) and raw signals (bottom row). Only the 

superficial levels of the source space (levels 7-9) are displayed. The solutions are 
superim posed on the patient's MRl outlines of the skull (blue), brain (light blue), 

thalam i (orange), and hippocam pi (pink). One can see that the three records show 

similarities in general, but these are no t m aintained at each time step (see the MRl 

slice num ber printed w ithin each plot; interslice MRl distance is 6 mm). The 

situation w ould be worse if the single timeslices are considered at steps of 2.5 ms 

rather than integrated solutions over 20 ms.
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Figure 6-12: sam e as in Figure 6-11 bu t for the deep levels of the source space (levels 1-4). 
Same com m ents apply.
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Figure 6-13: same as in Figure 6-11 bu t w ith the intensity integrated over 50 ms. The 

solutions for the three datasets begin to look m ore similar to each other. Only 

superficial levels are considered.
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considered at the top, deep ones at the bottom. Note the m ore "sim ilar 

appearance" of the three sets of solutions.
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Figure 6-16: Left half: 100 ms integrated MFT solutions for the superficial (level 9, top) 

and deep (level 1, bottom) level, and for the solutions extracted from the average 

(left) and raw (right) signals. A small triangle in the deep level denotes the nose, 

while a small dot indicates the nasion (nas) in the superficial. The same ROls are 

used in both raw  and averaged cases, seen as two rectangles (one superficial and 

one deep) in red and blue colours respectively. Right half: activation curves for 

the sam e two ROls (raw in red, averaged in blue) for the period of the sharp wave 

event. The maxima of each curve are printed w ith suitable colours in arbitrary 

units, while dashed vertical lines indicate the time interval (from the beginning of 

period shown) used for the integration. Note that the raw  and averaged records 

show some disagreem ent in evolution of the activity, especially the deep one. 

around the time of the sharp wave m axim um  (1110 ms) the average record 

exhibits an explosive build up  at the deep level which is absent in the 

corresponding activation curve from the raw  signal.
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Figure 6-17: Epoch set 1. Top tivo rows: averaged (blue) and raw (red) template; rest: 6 

similar epochs. Left: signals from one MEG channel. M iddle: activation curves of 

the deep region. Right: tim e-depthplots. At the interval of peak averaged 

activation (pink), epochs reveal a consistent activation, also seen in depthplots: 

some of the epochs are well correlated w ith the averaged (rows 4, 5, 6, 8 from 

top), while some others (row 7) are not. Similar effects can be seen during  another 

interval containing the second major peak of the averaged activation (brown).
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Figure 6-19: Epoch set 2: integrals of intensity (for the deep levels) over t—1010-1030 ms, 

that is 10 ms on either side of the activation peak time for the averaged template, 

superim posed on proper MRl outlines. Note the generally good agreem ent 

between averaged (top left) and raw  (top, second from  left) tem plates extended in 

the similar epochs despite some epoch variability (see epochs 2, 3, 4). The latter, 

however, can be partly explained by the effect the central point of the intensity 

integration induces, since the latency 1020 ms is no t exactly "central" in our time 

w indow  for all epochs.
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Figure 6-20: Epoch set 1; top row corresponds to the averaged template, second from top 

to the raw  template, while rest to the similar epochs. Left: signals from one MEG 

channel. Right: activations of the superficial ROl (seen in Figure 6-16). The built 

up  of the peaks in the averaged record - the two m ain peaks are m arked - can 

again be explained as resulting from the variable am plitude activations of the ROl 

throughout the individual epochs It is also w orth noting the generally lowered 

m agnitudes involved, especially in the activation for the averaged epoch.
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Figure 6-21; Epoch set 1. Integrals of intensity (for the superficial levels only) over the

first 80 ms of the interictal events superim posed on co-registered MRls of the

pahent. The first display refers to the averaged epoch, the second one to the raw

tem plate, while the rest 6 to the sim ilar raw  epochs respectively. The concordance

am ong the various events is clear (note also the MRl slice num ber which with

only one exception ranges from 10 to 13, i.e. giving an overall range of less than 
1.8 cm slice range).



7. Spatio-temporal Evolution of Epileptic Activity 
during Unaveraged Interictal Events

7.1 Introduction and rationale
In the previous chapter we have used MFT analysis to study unaveraged interictal events 

from a single epileptic patient w ho exhibited pathological activity in tem poral areas. In 

the current chapter, we exam ine further the spatio-tem poral evolution of activity derived 

from MFT analysis of unaveraged interictal signals in another two epileptic patients. In 

com m on with earlier results, we find activations w hich are highly variable from one 

interictal event to the next; nevertheless, closer com parison reveals physiologically 

plausible activation sequences.

We m entioned before that m any MEG investigators underlined the potential in 

m ultichannel MEG system s to analyse interictal epileptic data directly, w ithout signal 

averaging (e.g. Sato 1992). But w hy should one p u t effort on the analysis of such 

datasets? A sim ple answ er to this question could be given on the neurophysiological 

grounds of epilepsy. Witte et al (1992) state that analysis of individual spikes w ould be 

preferable to that of an "averaged spike", since spikes of similar shapes may arise from 

different cortical areas. Moreover, an averaging technique m ight give good localisation 

results at the m axim um  of the spike (in consensus w ith some unaveraged spikes), but 

one cannot guarantee that the propagation of epileptic activity as appearing in the 

averaged record w ould represent the actual epileptic propagation. However, the study  of 

unaveraged epileptic events, necessitates a robust analysis m ethod that: (i) does not include
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any preconceptions on the num ber and position of sources; (ii) allows for distributed 

sources, since extended a n d /o r  m ultiple brain areas m ay be involved in the generation of 

epileptiform  activity (Barth et al 1984; Graf et al 1984). Magnetic Field Tom ography 

(MFT) meets these requirem ents as explained in C hapter 4, and, therefore, com prises an 

ideal tool to study epileptic propagation w ithout averaging. So, in the following, our 

em phasis is draw n on the propagation characteristics of the interictal activity: we study 

the interactions between neocortex and m iddle tem poral structures, as well as the spatio- 

tem poral signatures of the activity in the depth  of the tem poral lobe. Indications for 

involvem ent of the contralateral (to the m easurem ents) hem isphere are also studied for 

one of the patients (Pat2; see following section). At the end of the chapter, we contrast 

our findings w ith w hat has been so far reported in studies with intracranial recordings on 

epileptic patients, and com m ent on the physiological plausibility of our results.

7.2 Materials and Methods

7.2.1 Patients

As m entioned already, two tem poral lobe patients are used in this study. The major part 

of our analysis was conducted for one of the patients (Pat2), w ith small but supporting 

analysis of data from the other patient (Pat3).

7.2.1.1 Case history (Pat2)

The data w ere obtained from an 18-year old girl w ith a history of complex partial 

epilepsy since the age of 14, w ith daily seizures of dizziness and im paired consciousness. 

Anti-epileptic treatm ent (m onotherapies as well as different d rug  combinations) had no 

effect. N um erous routine EEGs w ere conducted, initially w ithout show ing any 

abnormality. A t the age of 16, one recording showed fronto-tem poral spike-wave activity 

in the left hem isphere. Two years later, a 24-hour-recording w ith surface and  sphenoidal 

electrodes (am bulatory cassette EEG) recorded seizures, starting usually in the vicinity of 

the left sphenoidal electrode, bu t also over m ore centro-tem porally placed surface 

electrodes on the left side.

CT scans were negative, but MRl revealed a small am ount of possibly pathological tissue 

in the anterior pole of the left tem poral lobe, and w ith a contrast injection a small lesion 

of the blood-brain-barrier was dem onstrated. However, a concom itant stereotactic biopsy 

of the region contained only cells from an unspecific, inflam m atory reaction in the tissue. 

A C-11-methionine PET scan revealed no increased uptake of the tracer, i.e. did not
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indicate a m alignant tum our. The patient underw ent several stereotactic MEG 

measurements* - some of these have been used in this study - and was later referred to 

functional stereotactic radiosurgery, using the Leksell Gamm a Knife®. The target volum e 

for this surgery w as based on the presurgical MEG locaUsations of the interictal epileptic 

activity together w ith conventional intracranial recordings of seizure start. After the 

radiosurgery, she was seizure free for three years, bu t later developed signs and 

sym ptom s of a glioma in the actual region. A resection of the anterior part of the left 

tem poral lobe was then perform ed and the patient is now seizure free.

7.2.1.2 Case history (Pat3)

The patient, 42-year-old male, has suffered from partial complex seizures since the age of 

13. No know n aetiology to this, but the patient's tw in sister had epilepsy of a generalised 

type since her birth. Clinically his seizures began w ith visual sym ptom s: the patient was 

seeing an old w om an w ith a baby. Later, more acoustic sensations, like "noise", 

dom inated. Generalisations of the seizures occurred frequently.

EEG recordings w ere normal, initially. However, after one year of anti-epileptic 

medication w ith phenyloine and barbiturate the patient sometimes show ed right-sided 

occipital-temporal delta-theta activity in the EEG, although m ost of the recordings were 

non-pathological. Later on, the patient developed bilateral EEG-abnormaHty of similar 

kind, sometimes w ith sharp wave-like discharges, bilateral over the fronto-tem poral 

regions.

MEG m easurem ents perform ed under controlled stereotactic conditions w ere recorded. 

Their analysis w ith ECD show ed localised bilateral tem poral epileptic activity, mainly in 

the mesial part of the tem poral lobes, in the right lobe extended to its lateral and 

posterior regions as well. Epileptic activity was also found in the right frontal and right 

and left parietal lobes, but to a m uch lesser extent.

Bilateral intracranial electrodes (subdural strips) w ere used to study the regions of 

seizure onsets. 11 seizures were detected, all of the complex partial type, one with 

secondary generalisation. The onsets w ere always limited to the mesial area of the right 

tem poral lobe, w ith further spread w ithin this lobe. Clinically, nothing at all or very small

* In such measurements, a non-invasive and non-magnetic head fixation frame is employed to lock the 

patient's head to the couch on which he/she is lying during the MEG sessions. The same stereotactic frame 

can also be used in M Rl acquisitions and/or radiosurgical procedures to facilitate fusion of MEG data loith 

MR images and/or radiation treatment plans (see Hellstrand et al 1993).
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m ovem ents of the left leg could be observed, the latter only when the spread was 

established over the entire right tem poral lobe.

A resection of the right tem poral lobe was perform ed, based on the results of the MEG 

and the intracranial EEG findings, after a bilateral W ada test. Since then (2 years post

surgery follow-up) the patient has been seizure free and is w orking full-time. EEG checks 

have been negative.

7.2.2 Measurements and analysis

The MEG recordings used in this study w ere the presurgically perform ed ones, m ade 

with the 37-channel KRENIKON® system  (Siemens, Erlangen, G erm any for Pat2; 

Karolinska Hospital, Stockholm, Sweden for Pat3). All m easurem ents were m ade w ithin 

a magnetically shielded room (Vacuumschmeltze®, Germany). Only 30 channels were 

valid for Pat2, while full sensor capacity (37 channels) was utilised in the Pat3 case. The 
patients lay comfortably on a couch, w ith their heads locked into a stereotactic frame, ad 

m odum  Leksel®, using a plastic helm et fixed to the couch and provided w ith w ater m arks 

visible in MR images. The plane of sensors was centred over, and parallel to, the left 

(Pat2) or right (Pat3) tem poral area of the brain during  the recordings. In addition to the 

MEG, EEG recordings were taken using surface electrodes covering the frontal, tem poral, 

central and parietal aspects of the brain, together w ith recordings of the EGG (extremity 

leads).

The data w ere band-pass filtered on-line through 0.5-70.0 Hz, digitised at 0.4 kH z (Pat2) 

or 0.5 kHz (Pat3). Stereotactic MRl studies followed the MEG sessions, and the images 

w ere transferred to the MEG system, and later fused w ith their stereotactically pre

defined model volumes. The hom ogeneous conducting sphere was used to m odel the 

conductivity; the sphere was fitted to the local curvature of the inner skull surface as 

identified from multisliced MRls. Three dim ensional MFT estim ates for the prim ary 
current density, J^ , were obtained w ithin partial hem ispherical volum es encom passing 

the left (Pat2) or right (Pat3) hem ispheres; the distance from the cortical surface to the 

centre of the brain m easured 61 m m  (Pat2) and 71 m m  (Pat3) respectively. The sm oothing 
param eter was 1.0 in all cases. A G aussian a priori probability w eight was used, centred 
at the m idpoint of the conducting sphere; the decay factors were, A, = 0.05m (Pat2) and 

/1, 2 = 0.05m , ^ 3  = 0.052m (Pat3) - adjusted to correctly recover point sources generated

by the com puter (see G hapter 5).
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Figure 7-1: Experimental set up  for Pat2. Top: the sensor positions relative to patient 

anatomy. In the axial and coronal sections, a bar represents each gradiom eter 

sensor, while in the sagittal a dot shows the projection of the gradiom eter onto the 

displayed slice. The conducting sphere used to m odel the conductivity of the 

brain, and the source space are also m arked. Bottom: an interictal epileptic spike 

event is shown in two different views. On the left signals from all channels are 

displayed according to channel location, while on the right, only the strongest 

ones are successively illustrated.

The MPT analysis included epochs of various tem plates (as explained in C hapter 6), 

totalling in all about 30 seconds extracted from an MEG session of 5 m inutes (Pat2)* . For 

Pat2, the following types of datasets were analysed: the digitally unfiltered data (raw 

data, 0.5-70 Hz filtering only), and unaveraged, digitally band-pass filtered signals of the

For Pats, we only analysed some 8 secs out of a total 5.5 min.
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ranges 1-40 Hz, 1-20 Hz, 1-12 Hz, 1-6 Hz, and 4-8 Hz (i.e. theta r a n g e )A lth o u g h  all 

the details of the tem poral sequence of the activity did not m atch precisely, no significant 

differences in the localisations given by MFT solutions resulted from filtering the signals. 

Such an exam ple is shown in Figure 7-2, which is divided in 3 parts. The top part 

displays raw data (i.e. 0.5-70 Hz), the m iddle one, data filtered between 1-20 Hz, while 

the bottom  one, data in the theta range. For each part, the right half contains 

superim posed signals from all channels (top) together w ith their corresponding Fourier 

Transforms (FTs, bottom). On the left of each part, instantaneous estimates of the 

intensity for the times indicated by the light vertical pointers are superim posed on 

draw ings from the closest axial slice (top) and on a fixed sagittal outline through the 

hippocam pus (bottom). One can see that despite slight differences in the localisations, all 

three datasets reveal activation of the hippocam pal complex.

Thus, in order to avoid complexity, to m aintain as m uch of the inform ation as possible, 

and to circum vent the 50 Hz signal-contam ination (see the small 50 Hz-blip on the FT 

spectrum  of the raw  data), the analysis presented here has been limited to those datasets 

filtered in the 1-20 Hz range for both patients.

7.2.3 MFT analysis

Similarly as before, the instantaneous MFT estimates were studied, as well as the 

tem poral integrals of the intensity, |jp p .  We used integrals of intensity in space 

(activation curves) to study the tem poral evolution of activity w ithin certain ROls, as well 

as displays of tem poral integrals of intensity to obtain sum m aries of activations w ithin a 

given time w indow. W henever activation curves w ithin specific ROls or levels of the 

source space (e.g. at the depth of the tem poral lobe - hippocam pal level) indicate strong 

activation, the spatial changes in the m axim um  activity are studied; such changes within 

a given im age/level are displayed by connecting areas of strong activity w ith arrows. 

This provides an im age of the various anatomical regions of the brain which are directly 

or indirectly functionally connected, allowing for propagations a n d /o r  sequential shifts 

of activity to be studied (see C hapter 5).

As m entioned in the introductory section of this Chapter, it is com mon for MEG 

researchers to localise a dipole at the peaks of the epileptic signals (e.g. N akasato et al

The filtering as well as the Fourier Transform (see belozv) procedures were performed on 2 sec long signal 

segments. In other words, we did not obtain the 2 sec epoch-segments after filtering the whole signal set (i.e. 

5 min long).
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1994). However, we have selected the spatio-tem poral sequence of the rising time period 

of the spikes to study the build-up of the epileptogenic spread of activity.
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Figure 7-2: MFT of different filtering regimes (Pat2). Top: raw data; right half: 

superim posed signals from all channels (top) and corresponding FTs (bottom); 

left half: instantaneous estim ates of intensity superim posed on axial and sagittal 

MRl draw ings (see text). M iddle: same but, 1-20 Hz filtered data. Bottom: data in 

the theta range. All three datasets reveal activation of the hippocam pal complex.
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7.3 Results

7.3.1 Neocortical and deep temporal interactions

We start our analysis by studying spatio-tem poral activation sequences for Pat2. A 

typical interictal spike used in the analysis is shown in Figure 7-3 together w ith its MFT 

displays of intensity presented in a cinematic mode. Integrals of intensity over 20 ms 

were analysed in successive steps: the first rising phase of the spike to the negative peak; 

the rise to the main m axim um  to the end of the positive slope. During the initial, rising 

phase of the event, the activity appeared in the superficial, cortical area of the left 

tem poral lobe, then in its deep, fronto-mesial regions, to be found at the negative peak of 

the signal, in the am ygdala-hippocam pal complex (cf the axial-coronal projections). From 

there it spread back to the cortex.

In the bottom  row of Figure 7-3, the propagation of activity is displayed in a fixed sagittal 

plane through the hippocam pus. The tem poral evolution of the activity analysed m oved 

from the anterior parts of the tem poral lobe, through the am ygdala and hippocam pus, to 

the posterior regions (we shall return into this observation later on). Note the shape of the 

MFT solution at the time of the negative peak (third column), which seems to replicate 

the shape of the hippocam pus.

The oscillations between the hippocam pal area and the cortical part as delineated in the 

top right com er of Figure 7-3 are clearly dem onstrated in the top m iddle box. Note the 

appearance of cortical activation before and after hippocam pal activations. The time 

differences of the activations from cortical to deep or deep to cortical areas varied 

between 10 to 60 ms. Similar patterns of activation w ere observed in all the events 

studied.

MFT indications of cortical activation before and after deep tem poral activation w ere also 

hinted in earlier studies involving the case of F atl (see for instance Figure 6-16 and 

loannides et al 1995a). In our next set of MFT analysis we have exam ined a series of 

(right side) cortical and hippocam pal activation curves for Pat3. Interplays between deep 

and cortical activation occurring w ith various delays (also between 10 to 60 ms) were 

revealed once more. An exam ple that combines data from both Pat2 (a different spike 

from the one used in Figure 7-3) and Pat3 is show n in Figure 7-4. The previous trend is 

again evident: during  the initial phase of the spike, the activity appears in superficial, 

cortical areas of the tem poral lobes (a); around the peak of the spike (b) in the am ygdala- 

hippocam pal complex, and then back to the cortex (c).
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Figure 7-3: Top left: interictal event w ith superim posed signals of 30 channels; tem plate 

interval w ithin heavy lines; lettered vertical lines m ark the times used for the MFT 
estim ates of intensity displayed in the bottom  part of the figure. Top m iddle: the 

tem poral evolution of activity in the left hippocam pal region (black) and in the 

tem poral cortex (red). Top right: the hippocam pal and cortical regions of interest. 

Bottom: MFT estim ates of intensity integrated over 20 ms (i.e. 10 ms on either side 

of each lettered line). A xia l and coronal displays: the solutions are superim posed on 

draw ings of the closest MR image; sagitta l display: solutions on a fixed MRl slice at 

the hippocam pal level. Note L-left side, R-right side, projections of the 
hem ispherical source, and m odulus of (in arbitrary units, beneath each sagittal

section).
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Figure 7-4; Top half; Pat2; Left: left-hemisphere interictal spike w ith superim posed 

signals of all channels (note time bars a-c). Right; top roio: instantaneous MFT 

estim ates of intensity on axial MR images (note time instants a-c and | J p | values 

in arbitrary units); bottom rcnv; m iddle: graph of tem poral evolution of activity in 

the left hippocam pal area (dotted line) and tem poral cortex (full line) (note time 

bars a-c); bottom  raw; left and right: MR images of ROls at the level of hippocam pus 

(sagittal view) and tem poral cortex (coronal view). Bottom half: similar, but for 

the right hem isphere of Pat3.
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Different cortical areas are involved in the pre- and post-deep activation, which might, 

therefore, be thought to be of no physiological significance. We back-averaged the 3d 

MFT solutions from a num ber of single epoch events, time-locked to the peaks of strong 

hippocam pal activations. This procedure selectively amplifies activations from areas 

which m aintain a consistent time relation with the activation in the hippocam pus. An 

arbitrary threshold - w ith slightly different values for either patient - was used to select 

the time intervals of "strong" hippocam pal activation. Such a selection indicated some 18 

time segm ents for Pat2 (out of the 30 sec studied) while some 19 for Pat3 (out of an 8 sec 

study). Back-averaging of these single event solutions was then perform ed for each 

patient separately. Some 50 ms intervals before and after the time instants of the selected 

hippocam pal events w ere used in the back-averaging procedure. As a result, the back- 

averaged solutions w ere some 100 ms long (time run  from 0-100 ms), w ith expected 

hippocam pal activation centred around the latency of 50 ms.

In so doing, two main cortical ROls w ere revealed for each patient: one fronto-infero- 

tem poral and one m ore posterior in the tem poro-parietal region (especially in the case of 

Pat2). The previously observed sequences of neocortical and deep tem poral activations 

became m uch clearer after this procedure. The results are sum m arised in Figure 7-5.

One can easily note that the cortical ROls involved rem ain "silent" during the interval of 

hippocam pal activation, but, they do fire before and after this interval. This is clearly 

show n in the cortical activation curves, which reveal distinct peaks above the noise level 

before and after the hippocam pal firing. Similar patterns occur for both patients. Note 

also that the cortical areas do not seem particularly "focal", bu t they appear rather 

extended. Furtherm ore, and as the schematics at the far right of Figure 7-5 dem onstrate, 

there seems to be an interplay of activation between the different regions of the cortex 

followed by a "drop" of activity at deeper levels. This drop, however, appears to be 

responsible for the high am plitude observed signals (i.e. spike peaks; see Figure 7-3 and 

Figure 7-4).

The hippocam pal area in turn, appears to be interacting m ostly w ith the anterior cortical 

ROI, in both patients. The image revealed from the back-averaged solution (cf. 

schematics in Figure 7-5) m ay not necessarily represent the actual sequence of activations 

in each individual event, but it does m ean that it occurs frequently (more than half of the 

events studied for each patient), and certainly above chance.

It is finally w orthy of note, that the time delay from the cortical (the pre-hippocam pal 

one) to hippocam pal activation as given by the back-averaged record is some 30 ms for 

Pat2 and some 20 ms for Pat3. This again represents the "m ean" - and probably the m ost
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frequently observed - time delay value from the range of 10-60 ms observed in individual 

solutions.
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Figure 7-5: Top row: (Pat2); Left: superficial integrals of intensity over 100 ms, after back- 

averaging 18 single event solutions of strong hippocam pal activation. Two main 

ROls are revealed in the sagittal view: one fronto-infero-temporal and one more 

posterior in the tem poro-parietal region. M iddle: graph of activations of the 

cortical and hippocam pal ROls. Note the pre- and post-hippocam pal activation of 

the cortex. Right: sagittal view of deep intensity integrals after back-averaging. 

H ippocam pal activation is clearly shown. Extrem e Right: schematic axial view of 

the neocortico-mesiobasal interactions em erging from the back-averaged 

solutions; the sequence appears as: anterior-cortex->posterior-cortex->anterior- 
cortex-^H ippocam pus^anteriro-cortex^posterior-cortex . Bottom: Similar, bu t 

after back-averaging 19 solutions for Pat3. Activation sequence appearing from 

the back-averaged solutions (extreme right schematic) involves: post.-cort.^an t- 

cort.->H i^ant-cort.->post-cort. The circles in the sagittal views illustrate a 

projection of the appropriate source spaces.

7.3.2 Propagation patterns at the depth of the temporal lobe
For both patients, the MFT estim ates at the peaks of the spikes indicated activation at the 

depth  of the tem poral lobe. The shapes of the solutions w ere consistent w ith activation of 

the hippocam pal areas. Studying the spatial changes in the m axim um  activity in a 

sagittal section through the am ygdala and hippocam pus complex, w e noticed that for
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m ost of the events studied for each patient, activity seem ed to be propagating mostly in 

the anterior-posterior direction, suggesting spread from am ygdala to hippocam pus. This 

effect was m ore prom inent for Pat2, for w hom  the shapes of the integrated intensity 

during such intervals clearly portray such a trend.

The above are illustrated in Figure 7-6 which depicts sum m aries of the activity in 60 ms 

intervals during the positive peaks of various spikes for Pat2. The integrals of intensity 

over these intervals are displayed in the third row. The changes in the m axim um  activity 

(com puted every 2.5 ms) are m arked by arrow s in the m iddle row. As m entioned 

already, a trend seems to emerge: activity is initiated away from the hippocam pus, either 

in the cortex or (in some signals) in an area posterior to the hippocam pal region, then 

propagates to the anterior part of the hippocam pus-am ygdala complex. A similar trend 

can be inferred from the shape of the integrated intensity which usually appears along an 

arch indicating propagation from structures anterior to the hippocam pus along its main 

axis to its posterior end. This was the case in 12 out of the 26 events studied. In 4 /26  

events (one is shown in the second column of Figure 7-6) we observed activity 

propagating from the posterior area of hippocam pus to its anterior region. In 6 /26  events 

there was a sequential shift in the peaks of activity: anterior hippocam pus —> posterior 

hippocam pus anterior of hippocam pus, while the pattern w ith the reverse order (i.e. 

posterio r^an te rio r^p o ste rio r) was seen in 2 /26  events. In only 2 /26  events was no such 

shift observed: instead the activity stayed rather stationary in the posterior parts of the 

hippocam pus (cf the start position of activity in the second column of Figure 7-6).

Such propagations a n d /o r  sequential shifts of activity w ere also visualised using 

activation curves w ithin small ROls in the anterior and posterior hippocam pal area. The 

validity of such m odelling was dem onstrated and discussed in Chapter 5 (see section 

5.4.3). An exam ple illustrating the two main patterns of ''deep  propagation" for Pat2 (i.e. 

anterior—̂ posterior propagation and anterior-^posterior-^anterior sequential shifts) is 

given in Figure 7-7.

H aving conducted such observations for Pat2, w e questioned w hether similar statem ents 

could be m ade for Pat3. So, by studying the spatial changes in the m axim um  activity in a 

sagittal section through the hippocam pal complex (level 5 of the source space used for 

Pat3) during the periods that activation at this level occurred, we were able to identify 

patterns similar to those of Pat2. In specific, we noticed again that activity seem ed to be 

mostly propagating from anterior to posterior (7 out of 15 events studied), as illustrated 

in the first two display colum ns of Figure 7-8. Propagations from posterior to anterior 

(third display colum n of Figure 7-8) w ere less frequent here too (4/15 events), but they 

w ere a bit more frequent than in the case of Pat2 (the specific figure there was 4 /26; see
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above). Shifts of activity from posterior to anterior and back to posterior were more 

consistently observed in this case (4/15) and a typical exam ple is given in Figure 7-8 (last 
column).
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Figure 7-6: Sequences of events of the various interictal spikes at the depth  of the left 

tem poral lobe of Pat2. Top: superim posed signals of five individual interictal 

spikes; a pair of vertical bars m ark the 60 m s period used in the next two rows for 
each spike. M iddle: Shifts of the instantaneous activity (arrows) during  the 60 ms 

periods. Bottom: MFT solutions integrated over the 60 ms period. Sagittal plane as 

in Figure 7-3 (see text).
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A s  already m entioned in the beginning of this section, the shapes of the intensity 

integrated over some 60-70 ms within the course of the various spikes does no t reveal the 

same "arc" as prom inently as in the Pat2 case. However, the connectivity plots (second 

row of Figure 7-8) do show involvem ent of structures anterior to the hippocam pus. 

Furthermore, some of the intensity integrals show activity extended further anterior to 

the hippocam pus, m aking the suggestion for a spread from am ygdala to hippocam pus 

(and vice versa) valid here too. The latter effect can be seen in the first, third, and fourth 

displays of the last row in Figure 7-8.
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p o ste r io ranteriorgreater Hi area

50 ms (b)50 ms (a)

Figure 7-7: Pat2. (a) Integrated intensity over 60 ms in a sagittal level through 
hippocam pus (left). Instantaneous shifts of m axim um  activity com puted every 

2.5 ms (right). Propagation from anterior to posterior hippocam pus is observed. 

Note the shape of the integrated intensity and the activation curves for the two 

indicated ROls (bottom right). Activation of the greater hippocam pal area is given 

in bottom  left, (b) Similar bu t w ith anterior-posterior-anterior sequential shifts.
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Figure 7-8: Sequences of events during  the course of various interictal spikes at the depth 

of the right tem poral lobe of Pat3. Top: superim posed signals of four individual 

interictal spikes; as in Figure 7-6, a pair of vertical bars m ark the period used in 

the next two rows for each spike (some 56-74 m s in each case). M iddle: Shifts of 

the instantaneous activity (arrows) during  the indicated periods. The first two 

displays show an te rio r^posterio r propagations; third display corresponds to a 

posterior-^anterior propagation; finally, the fourth display dem onstrates 
posterior^anterior->posterior sequential shifts. Bottom: MFT solutions integrated 

over the above periods. A fixed sagittal MRl slice at the level of the hippocam pus 

is used throughout. Circles illustrate a projection of the appropriate source space 

level.
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7.3.3 Separate tests for bilateral activity

In the case of Pat2, we found activity in the very bottom  of the source space, which could 

have been generated from the contralateral hem isphere. It is well know n that 

anatomically homologous sites (mirror foci) are often sim ultaneously active in epileptic 

discharges. Thus, the question arose w hether the hippocam pus of the right hem isphere 

was responsible for the deep activity observed. C om puter sim ulations with dipole 

sources appearing in the right hippocam pal region were com pared to actual data of the 

very deep activity. The results are sum m arised in Figure 7-9a. The two solutions show a 

striking similarity.

Further tests were perform ed using a "deep and small" cylindrical source space, 

designed to cover the hippocam pi and thalami of the two hem ispheres. The inversion 

param eters were adjusted* to recover activity w ithin this volume, as explained in C hapter 

5. The same uniform  conducting sphere model was used as before (i.e. the one fitted to 

the left side only; this is, of course, a(n) (unavoidable) problem).

Figure 7-9b sum m arises the results of the com puter simulations. It appears that 

satisfactory MFT estim ates are found w hen dipoles are placed w ithin the volum e of 

either hippocam pus. We, therefore, used the cylindrical source space for the periods 

w here strong deep activity was evident in the MFT estimates of our original 

hem ispherical source space.

In Figure 7-9c the two models are com bined to recover activity from the two hippocampi. 

At the bottom  of Figure 7-9c we show the activations of the two hippocam pi as extracted 

from the tem plate signal displayed in Figure 7-3. Note the tem poral developm ent of 

activity in the two hippocam pi - a point we shall return  into shortly.

Of course modelling such deep activity always embraces the danger for interference of 

noise artefacts, therefore, calls for a careful interpretation of these results. However, the 

fact that such activity was consistently observed in all epochs studied, and amplified 

w hen the stable integrals of intensity were considered, rules out the possibility of noise 

artefacts as prim ary signal sources. Moreover, we exam ined w hether a distant source of 

"constant" noise, like the magnetic fields produced by the heart, could be responsible for 

such contributions. Figure 7-10 shows tim e-depthplots for the small cylindrical source 

space during an epoch of a total 2.5 sec in association with the ECG signal. In the

* The sm oo th in g  param eter w as again 1.0) the decay factors o f  the G aussian  p robab ility  w e igh t were

/I] 2 -  0.025m , Ag = 0.038m .
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depthplot, a depth  of 0.0 cm corresponds to the level of the left hippocam pus (ipsilateral 

to the m easurem ent side). Accordingly a depth of 5-6 cm corresponds to the level of the 

right hippocam pus (contralateral to the m easurem ents side). As the figure illustrates 

(especially the bottom  half), the observation of firing in the right hippocam pal area is not 

related to the heart cycle.

As m entioned before, the com bination of solutions from the two source space models 

allowed an additional study of the spatio-tem poral evolution of activity, namely, the 

interactions between left superficial cortex, left hippocam pus, and right hippocam pal 

area. We pursued  this by means of the familiar activation curves m aking use of the 

following ROls: for the left hippocam pal and left tem poral cortex those used before (i.e. 

Figure 7-3), while for the right hippocam pus the whole bottom  level of the cylindrical 

source space. It w ould be especially interesting to see w hether there w ould be a constant 

time relation between the left and right hippocam pal firings. Results for three typical 

interictal events are presented in Figure 7-11. A lthough sequences of successive 

activations are visible, no systematic time relation in the onset and offset of activity of the 

two hippocam pi was identified.
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Figure 7-9: Examples of localised deep sources for Pat2. Coronal sections, a) 

Instantaneous MFT estimates (left) of recorded focal deep activity and com puter 

generated data w ith a single dipole placed in the right hippocam pus (right). 

Hemispherical source space is used, b) MFT estim ates for source space shifted 

medially (see text; also tests in C hapter 5). Top part: locales of test dipoles (one in 

each hippocam pus). Bottom  part: MFT estim ates from these two sets of sim ulated 

signals, c) Real data for the original hem ispherical source space (top), and for the 

deep cylindrical source space (middle) for two specific instances: on the left, w ith 

activity localised at the left hippocam pal region, and on the right w ith focal 

deeper activity identified. Bottom: tem poral evolution of activity in the left (black) 

and right (green) hippocam pal regions. The hem ispherical source space m odel 

was used to obtain the activation within the left hippocam pal ROI (see, for 

instance. Figure 7-3), while the cylindrical m odel for the right hippocam pal 

activations (ROI covering the w hole bottom  level of the cylinder).
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Figure 7-10: Top half: Tim e-depthplots for the small cylindrical source space (top) along 

w ith the ECG signal (bottom) for Pat2. Zero dep th  corresponds to L-Hi, while 5- 

6 cm  dep th  corresponds to R-Hi. Bottom half: an expanded time segm ent of the 

above period. The firing of the R-Hi area is clearly independent of the heart cycle.
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Figure 7-11: Pat2: Left: superim posed signals for three interictal events. Right: activations 

in the left cortex (red) and the two hippocam pi (black and green) for the same 

three interictal events, after com bining the two source space models. Activations 

of the right Hi were derived from the bottom  level of the "deep" cylinder, while 

those for left cortex and left Hi w ithin the same ROls shown in previous figures. 

Note light vertical bars indicating the maxima of each activation curve. Despite 

sequences of successive activations, no systematic time relation in the activation 

onset and offset of the two hippocam pi could be observed.
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7A D iscussion

The com monly used ECD m odel can provide fits w ith exceptional accuracy, provided the 

activity is isolated and highly focal. Co-activations w ithin several regions and noisy 

signals usually shift the ECD solution away from the true centre of activity (cf section 

6.4.2, and also loannides et al 1993c). In contrast, MFT allows for noisy data through the 

use of a régularisation param eter (loannides 1994). Tolerance to noise is gained at the 

expense of spatial resolution (at least in the depth), but, the actual shape of the activated 

area is reflected in the MFT solutions (loannides 1995a,b). Therefore, MFT makes possible 

the analysis of single trial, non-averaged data, avoiding the shortfalls produced by signal 

averaging. The analyses presented in the current as well as the previous chapter provide 

substantial evidence that MFT can be applied to unaveraged epileptic MEG signals and 

produce "sensible views" of both superficial and deep brain activity.

There has recently been an increasing interest in the study of unaveraged epileptic data 

(e.g. Lewine et al 1995), but using the ECD m odel and explaining, at each case, only small 

segm ents of the unaveraged record, usually around the peaks of spikes or sharp waves, 

thereby leaving parts of the event unexplained. We have used a more general m ethod 

(MFT) to obtain estim ates of activity throughout the w hole time period of the various 

events, that is, from the rising phase of a spike to its peak, and beyond. In doing so, we 

have observed the interactions between neocortical areas and deep tem poral structures 

during a num ber of unaveraged interictal spikes in 2 epileptic patients: superficial 

activity was seen to precede and follow deep activity. The time differences of the 

activations from  cortical to deep or deep to cortical areas varied in the range between 10- 

60 ms. Back-averaging of the individual solutions w as perform ed to enhance any orderly 

series of activations. The m ean time delay from the cortical to hippocam pal activation as 

given by the back-averaged record was some 30 m s for Pat2 and some 20 ms for Pat3. 

Two rather extended cortical areas in each patient em erged after back-averaging. 

Interplays of activity were consistently found between these two cortical sites, and 

between the m ost anterior cortical area and the hippocam pal complex. We reiterate here, 

that the im age revealed from the back-averaged solution (cf. schematics in Figure 7-5) 

may not necessarily represent the actual sequence of activations in each individual event, 

bu t it does indicate a frequently occurring and, therefore, non-random  pattern in each 

patient.

Sutherling and Barth (1989) used scalp electrodes together w ith sphenoidal wires in 

com bined EEG-MEG recordings to trigger the averaging of the MEG spikes in an effort to 

distinguish between deep and superficial epileptic activity. In the m argins of their
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findings they also reported that the cortical areas activated could be rather extended, 

since a single (least-squares) dipole m odel was resulting in deeper localisations w hen 

com pared w ith subdural electrode spike occurrences; they confirmed this claim on the 

basis of "double-dipole" m odelling - two dipoles end-to-end sim ulating an extended 

source - and use of the peak separation localisation m ethod (see Chapter 2). In the 

tem poral lobe they additionally m easured a time delay of 30-35 ms between superficial 

and deep activation. These findings are in accordance w ith the findings presented here, 

but different from some earlier reported results by use of intracranial electrodes (Buser et 

al 1973; Buser and Bancaud 1983), w here no significant propagations between neocortex 

and hippocam pus were found. Given the relatively large distances and the fairly 

extended cortical regions involved, however, one can argue that the latter recordings 

simply m issed the cortical activation because of insufficient spatial sampling.

Discharges in both neocortical and limbic structures have been shown for quite some 

time in tem poral lobe epilepsies by m eans of electrocorticography and depth  electrode 

recordings (Penfield and Jasper 1954). Spatio-tem poral distributions of intracellular 

potentials (Chervin et al 1988) as well as cortical travelling waves (Petsche and Sterc 1967) 

have been observed in anim al experiments. Cortical travelling was also identified in 

epileptic potential field analysis of hum an EEC records (Lemieux and Blume 1986). Such 

findings indicated that epileptic cortical fields m ight not be stationary. More recently 

"transitional stages" were noticed in the majority of exam ined patients suggesting the 

existence of an "evolutionary interictal process (Nakasato et al 1994). It is, therefore, 

reasonable and typical for an interictal spike to travel, for instance, between the baso- 
mesial tem poral cortex, anterior tem poral lip, and anterior-posterior lateral tem poral 

cortex within some 40 ms (Ebersole 1995). In addition, intracranial chronic depth  records 

have also show n that neocortical activity may frequently spread to the mesiobasal limbic 

"stations", which can then act as a pacem aker zone w ith further distribution and 

m aintenance of the ictal event according to observations by Wieser and Müller (1987).

One early MEG study discussing such issues was reported by Stefan et al (1991). Using 

the ECD m odel they found propagation of epileptic activity from lateral neocortical to 

mesio-basal limbic structures in 3 epileptic patients. More recently, Baum gartner et al 

(1995) suggested propagation of interictal MEG epileptic activity from the mesiobasal to 

the lateral tem poral lobe in a study involving 4 epileptic patients. In the latter, it was 

found that activation of the mesial source was leading the lateral one by some 40 ms (the 

two "point" sources w ere separated in space by some 45 mm).

Moreover, investigations carried out in rats have revealed that spikes may not only arise 

from different areas w ithin the epileptogenic zone ("focus"), bu t the pacem aker activity
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for the interictal spikes may actually reside outside the focus itself w ithin the so-called 

"inhibitory surround" (Witte et al 1992). Thus, topographically different areas may be 

involved in the generation of interictal discharge patterns. Witte and co-authors (1992) 

have also concluded from the above investigations, that localisation of activity for onset 

and m axim um  (peak) of epileptic spikes may yield completely different results. The same 

authors also em phasised that analysis of individual spikes is preferable since spikes of 

similar shapes may arise from different cortical areas and also use different propagation 

pathw ays and directions w ithin the epileptogenic region.

O ur results for the neocortical to mesiobasal propagation fit nicely w ith the points raised 

in the above discussion. One could attem pt a step further by conversing on the possible 

architectonic m echanisms of such interactions on the basis of cortico-cortical association 

fibres, conduction velocities and so forth (Alarcon et al 1994; Burkitt et al 1996), as well as 

introducing a model on epileptogenesis. We are aware, though, that such efforts w ould 

m andate the availability of similar studies on a larger group of patients. For the purposes 

of the present study we place our findings w ithin the context of other neurophysiological 

results on epilepsy.

We finally have to stress that the persistent shift in the m axim um  of the MFT estimates 

over time in an interictal sharp w ave or spike occurs consistently in different epochs. 

However, the evolution of activity in different areas of the brain such as superficial 

cortical structures and deep situated am ygdala-hippocam pus areas m ay no t necessarily 

indicate an established anatomical pathw ay - interm ediate steps may be missing. This 

m ight in part be due to the set-up of sensors (i.e. recordings only from one side at a time), 

which together w ith the usually low signal-to-noise ratio, calls for a cautious 

interpretation of these data.

For both patients studied herein, the MFT estimates at the peaks of the signals indicate 

activation at the depth  of the left (Pat2) or right (Pat3) tem poral lobe. The shapes of the 

solutions are consistent w ith activation of the hippocam pal area. With the activity 

integrated over relatively long time periods, such as 60 m s (e.g. Figure 7-6), a pattern of 

activation appears, indicating propagation from the anterior parts of the tem poral lobe 

tow ards the posterior ones. This m ight m irror a spread of activity from am ygdala to 

hippocam pus, as observed in m ost of the events studied for each patient (12/26 for Pat2, 

7 /15  for Pat3). Sequential anterior-posterior-anterior shifts or vice versa w ere also 

identified in both patients (8/26 for Pat2, 4 /15  for Pat3). Finally, propagations from 

posterior to anterior w ere occurring less frequently in both cases (4/26 for Pat2, 4 /15  for 

Pat3). Such propagation characteristics have also been reported by others.
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For instance, Sutherling et al. (1991) also indicated propagation of spikes in an anterior to 

posterior direction in a combined MEG (multiple single-channel placements), EEG, and 

ECoG study, in agreem ent w ith depth  stereoelectroencephalography (SEEG) findings 

(Buser et al 1973; Buser and Bancaud 1983). More recently, Emerson et al (1995) noted 

after studying  with EEG the spike propagation (i.e. tim e-dependent changes in spike 

topography) characteristics, that the pattern of anterior to posterior propagation was 

observed in 15/16 of their patients, while the reverse was less com mon, being present in 

only 6 out of the 16 patients; only one of their patients showed posterior to anterior 

propagations exclusively. Moreover, recent intracranial recordings and cross-correlation 

studies also confirm ed that both the above patterns w ere detectable, but the anterior to 

posterior pattern was identified m ore often (Lopes da Silva 1996). It is w orth noting a 

result from Buser and Bancaud (1983) stating that hippocam pal responses to am ygdala 

stim ulation w ere displayed in all epileptic patients studied, but am ygdala responses to 

hippocam pal single shocks was a characteristic of tem poral epileptics only.

A final notew orthy point on this topic is a very recently reported m ultidipole m odelling 

of partial complex interictal spikes by Ebersole (1996). He claimed that by including two 

fixed position and orientation dipoles in a MEG m odelling algorithm  (BESA), he w as able 

to explain the time-course of the am plitude of the recorded spikes: one of the dipoles was 

placed in the hippocam pus having an anterior to posterior orientation, while the other 

one, w ith alm ost vertical orientation, was anterior and more m edial to the first one (i.e. in 

the vicinity of am ygdala). The activation of the latter source was leading that of the prior 

by some 6-9 ms.

The modelling of the very deep activity identified in the case of Pat2 using a deep source 

space proved to be helpful in separating activity from the two hippocam pal structures. 

As discussed in C hapter 5, we do not advocate the use of a "deep source space" together 

w ith data from unilateral m easurem ents. Realistic head m odelling and use of bilateral 

recordings are certainly the way forward. With the new MEG hardw are already 

available, w here m easurem ents are m ade sim ultaneously from both hem ispheres, m uch 

m ore reliable data will appear for the studies of deep generators of epileptic activity. We 

have, nevertheless, proceeded w ith the deep source space analysis, since only unilateral 

data w ere available. The similarity of the model data to the actual solutions is 

encouraging. Furtherm ore, the fact that the activity was consistently observed in all 

epochs studied, and amplified when the stable integrals of intensity were considered, 

together w ith its apparent independence from heart-cycle activity, limits considerably the 

range of possible noise sources. In addition, the lack of a systematic time relation in the 

onset and offset of activity of the two hippocam pal areas is concurring w ith findings in
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depth electrode studies (Wilson et al 1990; Buser et al 1973), while the observed time 

delays from one hippocam pus to the other (typical exam ples are show n in Figure 7-9 and 

Figure 7-11) are again w ithin reasonable physiological limits.

Simultaneous bilateral - or whole head cover - recordings are, of course, available today. 

With bilateral data, one would, first, be able to study the neocortical and mesiobasal 

connections under a m uch more reliable view and investigate a m ore global m odel of 

inter-hemispheric interactions. Secondly, deep activity w ould be m odelled more reliably, 

as m entioned above. Finally, the possibility of a secondary or m irror focus, like the one 

apparently seen for Pat2, w ould be pursued  w ith m ore detail and accuracy. Such MEG 

studies, discussing the im portance of the possibility to distinguish a secondary from a 

prim ary epileptogenic region have prom ptly appeared together w ith the availability of 

whole head cover system s (Hari et al 1993; Galen et al 1993). Hari et al (1993) used two 

(symmetric) dipole m odelling in a single case study, and by plotting the am plitude 

profiles of the two dipolar sources, they succeeded in revealing the prim ary epileptogenic 

region: the right parietal dipole was m uch stronger a source, and was leading 

(latencywise) the left by some 17-20 ms.

The disadvantage of MFT - as applied at present - in such a case w ould have been the 

lack of absolute scale in the m agnitude of the current density. That is, since arbitrary 

units are used for I J p ],  which depend on the inversion param eters (i.e. choice of 

probability decay factor and smoothing), and given that different param eters w ould have 

been chosen for either side (see following chapter), it w ould have been senseless to 

com pare the intensity strengths of the two sources'^. However, provided that the whole 

time course of the signal w ould have been accessible for MFT analysis, the time- 

activation curves of the two regions w ould have shown very clearly and robustly the 

tem poral predom inance of one region over the other, thereby, distinguishing the prim ary 

from the secondary epileptogenic region.

+ These deficiencies assume double Dewar modelling and not f i l l  head coverage.



8. Bihemispheric MFT Studies

8.1 Introduction

The previous two chapters dealt w ith unaveraged interictal epileptic activity as recorded 

in unilateral MEG experim ents which can at best only cover part of one hem isphere. Such 

m easurem ents though, can only provide part of the picture for the on-going activity, 

since the hem isphere contralateral to the recording side is also activated throughout the 

time course of the recording sessions. M easurem ents conducted by use of m odern 

system s (e.g. helmet-like a n d /o r  tw in Dewar systems; see Chapter 1 and A ppendix A) 

w ould hence inherently possess a m uch richer content of information. In addition, they 

w ould allow a m uch more reliable analysis of deep activity, as discussed in C hapter 5, 

the need for which was shown by analysis of real data in C hapter 7.

Thus, in the current chapter, we apply MFT analysis to sim ultaneous MEG recordings. 

Since no such m easurem ents from patients suffering from partial complex epilepsy (CPE) 

w ere available to us, we switch to a clinically different example, nam ely myoclonic 

epilepsy. The sensors for the myoclonic case were not placed on symmetrical positions on 

either side: one of the Dewars is in a m uch m ore superior position than the sensor 

position (in one hem isphere) of our earlier CPE case. For this reason we have also 

included a short MFT study  from the classic "auditory  odd-ball" experim ent‘d with 

frontolateral dual MAGNES probe placement.

■d This is the only part of the present thesis that involves actual data collection by the author.
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8.2 A case of M yoclonic Epilepsy

8.2.1 Motivation

In contrast to the cases of complex partial seizures, certain types of seizures, such as focal 

motor and psychomotor, are highly indicative of special cerebral areas, and hence are 

ideal for localisation studies. Similarly, interictal events associated w ith the appearance of 

certain sym ptom s w ould also be indicative of certain brain regions/zones. For instance, 

the twiching of fingers should involve the som atom otor cortex in some respect, since the 

latter is supposed to be involved in the execution of finger movement. Thus, analysis of 

pathological activity which is time-locked to a "motor-like" event (symptom) is of great 

interest.

The first part of this chapter deals w ith spontaneous myoclonic recorded sim ultaneously 

from two head aspects. O ur initial goal was to use both averaged and single event 

datasets in our MFT analysis. Unaveraged datasets were not available to us though, and 

consequently our results and discussion will be draw n from the analysis of averaged data 

only.

8.2.2 General Terminology

M yoclonus is a very complex phenom enon; "it is characterised by a rapid involuntary 

muscle contraction, subtle or massive, usually w ith locomotor effects generalised or 

limited to certain m uscular segments, mostly predom inant in flexor muscles and more 

pronounced in upper extremities" (Niedermeyer, 1993c). Its sym ptom s, the resulting 

jerks, m ay be synchronous or m oderately asynchronous. A considerable num ber of 

disorders with myoclonus are not classified as epileptic. Epileptic myoclonus is classically 

characterised by concom itant polyspikes or polyspike wave discharges in the EEC, of 

bilateral or generalised synchronous character, usually maximised over frontal regions 

(Niederm eyer 1993b).

It should em phasised that the term  "myoclonic" refers to a single distinct jerk w hereas 

"clonic" - a different type of seizure sym ptom s - refers to the repetitive type of m uscular 

twiching. Progress in myoclonus research was sparked by the introduction of 

electrom yographic (EMC) - myoclonus - triggered back-averaging of the EEG records, 

first suggested back in the seventies (Shibasaki and Kuroiwa 1975; Chadw ick et al 1977). 

Jerk-locked averaging enabled the EEG observation of "positive-negative, biphasic, sharp 

potentials, either followed or not followed by a negative slow wave" having a close 

latency association w ith the myoclonic EMC discharges in large groups of patients 

(Shibasaki et al 1978).



Chapter 8: Bihemispheric M FT Studies________________________________________________2.23

The case studied in this chapter deals w ith a specific type of myoclonic epilepsy, the so- 

called "Epilepsia Partialis Continua" or "Koshevnikov Syndrom e", nam ed after the 

fam ous Russian doctor who investigated certain types of "Siberian" epilepsies some 100 

years ago (Koshevnikov 1895).

8.2.3 The case

The patient (BN) w as a girl at the age of 11 at the time of the MEG recordings. She was 

suffering from the syndrom e of Koshevnikov, that is, she was experiencing focal motor 

seizures of the right body half w ith secondary generalisation for six months. Seizure 

frequency w as up to 12 per hour regardless of high doses of various anticonvulsive 

drugs. A right side hem iparesis together continuous myoclonic twiching of the right 

fingers were revealed by neurological examinations. An MRl investigation had 

previously show n a diffuse oedem a of the left sensorim otor and parietal cortex, but at the 

time of the MEG recording MRls have been classified as norm aR. Cerebrospinal fluid 

exam ination show ed evidence of a chronic inflammation, but the aetiology of tissue 

changes rem ained unclear despite a brain biopsy. The possibility of a Rasmussen 

encephalitis w as also hinted.

[isp] fluoro-2-deoxy-D-glucose (FDG) PET scans w ere also perform ed (SCANDITRONIX 

PC 4096/7 WB, Düsseldorf, Germany); their analysis revealed increased FDG uptakes in 

the left inferior posterior parietal cortex, left dorsal thalam us, and right cerebellum. In 

addition, a focal hyperm etabolism  was show n in the precentral gyrus, surrounded by a 

decreased FDG uptake in the postcentral gyrus and frontal cortex.

8.2.4 Measurements and Analysis

The 2x37 channel, dual probe MEG system  (BTi Twin MAGNES®, Jülich, Germany; see 

A ppendix 1) w as used to record spontaneous interictal myoclonic activity. One MEG 

probe (probe B) was placed over the left tem poro-parietal aspect of the patient's head, 

while the other (probe B) over the top-fronto-central, slightly to the right aspect (see 

Figure 8-1). EMC records of the m-flexor digitorum  superficialis were also registered, and 

after being rectified, they w ere used as triggers for the backaveraging of 204 myoclonic 

events (Volkmann et al 1995,1996).

Single dipole (ECD) analysis was perform ed by Volkmann et al (1995) for each of the 27 

interactively identified interictal spikes, as well as the EMC triggered averaged signal.

+ For the analysis presented here though, only the earlier, "slightly" pathological MRIs were available, and 

are, therefore, the ones to be used.
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Dipole sources with a goodness of fit greater than 0.95 w ere clustered w ithin a 60 cm^ 

area w ithin the left inferior parietal lobule (IPL). It was noted that, myoclonic activity was 

initiated by a dipolar source within IPL some 40 ms before the EMG onset, while around 

80 ms after the EMG onset of activity, a "'dipolar generator was observed in the left 

som atosensory cortex" (Volkmann et al 1995).

The MEG recordings were registered to the patient's MRls using a com bination of point 

and surface m atching techniques (Bamidis and loannides 1996, C hapter 3 of this thesis): 

a registration using three fiducial points (nasion, left-right preauriculars) was first 

attem pted; accuracy was subsequently im proved using the surface m atching 

methodology. This level of accuracy enabled a m ore confident description of the central 

sulcus in the MEG co-ordinate system  and its subsequent fusion with the MET solutions 

(see below).

Two separate, partial hem ispherical source spaces, each associated w ith a specific probe, 

were used  for the MFT analysis. Their orientations w ith respect to the MEG-defined head 

surface and the sensor positions, together w ith a plot of 4 of their levels are given in 

Figure 8-1 in three different perspective views. As seen in the draw ings, the orientation of 

the Probe B-source space follows a medial-to-superficial direction (along the y-axis of the 

head defined MEG system), while that of Probe A follows the orientation of the th ird  axis 

of the most central sensor (sensor 1). The distance from the most superficial to the 

deepest level m easured some 59 m m  in the latter and some 61 m m  in the former source 

space.

The sphere m odel was used to model the conductivity profiles for each probe aspect.

Each conducting sphere was fitted to the local (to the sensors) curvature of the inner skull

surface (see pink circles and dots in Figure 8-1). Gaussian a priori probability weights

were used, centred at the m idpoints of the each conducting sphere; the decay factors 
w ere = 0.048m , = 0.047m in each case - adjusted to correctly recover point

sources generated by the com puter (see Chapter 5). In both cases, the sm oothing 

param eter used was equal to 1.0.

Tracing of the central sulcus (CS) was attem pted in sagittal slices - the only sections 

available to us - w ith an interslice distance of 1.17 mm, in an effort to help w ith the 

anatomical identification of the som atosensory, motor, and supplem entary m otor (SMA) 

areas. In doing so, the two m ost com m only used m ethodologies w ere followed: the 

m idline sagittal m ethod (Sobel et al 1993), and the lateral sagittal m ethod (Ebelling et al

In fact, Figure 3-13 and Figure 3-14 were drawn from  the analysis o f the current case.
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1989). Tracing was also guided by m eans of referring to a "Co-planar Stereotactic Atlas" 

(Talaraich and Toum oux, 1988). The MRl co-ordinates of left and right hem isphere CS 

w ere transform ed into the MEG system, thereby, allowing fusion with the MFT solutions.
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Figure 8-1: Experimental set up  and analysis m odels for the myoclonic patient (BN). Two 

hem ispherical source spaces w ere used in the MFT analysis, one for each probe. 

Note the source space orientations w ith respect to the MFC headshape outline 

(green) and the sensors (red and blue bars for probes A and B respectively). 4 

levels are given for source space in three perspective views. The conducting 

spheres for each probe aspect are plotted as pink circles; pink dots denote the 

conducting centres.

8.2.5 Results

As m entioned already, our results will only be draw n from the analysis of averaged 

signals, which w ere also band-pass filtered in the range 3-45 Hz. We studied both the 

instantaneous and the tem poral integrals of intensity over 20 and 50 ms. In addition, 

anim ated sequences of intensity as projected on specific MRl slices were reviewed on the 

dedicated transputer system  of our lab (Liu et al 1993).
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MFT analysis of the FMG-locked averaged data for the left probe (Probe B) revealed an 

area at the inferior-posterior portion of the left parietal lobe, in general agreem ent with 

the FCD analysis as conducted by Volkmann and colleagues. This area, we shall code it 

as IPL in the following, is responsible for producing the pre-spike signal some 40 ms 

before F MG onset. Figure 8-2 displays the MFG and (rectified) FMG signals. In addition, 

typical plots of intensity each projected on the nearest sagittal MRl slice are illustrating 

the location of the region: on the left part of the m iddle row, intensity is integrated over 

some 20 ms and about 40 ms prior to the FMG onset (actually from t=-50 to t=-30 ms), 

while on the right, an instantaneous display of the "local" m axim um  activation is shown. 

The bottom  part of the figure, shows the chosen ROl together w ith a graph of its 

activation in time. One can note that this area is exhibiting a few "clear" peaks of 

activation at certain time instances which are always "dying out" smoothly, only to give 

rise to the next peak, acting like a "periodic" driving force of activation.

Despite the focal nature of the solutions in this region - which explains w hy the FCD 

model succeeds in describing well this data segm ent - activity is not stationary at exactly 

the same point. As the anim ated solutions and the connectivity plots revealed, there is a 

m ovem ent of activity tow ards more anterior and slightly deeper cerebral parts (see later 

in the results), w hich is again consistent w ith the observation that dipoles describing the 

various interictal spikes w ere scattered within a 60 cm^ volum e (Volkmann et al 1995).

We will sim ply describe the results from probe A as they appear in the MFT analysis of 

the averaged signal. A detailed explanation of the results necessitates com m ensurate 

MFT analysis of single trial data, which is both beyond the scope of this thesis and in any 

case impossible, since we have no access to the raw  data. In Figure 8-3 we show 20 ms 

long integrals of intensity in two different views: in the top, through an oblique (tilted) 

axial slice coinciding with the 8th level of the source space for probe A, and in the 

bottom, on sagittal MRl slices nearest to the m axim um  of the displayed MFT activation. 

In either case, the location of the central sulcus is also given. As we can see, activity 

appears on either side of the central sulcus, consistent w ith activation w ithin the pre- as 

well as the post-central gyrus, that is both som atosensory and motor cortices. We shall 

call this region sensorim otor (SM) region^ . One can also see, that both the ipsilateral (R-

+ The plot showing activity in the left SM region in Figure 8-3, appears more on the motor area rather than 

somatosensory. However, one should be cautious in this case: the displayed activity is integrated over some 

20 ms. During this interval, the maximum of activity may be found in either the motor or somatosensory 

cortices as can be seen in from the "connectivity" plot over a longer period in Figure 8-4. Furthermore, 

coregistration errors due to patient movement during the MEG accjuisition impose extra limitations. For all
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SM) and contralateral (L-SM) - to the hand of myoclonic m ovem ent - areas become 

activated. However, activity in the contralateral area is preceding that in the ipsilateral as 

the activation curves in the m iddle portion of Figure 8-3 show. In fact, for the first nearly 

90 ms after EMG onset activation of L-SM is dom inating, and then activity is spread to 

the other side as well, while obtaining a much w ider distribution though - note the co

activation of the two regions post-100 ms.

We also studied the connectivity plots - i.e. the sequential shifts of m axim um  intensity - 

th roughout the first 100 ms following EMG onset. As Figure 8-4 illustrates, activity 

appears to be "jum ping" across the central sulcus, indicating that both the somatosensory 

and som atom otor areas are involved. Such a "jum p" across the central sulcus was 

observed in single trial MFT analysis of MEG signals, filtered around 25 Hz, prior to 

voluntary finger m ovem ent in norm al subjects (Lado et al 1992; Lado 1993, loannides 

1993). One could of course ask the question w hether there is any time-relation in the 

activation of these two areas in this specific pathological case or not. Given the fact that 

w e are only dealing w ith an averaged signal herein, w e shall not pursue this issue any 

further. It is w orth noting, however, that such oscillations are consistent w ith loannides's 

suggestion that the return currents may play an im portant functional role (loannides 

1994,1995a).

Areas anterior to the SM regions are also seen to be active, obtaining their maximal 

activations m uch later in the time course. At 160 ms after the EMG onset, very strong 

activity is seen around in the left frontal region probably coinciding w ith the anterior part 

of the left supplem entary m otor area (L-SMA). This region shows the strongest activation 

ou t of all the involved regions (see Figure 8-5). There is also an indication for 

involvem ent of a similar region on the ipsilateral side (R-SMA/frontal). However, its 

activation is maximal m uch later and w ith a m uch lower m agnitude, and hence some of 

the observed activity variations m ight sim ply be due to noise. Plots of the two ROls as 

well as their activations and projections on sagittal MRl slices are given in Figure 8-5. 

SMA activation precedes the m ovem ent onset w hen a complex voluntary m ovem ent is to 

be executed. The post m ovem ent activations observed here m ight be a consequence of 

pathology, or they m ay be w eaker counterparts of pre-m ovem ent activations which are

these reasons, together with the fact that we are dealing only iihth an averaged signal, we have named this 

region sensorimotor (SM) just to be on the safe side, rather than attempting to distinguish between motor 

and somatosensory areas.
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not precisely time-locked to the onset of m ovem ent and hence not surviving the 

averaging of MEG signal.

Figure 8-6 sum m arises the results described so far by displaying together the activations 

from all the previously m entioned regions. One can see that the first significant activation 

occurs in the left IPL region (some 40 ms before EMG onset) and after that, there is a 

w hole sequence of events involving the SM and SMA regions in both the contralateral 

and ipsilateral hem ispheres.

Finally, as m entioned in the beginning of this section, there is a m ovem ent of activity 

from the left IPL area tow ards m ore anterior and slightly deeper regions on the same 

side. This is depicted in Figure 8-7 w here we show the integrated intensity between 70 

and 90 ms after EMG onset (left) as well as the localisation of the instantaneous 

m axim um  of intensity. The location of the m axim um  (and the activated region in general) 

correspond to the location of the second som atosensory area (Nolte 1981; Forss et al 

1995).
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Figure 8-2: Analysis of Probe B signals. Top: rectified EMG (orange) and superim posed 

signals of all MEG channels (blue). M iddle: plots of intensity projected on sagittal 

MRl slices revealing a region at the posterior-inferior part of the parietal lobe: on 

the left, intensity is integrated over 20 ms (from t=-50 to t=-30 ms); on the right, an 

instantaneous solution at the time of the first m axim um  activation. Bottom: MRl 

outline showing the chosen ROl (left) and graph of its activation in time (right). 

Note fiducials, dotted vertical lines denoting the integration period used above, 
and value of |Jp  | in arbitrary units.
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Figure 8-3: Top: Left: m idsagittal MRl slice w ith sensor positions (red bars; probe A) and 

display of two source space levels (1 and 8; orange circles); M idd le  and right: 20 ms 

long integrals of intensity through an oblique axial slice at the plane of the 8th 

source space level show ing activation of the left (30-50 ms post-EMG onset) and 

right (90-110 ms post-EMG onset) sensorim otor areas (L-SM and R-SM 

respectively). Note anatomical landm arks (coloured dots), central sulcus tracings 

(blue), L,R-SM ROls, rough outline of the m idsagittal slice (pink; see Figure 8-4 

for more "orientation" details), and oblique axial skull outline (brown). Middle: 

Left: MEG signals from all channels of probe A (red) and rectified EMG (orange); 

Right: activation graphs for the L- and R-SM ROls; dotted vertical lines show the 

periods used above. Bottom: the sam e 20 ms intensity integrals on sagittal MRl 

slices. Note location of central sulcus.
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Figure 8-4: Study of the SM activations during  the first 100 ms following EMG onset. Left: 

integrated intensity throughout 100 ms. Note orientation of a sagittal slice 

through L-SM (mid-sagittal plane is a few m m  to the right of this slice, just w here 

the central sulcus (CS) traces from left and right form an angle); see also 

anatom ical landm arks, and  source space levels (1 and  8). Middle: connectivity 

plots for the same period; the sequential shifts of m axim um  intensity criss-cross 

the central sulcus. Right: localisations of strong intensity maxima throughout the 

same period. Note their "distribution" on either side of the central sulcus; 

anatomical landm arks are not show n to avoid confusion. Dot colours correspond 

to different durations of activity in each point (yellow longer than red; red longer 

than green), while dot size different intensity strengths (the bigger the dot the 

stronger the intensity).
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Figure 8-5: Top: 20 ms long integrals of intensity through an oblique axial slice at the 

plane of the 8th source space level; time intervals are between 150-170 ms (left) 

and 230-250 ms (right) after EMG onset. The regions revealed are anterior to the 

SM regions show n before, and are w ithin the anterior parts of the supplem entary 

motor a n d /o r  frontal areas (L, R-SM A /frontal). Note CS traces, source space 

levels, oblique axial skull outline, and anatom ical landm arks. Middle: activation 

curves of the two ROls. Note that the activation of L-SMA is m uch stronger than 

that of R-SMA. Bottom: the previous intensity integrals (shown on top) as 

projected on properly selected sagittal MRl slices. Note CS marks, and |J p | in 

arbitrary units.
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Figure 8-6: Activations within all the previously m entioned regions for sum m ary a n d /o r  

com parison purposes. Note that the first significant activation occurs in the left 

IPL region (some 40 ms before EMG onset) followed by a whole sequence of 

events involving the SM and SMA regions both contralaterally and ipsilaterally. 

Dashed vertical lines m ark 100 ms apart latencies to aid comparisons.
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Figure 8-7: Left: integrated intensity between 70 and 90 ms after EMG onset. Right: 

localisation of the instantaneous m axim um  of intensity. The location of the 

m axim um  is in the second som atosensory area (Sll).

8.2.6 Discussion

Before com m enting on the aforepresented findings one should recall that the motivation 

for including this analysis of this dataset in the present thesis was to show that MFT does 

reveal pathological activity which is time-locked to an externally observed event, that is 

the EMG onset of myoclonic activity. Such a goal has been achieved since we have 

localised activity on the (left) sensorim otor cortex following (an averaged) spontaneous 

myoclonic m ovem ent of fingers as recorded w ith the EMG electrode.

However, the availability of a (twin Dewar) system  capable of capturing activities from 

either side of the head m ade it possible to additionally identify the initiation of epileptic 

activity some 40 ms before the EMG onset in the left inferior parietal cortex. In other 

words, the use of the 2x37 channel MEG system  which offered a partial bihemispheric 

coverage of the head enabled the sim ultaneous study of both the irritative (i.e. spike 

generating zone; left IPL area) and the sym ptom atogenic zone (i.e. the one responsible 

for the appearance of external sym ptom s; left SM area).

The MFT localisations of the left IPL area are in general agreem ent with those of the ECD 

analysis and also the PET results which indicated hyperm etabolism  in this region 

(Volkmann et al 1995,1996). In their study, Volkmann et al m entioned that they could see 

a dipolar generator of activity in the left som atosensory area some 80 ms after EMG
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onset, but they failed in the identification of (dipolar) activity in the precentral gyrus 

(motor) or frontal areas which were, however, identified in PET analysis. They speculated 

that there w ould be a polysynaptic transm ission to the spinal cord, probably via 

activation of the hypermetabolic precentral gyrus (which show ed no dipolar activation) 

and the feedback activity following the myocloni w ould fall w ithin the hypometabolic 

som atosensory cortex.

The MFT analysis presented here though, not only identified activity w ithin the pre- and 

post-central gyrus but also revealed the involvem ent of the frontal/SM A  areas in 

agreem ent w ith the PET findings. The ECD failure was very likely due to the absence of a 

"focal image". Recalling that we only dealt w ith averaged signals that w ould not be 

surprising: single trial variability prior to m ovem ent could easily result in blurring (see 

for exam ple Liu et al 1996). W hat additional goodies, though, could one have found by 

incorporating single trial analysis in this case?

The answ er to this question can be speculated w ith the experience of unaveraged data 

analysis presented in this thesis, bu t also w ith reference to other recent single trial MFT 

reports (e.g. Liu and loannides 1996; Liu et al 1996). The m ost im portant piece of 

inform ation w ould involve the latencies for the activations of the already identified areas 

(as appeared in the averaged record), as well as the order of activations in different single 

events (finger twichings). Since the areas revealed by MFT analysis of the averaged 

record are also identified by PET m eans that these areas are the "nodes" of activation in 

this case and, therefore, should also be activated in single epochs (loannides 1994). By 

averaging the signals, however, the inherent trial to trial variability is sm oothed (if not 

com pletely lost) and one cannot m aintain his confidence in the resulting sequence of 

events. It is for this reason that we did not pursue the issue of connectivity between 

som atosensory (postcentral gyrus) and som atom otor (precentral gyrus) areas any further 

in our analysis (refer to Figure 8-4), neither we attem pted to say w hether the observed 

activation of the SM region (e.g. Figure 8-3) is due to motor or som atosensory zones. We 

have show n that it should be due to both, and the PET results support this view. With 

single trial analysis though, we expect that we w ould have been able to clarify the issue 

considerably.

Finally, we should briefly com m ent on the rest of our findings. The involvem ent of the 

contralateral sensorim otor area is not surprising. As Shibasaki (1996) authoritatively 

states, "bilateral activation of motor cortices should be expected in both physiological and 

pathophysiological conditions". He further supports the view that m ovem ent of the 

intact hand  w ould m ainly involve contralateral activation, while m ovem ent of the 

"affected" hand  w ould involve bilateral activation. Moreover, simple m ovem ents usually
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com prise unilateral origin, while complex or sequential m ovem ents w ould necessitate 

bilateral activation (Shibasaki 1996). Despite the generally stronger appearance of activity 

in the ipsilateral sensorim otor area (right SM; see m axim um  of the activation curve in 

Figure 8-3) - w hich could be explained by the closer proxim ity of the sensors to the right 

SM than the left SM (see set up in Figure 8-1) - activation of the contralateral area (left 

SM) w as seen to precede its hom ologous site, highlighting the tem poral advantage of 

MEG.
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8.3 Auditory Odd-ball Study

8.3.1 Aims and General Information

The observation of deep (contralateral to the m easurem ents) activation in the analysis of 

interictal epileptic signals from one patient (Pat2) in the previous chapter opens up  the 

question "how  reliably can deep activity be extracted given bilateral sensor coverage". 

The dynam ic sim ulations in the case of sim ultaneous bilateral m easurem ents as 

presented in section 5.4.4 (and Figure 5-32 in specific) provide part of the answer. The full 

answer to this question is beyond the scope of the thesis; it requires an accurate 

m odelling of the skull boundary - because the sphere m odel is almost certainly 

insufficient - and modifications to the main algorithm  to deal sim ultaneously w ith 

bihemispheric and deep activity. We limit our task to addressing the question: given 

"real" bihem ispheric recordings, how w ould the deep activity from the familiar "sm all 

deep cylinder" source space m odel com pare w ith deep activity obtained w ith the 

modelling of each hem isphere separately?

For this part of w ork we shall use signals elicited under the classical "auditory  odd-ball 

experim ent", during  which norm al subjects are exposed to a series of "frequent" tones (of 

a certain frequency) in terrupted by "infrequent" or "odd" tones (of a different 

frequency). The subject's task is "silently count" the presentations of the odd stimuli. 

This protocol produces "Endogenous" late sustained activity (Halgren et al 1980), know n 

as P300 or P3, in addition to the "usual" main auditory evoked activity.

The family of late sustained potentials and magnetic fields associated with the P30Ü 
recorded on diverse population groups (normals, patients w ith lesions, epileptic patients) 

has been studied for m any years using a variety of techniques (SEEG, EEG, MEG). A long 

list of candidates for the possible generator sites has been produced as a result, and w hen 

all the inform ation is gathered together the list of sites im plicated appears to cover a very 

w ide netw ork extending throughout the brain, including cortical regions in both 

hem ispheres (frontal and parietal) as well as the limbic system, and the thalam us. As 

Halgren (1996) points out as an overall sum m ary of his studies on odd-ball experim ents, 

"m any (and large) areas m ay be sim ultaneously activated from very soon after stim ulus 

onset (<200 ms) till very late (>1 s)".

The specific MEG study  of the odd-ball experim ent involves considerable effort and it is 

part of an on-going research at Jiilich since late 1994. The concern for this thesis is rather 

narrow  and it is not, for example, intended to enter the "P300 generators debate". The 

interest is twofold: firstly, the ongoing experim ents in late 1994 provided the opportunity  

for some experim ental w ork to add to the mainly theoretical frame of research in the rest
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of the thesis. Second reason is to merely exploit the fact that "deep activity" is expected to 

em erge from such a paradigm  (especially at later latencies). We shall apply MFT to 

signals from left and right Dewar separately, as well as em ploying sim ultaneous bilateral 

MFT reconstructions as described in C hapter 5.

8.3.2 Experiment and Measurements

We used the standard  odd-ball paradigm  which consisted of m onaural delivery of two 

tones, the frequent (1 kHz, 80% probability) and the odd (2 kHz, 20% probability), each 

50 ms long (10 ms rise, 30 ms plateau, and 10 ms fall). The subject was instructed to count 

silently the odd tones and report their total at the end of each session. M easurem ents 

were perform ed w ith the Twin MAGNES BTi system  (2x37 channels, Jiilich, Germany); 

for each of the subjects* two different placem ents of the probes were used. For each 

placem ent the tones w ere delivered to the left and right ear in separate runs; some 300 

tones (approxim ately 50 odd) were delivered in each run. Each epoch consisted of some 

1042 timeslices covering the interval from  212 ms before, to 787 ms after the onset of the 

stim ulus. A detailed description of the experim ental protocol and the recording sessions 

is given in A ppendix B.

8.3.3 Analysis

The signal w as sam pled at 1041.7 Hz (sample period 0.96 ms) with on-line (hardware) 

band-pass filters from 0.1 to 400 Hz; the raw  signal was subsequently digitally band-pass 

filtered from 1 to 45 Hz. The resulting averaged signal (as com puted for both odd and 

frequent responses) and individual single trials w ere then subjected to MFT analysis after 

registration of the MEG data w ith individual MRls of each subject (using the m ethods 

presented in C hapter 3).

The signals from  each probe were used in separate MFT analysis w ithin partial 

hem ispherical source spaces to provide a sim ultaneous, bu t independently derived view 

of activity in each hem isphere. Each source space covered almost the whole of its 

corresponding brain hem isphere. The source spaces had  a com mon deep level (level 1) 

and w ere arranged symmetrically w ith their third axis along the y-direction of the head 

based MEG system. We have also used the signals from both probes together in a limited 

num ber of MFT reconstructions w ithin a "sm all" deep cylindrical source space to

The series of experiments consisted of 6 subjects; MFT analysis has been performed for 4 of them. 

However, for the purpose of this thesis we are only going to use data from a single subject.
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specifically look at deep activity close to midline^. The conducting model used in all 

cases was a sphere fitted to the local (to the sensors) curvature of the inner skull surface, 

in the case of separate MFT analysis, and to the entire skull outline, in the com bined case. 

Figure 8-8 illustrates the sensor positions relative to subject HMG, together w ith the 

source spaces and the conducting spheres in different perspective views. In all cases, 

G aussian probability w eightings w ith properly chosen decay factors w ere used and the 

sm oothing param eter was kept equal to unity.

8.3.4 Results and discussion

Preliminary results from the averaged and single trial MFT analysis for two subjects of 

this experim ent has already been reported in a m eeting last year (loannides et al 1995d) 

and  since then another two subjects have also been analysed. However, as m entioned in 

the introductory section, it is not our intention to present this analysis here, bu t to 

concentrate on a single aspect of it: the study of deep activity as conducted w ith the 

present facilities. The intention is to finish this thesis by identifying the problem s and 

limitations associated w ith the analysis w e have em ployed and indicate the directions for 

future research - some of w hich are already in progress in the MEG laboratory in Jiilich.

We have selected three 20 ms long time intervals from the averaged odd and two single 

trial (also odd ones) records in which MFT reveals deep activity (always for subject 

HMG, and frontolateral Dewar placements). From the unlim ited num ber of presentation 

options we have chosen to show the MFT solutions as projected on fixed axial and 

sagittal MRl slices: the axial slice contains both tem poral lobes, the hippocam pal- 

am ygdala complexes, and the inferior parts of the anterior and posterior ends of the 

cingulate structures; the sagittal slices describe the cingulate system  on the left and right 

side of the head and they only differ by some 12 m m  from  each other. The solutions for 

the averaged odd response as obtained from the separate m odelling in the left and right 

source spaces respectively are given in Figure 8-9. Time runs from 325 ms to 340 ms after 

stim ulus onset (to the left ear). Each display shows the instantaneous distribution of 

activity at a single timeslice. The | J p | values printed beneath each axial slice correspond

+ MFT reveals activity in a number of deep areas. In the following we focus our attention on activity from  

the cingulate gyrus, this structure extends close to the brain midline, but it is still away from the centre of 

the conducting sphere that best fits  the entire skull and the best sphere fitting  the portion of the skull near 

each probe. Although we expect different choices for the conducting sphere centre in each of the three 

inversions (from signals from probe A, probe B, and both A and B) to lead to distortions, these will be less 

than what would be encountered if  a structure closer to the head centre (e.g. thalamus) were considered.
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to the m axim um  of the distribution (at the specified time instants) throughout the whole 

of the left and right source spaces; in contrast, the values prin ted  beneath each sagittal 

figurine give the m axim um  of levels 1 to 3 in each source space (i.e. 3 deepest levels only 

on either hemisphere). The actual MFT displays show the distribution at the displayed 

slice and do no t necessarily contain the m axim um  throughout the whole volum e in each 

case. One can see tha t there is progressive built up of activity at the posterior cingulate 

level which is identified by each reconstruction independently. The result looks more 

im pressive in the axial projection w here both MFT solutions (i.e. for left and right side) 

show  activation at very similar locations.

The MFT reconstructions for the same time interval w ere repeated using the deep 

cylinder source space model and the results are show n in Figure 8-10. The same kind of 

display form at is used there as well, w ith the only exception being the printed | J p | 

values. In the latter figure, only the overall maxima throughout the whole cylinder are 

printed beneath each axial slice, and consequently the sam e cautions as before still apply. 

As one can notice in Figure 8-10, the cylinder also provides hints for activation at the 

posterior central region, but the axial projections are a little bit "fuzzy" and unclear. 

Given the inherent conducting m odelling uncertainties one cannot be certain which 

structures exactly are activated. However, if w ith the existing m odelling facilities is 

im portant to highlight that do get strong hints for an "activity crossover" between the 

two brain hem ispheres occurring at the given time interval at the brain m idline 

structures. This is clearly illustrated in Figure 8-11, w here the tim e-depthplots for the 

specific MFT solution set are given for the deep cylinder model. One can note the 

aforem entioned "crossover" happening around the latencies studied. Two scales are used 

in Figure 8-11: in the top part, the tim e-depthplot involves all 9 levels of the cylinder 

space (i.e. from fairly deep right to fairly deep left regions), while in the bottom  part only 

the 5 deep levels of the cylindrical source space are involved in an effort to reduce the 

interference of any superficial activations (which are, of course, projected on the left and 

right extreme levels of the cylinder; see C hapter 5) and better focus on the m ore central 

(midline) activations.

Two m ore such exam ples draw n from the single epoch MFT analysis of the same dataset 

(i.e. frontolateral probe placements; subject HMG) are given in the four next figures. The 

first two of them  (i.e. Figure 8-12 and Figure 8-13) involve the latencies from t=495 ms to 

t=510 ms in epoch 282 (odd one), while the following two (i.e. Figure 8-14 and Figure 8- 

15) involve the latencies from t=315 ms to t=330 ms in epoch 297 (an odd one as well). 

O ne can again note the general agreem ent between the two independent source spaces in 

the identification of deep, midline located activity. The set describing epoch 282 provides
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hints for activation at the cingulate level w ith an "apparent" possible shift from anterior 

to posterior, while the set describing epoch 297 hints only posterior activation. The 

interpretation of MFT displays at fixed MRl slices m ust be done w ith caution, because 

one cannot be certain w hether the observed activations are the true ones or just 

reflections of stronger activity in other areas and associated shifts due to conductivity 

m odelling errors.

A critical appraisal of the "sm all deep cylinder" MFT inversions m ust conclude that they 

are distinctly less successful than the corresponding "sm all deep cylinder" MFT 

inversions in C hapter 5. A crucial difference between the two is the position of the sphere 

centre which for the bilateral m easurem ents in this section was taken to be the geometric 

centre of the head, while for the unilateral m easurem ents of C hapter 5 was well onto the 

other side. The need for a better conductivity m odel (e.g. spheroid; Fieseler et al 1995) is 

clearly evident.
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Figure 8-8: Experimental set up  for subject HMG (frontolateral Dewar positions) and 
MFT source space models. Top and  middle: two hem ispherical source spaces 

w ere used in the MFT analysis, one for each probe. Note the source space 

orientations w ith respect to the MEG headshape outline (green) and the sensors 

(red and blue bars for probes A and B respectively). 4 levels are given for source 
space in three perspective views. Bottom: the "sm all" cylindrical source space 

used in the sim ultaneous study  of both probes. In each plot, the conducting 

sphere is draw n as a pink circle w ith a pink dot m arking the centre of the 

conducting sphere.
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t=325ms
Averaged odd; two hemispheres separately; subject HMG

t=330ms t=335ms t=34Qms

I

|J_L|=3.6915179E-02 |J_L|=2.619Q398E-02 |J_L|=3.3199314E-02lJ_L|=2J7562a8E-02 
|J_R |=3.9369795E-02]l_R|=3.0633a59E-02|J_R|=2.7630951E-02|J_R|=3.4417253E-£l2

=3,1251308E~D2 |J|=2.TI46299E-02 |J|=Z6577519E-02 |J|=2.7736286E^02
Right, MR I=94

)
=1-S320952E-02 |J|=2.2223130E-02 |J|=Z5064444E-02 |Jl=2.5274025E-02

Figure 8-9: MFT Solutions for the averaged odd response obtained independently in the 

left and right source spaces between t= 325 ms and t=340 ms after stim ulus onset 

(to the left ear). The | J p | values beneath each axial slice correspond to the 

m axim um  of the distribution th roughout the whole of the left and right source 

spaces at that time instant, while those beneath each sagittal to the m axim um  of 

the 3 deep levels only in each source space.
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Averaged odd; small deep  cylinder model (probes A,B); subject HMG
t=325m s t=330ms t=335m s t=340m s

Ml=0.1364930 

Left, MRI=106

1=0.1686525 I J|=0.1214118 =0.1040788

Right, MRI=94

0

Figure 8-10: MFT reconstructions for the same time interval as that in Figure 8-9, but 

repeated using the deep cylinder source space model (both probes together; see 

bottom of Figure 8-8). The display format is the same used with that of Figure 8-9, 

except that only the overall maxima throughout the whole cylinder are printed 

beneath each axial shce.
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Figure 8-11: Left: the deep cylinder source space model. Right: tim e-depthplots for the 

MFT solutions presented in Figure 8-10 (i.e. using the deep cylinder model). Two 

scales are used: in the top, the tim e-depthplot involves all 9 levels of the cylinder 

space (i.e. from fairly deep right to fairly deep left regions), while in the bottom, 

only the 5 deep levels of the cylindrical source space are involved; arrow s depict 

the association between the depthplot edges and the involved source space levels; 

(see text). O ne can note the aforem entioned "crossover" happening around the 

latencies studied in the previous figure.
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Epoch 282 (odd); two hem ispheres separately; subject HMG
t=495m s t=500m s t=505m 5 t=510ms

|J_L|=0.1577887 |J_Ll=0.237520D |J_L|=0.3092552 |J_L|=0.230S415
|J_R|=9.Qa09025E-0:|j_R|=0.1412389 |J_R|=Q .1894919 |J_R|=Q .1695783

t e

J=0.1455795|Jh0.1520534 =0,2248242=0.1082996
Right, MRl=94

I|=8,1880227E-02 |J|=8.3477385E-02 |J|=0,1139830 |J|=0,1234377

Figure 8-12; MFT displays involving the latencies from t=495 ms to t=510 ms during  the 

odd epoch 282. The same conventions are used as for Figure 8-9. Note again the 

general agreem ent between the two independent MFT reconstructions (left and 

right) in the identification of deep m idline activation. See also the corresponding 

deep cylinder reconstructions in Figure 8-13.
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Epoch 282 (odd); small cylinder model (probes A, B); subject HMG
t=495ms t=500ms t=505ms t=510ms

¥
J=1.551559lJh0.873CX)08 =1170171=1339138

Right, MR I =94

Figure 8-13: MFT reconstructions for the same time interval as that in Figure 8-12, but 

using the deep cylinder source space model. See Figure 8-10 for conventions. The 

displays are consistent w ith activation of the cingulate which shifts from anterior 

to posterior.
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Epoch 297 (odd); two hemispheres separately; subject HMG
t=315ms t=320ms t=325ms t=330ms

P_L|=0.202826
|J_R|=0.1296729

kl_L|=0.1946614
lJ_Rj=G.13Q2291.

J_L|=0.1936655
lJ_R|=Q.1519a93

I J_L|=0.4106456
|J_R|=Q.1267377

M=04715452 =0.2252283=02028265 =0.1946614
MR I=94

J=0,1242310=9.28O4O02E-O2 =0.1276173 =8.3995052E-02

Figure 8-14: MFT displays involving the latencies from t=315 ms to t=330 ms during  the 

odd epoch 297. The conventions valid in Figure 8-9 apply here too. Note again the 

general agreem ent between the two independent MFT reconstructions (left and 

right) in the identification of deep posterior m idline activation. See also the 

corresponding deep cylinder reconstructions in Figure 8-15.
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Epoch 297 (odd); small cylinder model (probes A,B); subject HMG
t=315ms t=320ms t=325ms i=330ms

V% «

=0.6458270|J|=0.915128B |J|=0.78g6057 =0,6587822

Riaht, MR I =94

)

Figure 8-15: MFT reconstructions for the same time interval as that in Figure 8-12, but 

using the deep cylinder source space model. See Figure 8-10 for conventions. 

Hints are provided for activation at the posterior cingulate level especially in the 

axial projections.



9. General Discussion and Further Work

The w ork of this thesis has been m ainly concerned w ith  research into interictal epileptic 

activity as recorded by means of m ultichannel MEG system s and analysed using a source 

m odel em ploying current density distributions, nam ely MFT. The m ajor aim has been to 

investigate w hether or not MFT analysis of unaveraged MEG data (single epochs) is 

feasible in cases of pathophysiological signals and m ore specifically interictal signals 

from  patients w ith  epilepsy of a complex partial type. The investigation w as undertaken 

against the old and "traditional" view of the im propriety and  absurdity  of using single 

epoch records in the MEG analysis due to noise dominance; it w as, however, along and 

w ithin the general concept adopted over the last few years here at the O pen U niversity 

that m ultichannel system s should provide the potential to study  brain activity in "real 

time", if w e m ay say so, bu t one w ould need a robust m ethod to pursue such analysis. 

The research w as initiated by a prelim inary report (loannides et al 1993c) w hich show ed 

that the 3d-distributed source model (i.e. MFT) was appropriate for studying deep 

a n d /o r  superficial activity extracted from averaged epileptic datasets. .Vloreover, another 

m ore recent MFT study  hinted that MFT could be a valid m ethod to use in unaveraged 

epileptic datasets (loannides et al 1995a). The project ran in parallel w ith other studies 

w hich tackled sim ilar questions but under non-pathological frames, nam ely auditory 

evoked responses from norm al subjects (Liu 1995) and responses during  the C ontingent 

N egative Variation (CNV) paradigm  (Liu et al 1996).

To achieve the set goal we have started the research in C hapter 3 by trying to device 

strategies that w ould allow accurate registration of the MEG data w ith structural MEG
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images, thereby im proving the localisation capability of M EG/M FT, as well as, providing 

the prerequisite for advanced - future - m odelling of specific brain structures. The 

registration m ethods attem pted and developed were not a novelty as such, since ideas 

w ere borrow ed from other relevant techniques of the brain im aging field in general. 

Some novelty could be, however, attributed to the dem onstration of the need to move 

from the m ost com mon and easy point m atching strategy to the more robust and less 

subjective m ethodology of surface m atching through the use of practical visual exam ples. 

In addition, the com bination of the two techniques (point and surface matching) was 

em ployed here for the first time. M oreover, all the attem pted m ethods were im plem ented 

by developing software which did not m ake use of any already available commercial 

package (i.e. all the source code was "hom e-m ade" all the w ay through from beginning 

to end). The experiences collected throughout the developm ent and application of these 

techniques will certainly provide a useful reference in future MEG research.

The first section of C hapter 5 has dealt w ith rudim entary  MFT tests that are necessary 

before each MFT study, at least w ith  existing tools. Some of the tests and sim ulations that 

followed, though, have been perform ed for the first time, bu t they should by no m eans 

regarded to be exhaustive. The m ain objective in undertaking them  has been to identify 

the potential and some of the lim itations of MFT, at least as far as the im plem entation 

that has followed in the rest of the thesis is concerned. In other w ords, the aim has been 

to provide support for the results obtained in the m ain bulk of the thesis from the MFT 

analysis of real datasets. Therefore, both the spatial and tem poral aspects of MFT have 

been discussed and attention has also been paid on the "num ber of sensors effects" on 

the spatial resolution w ith special em phasis on the recovery of deep activity from both 

unilateral and (simultaneous) bilateral m easurem ents. A novel w ay of conducting MFT 

studies in dep th  w as suggested and im plem ented: the iterative use of a source space 

designed to cover deep situated structures on either side of the brain. This m ethodology 

is utilised in Chapters 7 and 8 in association w ith real data. Finally, utilities have been 

developed and used to allow for user-designed tem poral evolutions of various source 

configurations to be incorporated in MFT sim ulations. Realistic sensor configurations and 

signals that were neurophysiologically pragm atic in term s of location and tem poral 

characteristics have been em ployed to investigate the "dynam ic" or tem poral capacities 

of MFT, again in order to backup the results presented in Chapters 6 through to 8.

Real datasets from a SIEMENS 37 channel system  w ere used in the following two 

chapters, the main ones in the current piece of work. Using these in C hapter 6, we have 

proved that MFT analysis of single, unaveraged epileptic spikes is indeed feasible: we 

have dem onstrated spatio-tem poral coherence in the MFT results of the various
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("similar") single interictal events and show ed that activity extracted from the "averaged 

event" is m ade up of activity contributions which occur interm ittently and at variable 

latencies. M oreover, we have hinted that the averaged appeared to be the outcom e of a 

higher aggregation of similar events in some epochs. O ur statem ents w ere draw n from 

the study  of both superficial and deep activity. We have show n that if the activity in an 

area is integrated over a period of time, then the averaged and single epoch integrals 

agree more and more as the interval of integration increases, despite huge variability 

from m om ent to m om ent in the course of single events. In addition, dom inant features in 

the MFT solutions extracted from the averaged event have been identified in the MFT 

solutions of single, unaveraged events, although in the latter have usually been buried  in 

a stronger and more variable background.

In C hapter 7, we further applied and exploited the above conclusions to study  the spatio- 

tem poral evolution of interictal activity during  the course of unaveraged spike events in 

tw o cases of tem poral lobe epilepsy. We have observed the interactions betw een 

superficial (neocortical) and deep tem poral structures (hippocam pus): superficial activity 

has been identified as preceding deep activity. These observations w ere reinforced using 

a novel technique of backavareging three dim ensional MFT solutions. Furtherm ore, 

consistent propagation patterns of activation in the depth  of the tem poral lobe w ere 

revealed am ong the various spike events: at the hippocam pal level, activity seem ed to 

propagate m ostly in the anterior-posterior direction suggesting spread from  am ygdala to 

hippocam pus. H owever, sequential shifts of activity from anterior to posterior and then 

back to anterior (or vice versa) w ere also observed in this region. Finally, some focal deep 

activity in this region w as seen to be initiated in the contralateral hem isphere (probably 

on the contralateral hippocam pal region) and the deep cylindrical source space 

(archetype from C hapter 5) was called to model it.

These findings, although in agreem ent w ith depth  electrode observations, have been 

quite novel in the sense that have not been dem onstrated before using unaveraged  

interictal MEG signals. In addition, they provide further evidence that MFT can be 

applied to unaveraged MEG signals and produce a millisecond by millisecond "view" of 

superficial as well as deep brain activity, w ith minimal prior constraints in the spatial 

dom ain and no constraints on the tem poral order of events. The clustering of sequences 

of events in space and time in the MFT solutions provides the m ost direct link to the 

evolution of events in the brain available so far, but we do not yet have enough 

experience to fully exploit the new inform ation at our disposal. The experience gained 

from the analysis of averaged data is not always useful as the analysis of single trial data 

dem onstrates, for both norm al brain function (loanm des et al 1995b) and pathology
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(Bamidis et al 1995). N evertheless, even at this early stage, single epoch analysis provides 

a potentially very useful tool. For the specific clinical use in epilepsy, the w ork we have 

reported suggests that, MEG offers a reliable technique to detect and localise epileptic 

activity w ithin the hum an brain com pletelij n o n -in va sive ly . Its precision, when 

accom panied with a stereotactic system  for the defim tion of brain structures, allows 

successful functional radiosurgery to be perform ed, w ith M EG-defined target zones 

(H ellstrand 1993, 1995). It rem ains to been seen w hether further im provem ent in 

localisation can be achieved through the introduction of additional constraints from 

anatom ical inform ation and conductivity modelling. The MFT analysis has added further 

insights on the propagation of the epileptic activity w ithin the brain and it, therefore, 

seem s to be an ideal tool for studying the complex signal interplay m aking up the 

different spike types and kinds of epilepsy (Bamidis et al 1995). Concluding, we m ay 

state that, MEG m easurem ents and MET analysis offer the opportunity  to non-invasively 

recover the functional connectivities of the various anatom ical structures from single 

epoch data, avoiding the dangers associated w ith  averaging.

Finally, sim ultaneous bilateral recordings conducted w ith  m odern  MEG equipm ent (BTi, 

2x37 channel system) have been utilised in the MFT analysis presented  in C hapter 8 

w hose first part has dealt w ith a case of myoclonic epilepsy. The m otivation has been to 

use this as an ideal localisation study  and to show  that MFT can reveal pathological 

activity which is time-locked to an externally observed event (i.e. EMC onset of 

myoclonic activity), a goal achieved by localising activit}' on the (left) sensorim otor cortex 

following (an averaged) spontaneous myoclonic m ovem ent of (right) fingers as recorded 

w ith  the EMC electrode. Similar support for the correctness of the MFT analysis could, of 

course, be provided by m eans of a typical experimental set up  of a "synthetic" dipole 

em bedded in some kind of conducting m edium  and artificially activated in time. 

H owever, we believe the exam ple used here to be more realistic and challenging and at 

the same time more interesting from the pathophysiology point of view.

The sensor configuration and the activations observed in the latter exam ple, though, did 

not facilitate m odelling of bilaterally recorded deep activity'. Thus, the "MFT view" of 

deep activity' (contralateral to the m easurem ents side; case of unilateral recordings) - 

m ostly undertaken in C hapters 5 and 7 as an academic exercise - has been applied in an 

actual situation of both averaged and single trial datasets in the second part of C hapter 8. 

The classical auditory^ odd-ball paradigm  has been used in association with "more 

reliable" data from roughly symmetrical Dewar placements bihem ispherically, to probe 

activity in depth. Hints for the suitability and usability of the novel iterative use of the
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"sm all deep cylindrical source space model" in the study of deep activity have been 
provided  therein.

So far, we have sum m arised the research undertaken in this thesis, highlighted the main 

findings, and provided a general discussion. In the following few lines we wish to 

suggest points and directions along w hich further research can be pursued .

One of the m ain draw backs of the analysis presented throughout this thesis is the fact 

that, it w as carried out in segm ented time intervals of the overall dataset volum e, which, 

how ever, com prised a considerably small percentage of the w hole am ount of the actual 

data^ (e.g. some 30 sec w ere analysed w ith  MFT for Pat2 in C hapter 7 as extracted from a 

5 m in MEG session). MFT analysis of long data sequences as currently  facilitated is 

highly resource dem anding (i.e. a substantially large am ount of disk space storage 

needed, heavy and long com puter engagem ent w ith extensive CPU usage for the 

inversions is mandated*) and, therefore, practically impossible. Simple vector signal 

transform ations like the so-called (loannides 1987, loannides et al 1990b) m ay prove 

particularly  useful. Such an approach has already been developed and efficiently used 

here at the O pen U niversity to facilitate the analysis of single trial auditory  evoked 

responses (Liu 1995). That im plem entation though, highlighted nearby (to the sensors) 

sources, providing an estim ation of superficial generators of activity only. In order for the 

sam e approach to be applied in the study  of epileptic data one needs to accom m odate the 

requirem ent of highlighting deep sources too.

Sim ultaneous bilateral recordings w ould be very pertinent in such analysis. One could, 

for example, built signal transform ations (templates) that w ould search for superficial 

activity on either side independently , and then use templates for both probes together to 

efficiently look for deep activations. The former task could exploit som e kind of signal 

polarity inversion (like V J around a specific (region of) sensor(s). The latter task w ould 

require searching for time segm ents w here all (or many) channels w ould  have the same 

sign on each probe bu t w ith opposite polarities between the two probes. Various other 

options could also be incorporated allowing for descriptions of stationary but rotating

The only justification though, is that :ve did use the results from the template correlation S I E M E N S  

softzcare to mark the "temporal luhereabouts" o f  interesting events, and hence the time intervals studied  

zvere not concentrated in an y  particular edge o f the dataset volume, but icere spread throughout the it.

The M F T  inversion o f  Is long signals ( -1 0 0 0  timeslices) from a 37-channel system  zvould demand  

approximately 30M b o f disk storage and nearly IV: - 2 hours o f  computing time on our dedicated transputer  

system.
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sources, m oving or sequential superficial activations, or deep activity that is closer to one 

probe rather than the other. Some developm ents along these lines are already under 

exploration in the Jülich MEG laboratory.

A nother w ay of exam ining long sequences of continuous epileptic data w ould be to 

apply  the recently published ideas for signal-space projections (SSP, cf Tesche et al 1995). 

SSP can be used to detect and characterise sim ultaneous a n d /o r  sequential activation of 

neuronal distributions by studying the patterns of signals m easured by a specific array of 

detectors (in either time or frequency domain). Such an approach w ould  be directly 

applicable to the set of data analysed in this thesis, since having perform ed the MFT, 

analysis for specific interictal events, we already have some idea of the sources involved 

in given time intervals. Thus, one could easily built up a spatio-tem poral signal tem plate 

(including, for instance, only signals from the detectors w ith  strongest values) and 

brow sing through the data to identify appearances of the specified pattern  (and 

obviously the associated underlying neuronal generators) in time. One could assign 

different tem plates to different (assumed) neuronal populations: one to the intervals that 

indicated superficial activation and another one to those intervals that showed 

hippocam pal activation. It w ould be very interesting to com pare such results to those of 

C hapter 7 and s tudy  the interactions betw een neocortex and deep tem poral structures 

over considerably long time segments.

A nother straight forw ard task should be to combine the above lines w ith  the m odelling 

perform ed in C hapter 5 to use w ithin any kind of paradigm s. For instance, one could 

attach tem poral inform ation from anim al experim ents (conducted for sam e or similar 

conditions) to certain areas of activation. The "estim ated" or anticipated signal 

sh ap es /p a tte rn s  could then be used as seeds in the tem plates analysis. This is in fact 

similar to w hat Tepley and W ijesinghe (1996) attem pted in an MEG study  of spreading 

cortical depression: their sim ulations predicted additional w aveform s w hich w ere not 

previously recognised but found in their data post-sim ulation. M oreover, such 

sim ulations could be used in association w ith the subject's MRIs prior to an experim ent 

in order to predict the best probe placem ent positions. Of course, this is not necessary for 

the m odern helmet-like system s in which the position subject is fixed in relation to the 

probe. In the latter case, however, sim ulations can be used to indicate the range of 

channels that will be involved in recording activations from certain areas, or in other 

w ords to produce so-called spatial filters.

Robust correlations in source space could also be developed to allowing for a fast and 

efficient analysis of the 3d MFT solutions. For example, one could follow ideas 

resembling those developed for correlations (Liu LC and loannides 1995): identify a
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time interval of interest in the MFT solution space (e.g. some 40-70 ms of hippocam pal 

activations like those used in the connectivity plots in C hapter 7) and correlate the J*” 

quan tity  in a similar w ay to that used for in order to reveal how often the same 

pattern  repeats itself.

The latter could be used in conjunction with the 3d solution backaveraging technique: 

one could attem pt a selective backaveraging considering only events w ith a specific type 

of propagation (e.g. an terio r^posterio r propagations or anterior->posterior-^anterior 

shifts) and  try to see w hether the order of the identified superficial activations w ould 

continue to be the sam e or not, and w hether or not there w ould be some kind of 

correlation betw een the appearing propagation patterns at the dep th  of the tem poral lobe 

and  those at the surface of it.

M oreover, we m entioned in Chapter 7 that spikes of similar shapes m ight involve 

different activation pathw ays and, therefore, spike averaging m ight embrace inherent 

caveats (Witte et al 1992). O ur results indicate consistencies arising from the MFT 

analysis of unaveraged spikes, bu t we have observed that each spike m ay have a slightly 

different activation history to reveal. The overall localisation m ight be the same (e.g. 

in tegrated activity over relatively long time intervals) and m ight in fact agree w ith that of 

the averaged signal. But in order to investigate w hether some credibility can be assigned 

to the pathw ay  revealed by the averaged record or not, one m ay take up  the following 

project:

• C onduct sim ulations w ith different pathw ays, that is, incorporate a few activation 

areas* - not only at the depth  of the tem poral lobe b u t also in superficial cortex - and 

assign different orders in the activation sequence (e.g. anterior cortex—̂ posterior 

cortex—̂ anterior h ippocam pus^poste rio r hippocam pus etc.), as well as, different time 

constants in the individual activations.

• Com pute the sim ulated signals from the above activations.

• A verage the signals from similar, slightly different, and com pletely different 

pathw ays.

• C om pute the MFT solutions for each of the individual signals, as well as, for the 

various averaged records.

• Perform the backaveraging of e.g. hippocam pal activations (of similar or different 

im plicated pathw ays

These can be simulated by dipoles or even distributions o f  current.
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• S tudy the "connectivity plots" extracted from the MFT solutions for the averaged 

signals and also the backaveraged solution set.

• C onduct a critical appraisal in term s of the advantages and disadvantages of signal 

averaging and solution backaveraging w ith  respect to the revealed activation history.

Finally, research in m odelling the conducting m edium  in association w ith deep 

cylindrical source space approaches has already been presented in Chapter 8. One may, 

how ever, recall that superficial activity is always interfering in the deep activations and is 

alw ays projected on the first levels of the cylinder (on either side of the head in bilateral 

recordings). Therefore, one m ay combine some signal processing or tem plate analysis 

techniques to eliminate this superficial interference directly from the signals and, 

therefore, study  the deep activations from the "clean" signals m ore comfortably.

In conclusion, w e have to m ention that the real benefit for all this sort of studies, will 

com e if processing is perform ed in real time, that is directly from the recorded signals 

("on the fly") and not post-inversion. In this w ay limitations from the storage dem ands 

for the huge MFT solution files wül be elim inated and studying  long event sequences 

together w ith  activation correlations will becom e practical. The use of high perform ance 

com puters and advanced graphics representations is, how ever, m andatory. Such plans 

are already on the long term strategy of the MEG laboratory in Jülich.
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The Siem ens 37-channel KRENIKON system

The system  was m anufactured by Siemens AG in 1989. The first set of m easurem ents 

used in this thesis w ere perform ed with a KRENIKON system  in Erlangen, in late 1990. 

The second set of m easurem ents w ere perform ed in Stockholm in 1992. Siemens has 

w ithdraw n the KRENIKON system s and hence m oved out of biom agnetism  (at least 

temporarily) in 1994. The KRENIKON system  consists of 37 first order axial gradiom eters 

fabricated on flexible printed-circuit boards and arranged in a flat hexagonal layout. The 

pickup and the com pensation coils are arranged in two parallel planes 70 m m  aw ay (i.e. 

baseline=70 mm) both w ithin a 19 cm -diam eter cylinder. Each of the pickup coils 

possesses an area of 6 cm^ and the gap between the liquid-helium  space and the outer 

surface of the Dewar is 20 mm. Additional m agnetom eters m easuring the x, y, and z 

com ponents of the external magnetic field are also included for noise cancellation 

purposes. The system  was designed for use inside a m oderately shielded room  and the 
noise of the system  is typically less than 10 f T  /  y fJ jz  a t frequencies over 10 Hz. The

overall design was a com prom ise for brain and heart m easurem ents.

Unlike the BTi system  described below w here the MEG co-ordinate system  is subject 

specific, the KRENIKON MEG co-ordinate system  defined in an experim ental set up  is 

dependent on the position of the probe. That is, the third axis of the m ost central coil of 

the array is defined as the th ird  axis (z-axis) of the MEG system  while the x and y axes 

are the ones defining the planar gradiom eter arrangem ent as well. The origin of the co
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ordinate system  is defined in association w ith a stereotactic frame consisting of 

w atertubes visible on MR images.

The BTi MAGNES system s

BTi launched their first m ultichannel commercial gradiom eter in 1985 (7-channels) 

introducing the curved-bottom  Dewar. Their 37-channel version, consists of a hexagonal 

(Siemens-like) first order gradiom eter arrangem ent, bu t the cods are w ire-w ound around 

20 mm formers. The channel are 22 m m  apart and are located on a spherical cap w ith a 

120 m m  radius of curvature. The coil array forms a cylinder w ith a 144 m m  diam eter and 

the gradiom eter baseline is 50 mm. Eight additional SQUlD-channels are also em ployed 

for noise cancellation. The system  is designed for operation w ithin a magnetically 
shielded room  and its noise level is typically 10 — 20 f T  / H z  . With the curved Dewar

bottom, the MAGNES system  fits the hum an brain curvature better than the KRENIKON 

so it is believed to be m ore suitable for brain m easurem ents rather than heart.

The MEG co-ordinate system  is subject specific as m entioned above. That is, the system  is 

defined in relation w ith the sub ject's/patien t's  own anatomical landm arks. These are the 

nasion, and the left and right preauricular points. The m idpoint between the two 

preauriculars is defined as the origin of the system; the x-axis then points from the origin 

tow ards the nasion, while the y-axis tow ards the left preauricular. The z-axis is of course 

perpendicular to the xy-plane and points in the superior direction tow ards the Cz point.

Based on the MAGNES 37-channel system  BTi developed recently the "tw in MAGNES" 

system  consisting of two 37-channel Dewars to facilitate sim ultaneous recordings over 

both hem ispheres. One of the Dewars is floor based w ith limited angle flexibility while 

the other is driven by a gantry and allows m uch greater positioning flexibility (usually 

the subject's head is "placed" on the bottom  Dewar and then the top one is positioned 

over it accordingly). The following two figures show the tw in MAGNES system  installed 

at Jülich, Germ any in 1994, as well as a typical subject-system relative position for a 

simple experiment.
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Figure A-1: The BTi tw in MAGNES system  (2x37 channels) inside the dedicated shielded 

magnetically room  at Jülich Research Centre, Germany. The couch used as the 

subject "lying-bed" is seen between the two Dewars.
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Figure A-2: A typical subject/ probe positioning used for auditory recordings (tem poral 

sensor placement) w ith the BTi tw in MAGNES system  (2x37 channels) at Jülich 

Research Centre, Germany. Note the probe position indicator (PPl) m entioned in 

C hapter 3 used for "clicking" (marking) anatomical landm arks (nasion in this 

specific case).
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A uditory O dd-ball recordings (Jülich): Experim ental Protocol

Subjects
Six unpaid male, right handed sul^ects with no past history of neurological disorder 
served as normal subjects (controls). AH subjects were colleagues with some kind of 
relationship with the Institute of Medicine at Jülich.

Recording Preparation
A brief explanation of the entire procedure was given initially to each subject to put thern 
at ease. It was essential for the subjects to be relaxed because muscular tension, often a 
physical manifestation of anxiety, might influence the character of the MEG signal. All 
subjects were asked to fül a questionnaire which included questions on their age and 
height, drinking and smoking habits, daily coffee consumption, sleeping conditions on 
the night before the experiment; the time of the experiment and food consumption just 
prior to it were controlled.

The first task was to define and mark with a pen the 5 fiducial points'*': the left and right 
preauriculars, nasion, inion, and Cz. The Cz point was defined by the intersection of the 
curved-line connecting the two preauriculars and the curved-line connecting the neision

In the BTi convention the MEG co-ordinate system is defined with respect to anatomical (external) head 
landmarks or fiduciary points (see Appendix A and Chapter 3).
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and the inion. The distances between the points were measured with a flexible ruler and 
noted down for future reference.

Two air-fiUed plastic tubes ending in an earphone were then fixed at each of the subject's 
ears and the sounds were delivered through them in an effort to determine Ihe subjects 
hearing threshold. The auditory level for the tones to be used in the actual experiment 
were in this way adjusted (usually 30-40 dB above hearing threshold and in consensus 
with the subject's discretion).

With the 5 points marked on the sul^ecTs scalp, the following step involved the 
definition of the head-based MEG system and subsequently the headshape outline in 
relation to this system. The subject was seated comfortably on the couch in an upright 
position inside the shielded room. An inflatable/ deflatable air-bag was used to help 
immobilise the subject Although the subject had a partial freedom in moving his head 
despite the existence of the air-bag, he w ^  requested to avoid any kind of head 
movements for a few minutes. With the top Dewar just above the subject's head, the 
head co-ordinate system (i.e. the MEG system in BTi's convention) was defined by 
clicking the aforementioned 5 anatomical points with a magnetic stylus (Probe Position 
Indicator, PPI); the whole head was then described by consecutive tracings of the stylus. 
At the end of the tracing, the 5 fiducial landmarks were "re-clicked" in order to observe 
any deviations from the previously obtained values. If the deviations were small enough 
(i.e. smaller than 1 mm overall) the headshape definition was accepted in confirmation of 
the fact that the subject had remained still during the procedure.

The subject was then released outside the shielded room for further preparations. 
Eyeblinks and eye movements were recorded from two electrodes placed laterally on the 
side of each eye-socket Careful attention was paid to cleaning the skin area beneath each 
electrode with isopropyl alcohol. This procedure removed grease and desquamation, 
reducing skin resistance and improving tape adhesion. Conducting gel was also used to 
further reduce skin resistivity and allow for a "better" contact between skin and 
electrodes. The electrodes were fixed in position with surgical tape. Proper functioning of 
each electrode was secured by asking the subject to perform continuous blinks, "top- 
bottom" and "left-right" eye movements while the electrode outputs were monitored by 
means of an oscilloscope. An ECG electrode was similarly placed in the subject's chest to 

monitor heart activity.

Measurements
The subject was finally entered into the shielded room for the actual measurements, 
positioned on the couch (laterally lying posture), he was given the earphones again, and
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he was placed between the two Dewars. The two probes were then positioned 
accordingly and the fiducial points were clicked again with the PPI to record the actual 
sensor positions with respect to the previously defined head-system. A final set of 
instructions was read to the sul̂ 'ect; the shielded room door locked and the lighting 
inside it was deemed. A "control run" was then recorded consisting of 2 minutes of eye 
blinks (about one every 2 to 4 seconds), 2 minutes of rest with eyes closed and finally 2 
minutes of rest with eyes open with the subject looking at a green patch inside the room* 
. It was during these control runs that any noise problems could be identified and 
resolved, if possible. For example, sometimes the channels of the reference coils were 
exhibiting an "harmonic noisy pattern" which was due to the EEC electrode which had 
been slightly removed from its proper position and was undergoing the 
inhalation/exhalation motion of the chest, with the result of producing magnetic fields!

For each of the subjects, two different placements of the probes were used: a lateral and a 
frontolaterial placement. For each one, the tones were delivered to the left and right ear in 
separate runs; some 300 tones (approximately 50 odd) were delivered in each run. The 
subject was given a warning some 20 sec prior to the beginning of the recordings.

At the end of the first two runs (i.e. one placement; left and right ear tone presentations) 
the subject was repositioned, the sensor positions were re-defined, and the recordings 
repeated.

At the end of the experim«it, the sul^ect was removed from the shielded room and after 
being thanked he encouraged to provide any oral or written comments he wished to 
communicate. During this time, a recording of a five minute noise run was obtained to 
determine the actual environmental noise level for tiiat specific day.

* Sometimes, Jiowever, some of these test runs were performed at the end of all sessions to avoid subject 
exhaustion.
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