97 research outputs found

    An experimental investigation of the vision of hyperopes and myopes using a hologram

    Get PDF
    A hologram of a specially designed multivergence target which displays real and virtual objects (numbers) simultaneously has been used to test the vision of various spectacle corrected subjects. Through the hologram, the subjects see standard ‘60-meter’ numbers that have different amounts of blur. It is found that there is a difference between myopes and hyperopes in the amount of positive blur with which they can recognize numbers seen through the hologram and this difference is statistically significant. A similar study was then conducted in white light illumination using the ‘60-meter’ numbers of a standard test chart at 6 meter distance and positive lenses to provide the blur at the eye. This study showed no difference between the refractive groups. Our results indicate that hyperopes may be relaxing their accommodation more than myopes in viewing through the hologram

    BIOAVAILABLE FORMS OF HEAVY METALS FROM RICE SAMPLES AND ITS POTENTIAL HEALTH RISK ASSESSMENT

    Get PDF
    Food crops grown in contaminated soils have a greater accumulation of heavy metals and the consumption of food crops grown in the contaminated soils are the source of metals that enters into the human body. Rice being a major food crop, the presence of heavy metals should be monitored regularly for reducing health risk. The analysis of total heavy metal always overestimates the content which leads to misinterpretation of results; however, bioaccessible heavy metal analysis projects the actual health risk. Hence, the present study aims to assess the bioavailable form of heavy metals in rice. The rice samples were collected from 20 different places and used for the inherent and bioavailable metal estimation. In vitro simulated digestion method was applied for bioaccessible metal analysis. Metal concentration in polished rice ranged from 0.10 to 0.82, 0.10 to 1.07, 0.11 to 0.56 and 0.23 to 1.09 mg  kg-1 for Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr), respectively. Twenty five percent of the samples recorded less than 0.028, 0.01, 0.01, and 0.03 mg kg-1 of bioaccessible Pb, Ni, Cd, and Cr, respectively. A significant negative correlation was observed between total metal concentration and bioaccessibility percentage. Targeted Hazard Quotient (THQ) of all the metals were less than one for adults indicating that there were no health risks, which undoubtedly reveals the importance of bioaccessible metal analysis. Hence, regular monitoring of heavy metals is essential to reduce the intensive accumulation in the human food chain.  Also, the present study has opened up a wide scope on human health risk assessment using an in vitro digestion model

    Performance Analysis of Reliability Filling on Quasi-Static Fading Channels

    Get PDF
    Abstract-Cooperative communication techniques are network-based approaches to achieve spatial diversity in systems in which each node only has a single antenna. Many such techniques are based on relaying, which is effective in terms of error performance but requires a large information exchange among the cooperating nodes. Cooperative reception techniques that offer near-optimal performance with a smaller information exchange are an area of ongoing research. One promising approach is to investigate combining techniques that can be used as a model for designing efficient cooperative reception schemes. In this paper, we consider one such technique, called reliability filling, that combines only as much information as needed to meet some reliability threshold. We analyze the performance of this technique for several scenarios of interest. Analytical estimates of the overhead involved in reliability filling are also given. Analysis and simulation results show that reliability filling can offer performance close to maximal-ratio combining while combining fewer symbols

    Assessment of Land Cover changes on long-term treated industrial effluent irrigation using Remote sensing and GIS techniques

    Get PDF
    A study was under taken to identify and map the changes in land use and land cover over a period of (1992 to 2017) 25 years in an area irrigating with treated industrial waste water using remote sensing and GIS technologies. Four LANDSAT TM and ETM+ images of 1992, 1999, 2006 and 2017 with a spatial resolution 30mx30m were used to determine the temporal land cover changes. Consequently, ground truth confirmation was done in the study area. Supervised classification was carried out in ArcGIS to identify the LULC classes. The study area was classified into four major classes; Water bodies, Settlements, Vegetation and Fallow lands.  The study revealed that fallow lands was decreased by 99.8%, vegetation was found to be increased by 90.2%  and settlement area was found to increase by 65.7 % over the period of 15 years. Livelihood increased with increased socio-economic status of the people

    Burden of Disease from Toxic Waste Sites in India, Indonesia, and the Philippines in 2010

    Get PDF
    Background: Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. Objective: We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Methods: Sites were identified through the Blacksmith Institute’s Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. Results: We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934–1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Conclusions: Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem

    Metal(loid) speciation and transformation by aerobic methanotrophs

    Get PDF
    Abstract: Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. 6g_ZKsLH11vt1AExshJzH4Video Abstrac
    • 

    corecore