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Abstract— Cooperative communication techniques are
network-based approaches to achieve spatial diversity in systems
in which each node only has a single antenna. Many such
techniques are based on relaying, which is effective in terms of
error performance but requires a large information exchange
among the cooperating nodes. Cooperative reception techniques
that offer near-optimal performance with a smaller information
exchange are an area of ongoing research. One promising
approach is to investigate combining techniques that can be used
as a model for designing efficient cooperative reception schemes.
In this paper, we consider one such technique, called reliability
filling, that combines only as much information as needed to
meet some reliability threshold. We analyze the performance
of this technique for several scenarios of interest. Analytical
estimates of the overhead involved in reliability filling are also
given. Analysis and simulation results show that reliability filling
can offer performance close to maximal-ratio combining while
combining fewer symbols.

I. I NTRODUCTION

The physical size of modern radios do not permit the
use of multiple transmit antennas, and hence network-based
alternatives are required to achieve spatial diversity. The idea
of users cooperating to achieve spatial diversity has received
a lot of attention from researchers in recent years [1], [2],
[3], [4], [5], [6]. Diversity achieved when users in a network
collaborate by sharing information to form a virtual antenna
array has been termedcooperative diversity. Information-
theoretic cooperation techniques based on the relay channel
have been proposed and studied in [1], [2], [7], [8]. Some
more-practical approaches for relaying with two cooperating
nodes have also been proposed in [2], [3], [5]. However, these
schemes do not easily scale to more than two cooperating
nodes. In addition, several of the proposed techniques require
correct reception at a relaying nodes.

One relaying technique that does not rely on correct de-
coding at a relay is the amplify-and-forward technique [2].
In practice many transmitters use a fixed digital modulation
scheme, which means that the soft-decision for each received
symbol would have to be quantized and transmitted as a
sequence of bits. This results in a large overhead if each
symbol must be quantized and transmitted by the relay. If the

relay has a reliable communication channel to the intended
receiver, then the amplify-and-forward scheme is basically a
distributed approach to maximal-ratio combining (MRC).

In [4], a collaborative reception scheme is proposed that
uses the reliabilities of the decisions at the output of a soft-
input, soft-output decoder to reduce the amount of information
that needs to be exchanged. In [9], several approaches are
considered that can achieve good performance while reducing
the amount of collaborative exchange by using reliability
information generated by soft-output decoders. Although these
techniques are found to be effect for AWGN channels, they are
not as effective on quasi-static fading channels. Furthermore,
it is not easy to analyze the performance of these schemes,
and hence it is also difficult to design better approaches based
on these previous schemes.

In order to overcome these probems with previous collabo-
rative reception techniques, a new approach was considered
in [6], [10]. In these papers, the design of collaborative
reception techniques is simplified by decomposing the problem
into two steps. In the first step, an alternative combining
scheme to MRC is considered that can achieve performance
close to MRC while combining far fewer symbols. In the
second step [10], a practical collaborative reception scheme
is developed based on the principles of the combining scheme
selected in the first step.

An efficient combining technique that meets the requirement
of the first step described above is thereliability filling
technique proposed in [6], [10]. This technique combines a
subset of all of the received symbols based on reliabilities
generated by soft-output decoders. A single parameter, called
the reliability threshold, can be used to trade-off block error
rate and number of symbols combined. In [10], a practical
collaborative reception scheme based on reliability filling is
developed and shown to be effective for quasi-static fading
channels.

In this paper, we analyze the performance of the reliability
filling scheme both in terms of block error rate and num-
ber of symbols combined. We present bounds on the block
error probability for reliability filling with two cooperating
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nodes and also apply this bound to determine the block error
probability for a hybrid selection-combining and reliability-
filling technique with more than two cooperating nodes. The
analytical results on block error probability and expected
number of symbols combined are compared with simulation
results. We show how the analytical results may be applied
to select the reliability threshold based on a target value for
block error probability or average number of symbols to be
combined.

This paper is organized as follows. In Section II, we
introduce the concept of reliability filling. Section III contains
the performance analysis. Numerical results and design criteria
are given in Section IV. The paper is concluded in Section V.

II. RELIABILITY FILLING

The system topology that we consider is shown in Figure 1.
A distant transmitter broadcasts a packet to a cluster of
receiving nodes. The message at the source is packetized and
encoded with a code that permits soft-input, soft-output (SISO)
decoding. The codeword is then broadcast to a cluster of
receiving nodes over an imperfect channel. Typical scenarios
could be military applications in which a battleship broadcasts
a message to a platoon of soldiers on the mainland or commer-
cial applications wherein a base station communicates with a
cluster of mobile users. The distance to the transmitter and the
power limitations of the receiving nodes do not permit the use
of ARQ and traditional code combining [11] techniques. As an
alternative, the nodes in the cluster can collaborate with each
other to resolve any ambiguity about the transmitted message.
We assume that communication for collaboration within the
cluster is error-free owing to the proximity of the nodes. This
assumption keeps our results general without being tied to a
specific modulation and coding scheme that is employed in
the cluster.

With error-free collaboration channels, the amplify-and-
forward relaying strategy [2] is equivalent to MRC with
combining at a central node. However, this requires that
all but one of the cooperating nodes send copies of all of
their received symbols, thereby resulting in a bandwidth-
expensive collaboration procedure. We assume that the nodes
are constrained to a fixed digital modulation scheme, which
results in an even greater overhead, as each received symbol

must be quantized and transmitted as a sequence of bits to
the combining node. The information exchanged by the nodes
will be referred to as the cooperation overhead. Though the
combining in MRC is optimal in terms of error performance,
it is inefficient in terms of the cooperation overhead.

In [6], [10], an idealized technique called reliability filling
is proposed that achieves performance similar to MRC with a
much lower overhead. Reliability filling relies on the use of
error correction codes and SISO decoders to identify trellis
sections that could potentially benefit from information from
other nodes in the cluster. In order to perform reliability filling,
each receiver uses a SISO maximuma posteriori (MAP)
decoder.A priori probabilities and received channel values are
the typical inputs to such decoders. At the output, the decoders
produce a posteriori probabilities (APPs). If the decoders
operate in the log domain (log-MAP decoders), the outputs
consists of log-likelihood ratios (LLRs),L(Xi|Y = y),of the
APPs and are referred to as soft information (outputs). In
particular, we use convolutional codes for encoding and the
Max-Log-MAP implementation of the BCJR [12] algorithm
in the decoder. The LLR for information bitXi is given by

L(Xi|Y = y) = log
Pr(Xi = +1|Y = y)
Pr(Xi = −1|Y = y)

, (1)

wherey represents the vector of received symbols.
The magnitude of the soft output is called the reliability of

the decision and is a measure of the correctness of the hard-
decision. The higher the reliability of a decision, the more
likely the decoder already has sufficient information about that
particular section of the code trellis to decode that bit correctly.
Thus the use of SISO decoding helps identify bits (trellis
sections) about which reliable decisions can be made without
the exchange of information. There are other trellis sections
that are a little unreliable but that only need information from a
few other nodes to make reliable decisions, and there are very
unreliable trellis sections that need information from all other
nodes. Reliability filling is a technique based on water-filling
in the reliability domain that takes into account the above
observations. Note that MRC combines the same amount of
information for all trellis sections, regardless of the reliability
of the original decisions.

In reliability filling the number of coded symbols combined
per trellis section is reduced based on the reliabilities of the
decoded bit decisions. Assume that the decoding process is
controlled by genie that knows the reliabilities|L(Xi|yj)| (yj

is the received vector at nodej) of the information bits at all
the nodes in the cooperating cluster. For each trellis section,
the genie chooses the nodes from which coded symbols should
be combined based on the reliability information. So even
though reliabilities of the information bits are used to select
the nodes for combining, the coded symbols are the quantities
being combined, as in MRC.

The combining procedure works as follows. Let

Si = {S ⊂ {1, 2, . . . ,M} :
∑
j∈S

|L(Xi|yj)| ≥ T}, (2)



whereM is the total number of cooperating nodes. Thus,Si

is the set of all possible combinations of nodes in the cluster
such that the sum of the reliabilities of biti at those nodes
exceeds a thresholdT . Let Ni = minS′∈ Si |S′|. Thus, Ni

is the set of minimum number of nodes required such that
the sum of the reliabilities of biti at those nodes exceeds a
thresholdT . Then the set of nodesCi for which information
will be combined is given by

Ci =

 argmax
S∈ Si:|S|=Ni

{∑
j∈S |L(Xi|yj)|

}
, if Si 6= ∅

{1, 2, . . . ,M} , if Si = ∅
(3)

Thus, whenSi = ∅, coded symbols are combined from
all nodes in the cluster. WhenSi 6= ∅, the set of nodesSi

is chosen to maximize the sum of the reliabilities for biti
subject to|Si| = Ni. Note that for different trellis sections, a
different number of nodes will be involved in the combining
process.

Thus, for bits (trellis sections) with low reliabilities, infor-
mation from more nodes are combined so that the sum of the
reliabilities of the bits combined is greater than the threshold.
For bits with high reliabilities, information from only a few
nodes is combined. For example, if before combining, the
maximum reliability for a bit across all the nodes is greater
than the threshold, the information for that trellis section
at the node that achieved the maximum reliability is used
without any information from other nodes. Thus, reliability
filling combines fewer coded symbols per trellis section than
MRC. It has been shown in [6], [10] that reliability filling
achieves full diversity andalmost all the coding gain of
MRC while combining45% fewer symbols than MRC. Since
reliability filling relies on a genie, it cannot be implemented
practically. However, it demonstrates that it is not necessary
to combine information from all nodes in order to achieve
good performance in bandwidth-limited scenarios. It shows
that when every node has some information about decoding
at other nodes, the overhead can be reduced significantly. It
also proves that bit reliabilities convey useful information,
and the principle of combining symbols based on reliability
values can be used to design practical cooperation schemes
with low overhead. A practical, iterative scheme based on the
principles of reliability filling is proposed in [10]. The multiple
iterations of the practical scheme makes it harder to analyze.
The analysis and design criteria presented in Sections III
and IV can be considered to be the first step towards the design
and analysis of schemes like those presented in [10].

III. PERFORMANCE ANALYSIS

A review of standard results on error bounds for convolu-
tional codes and a mathematical characterization of reliabilities
at the output of the decoder is first presented. These results
will then be used to derive bounds on the error probability of
reliability filling.

A. Block error rate of convolutional codes over quasi-static
fading channels

The performance of convolutionally encoded systems is usu-
ally analyzed by first calculating the pairwise error probability
(PEP). The PEP is defined as the probability of choosing
a codeword x̂ when codewordx was transmitted. For a
linear binary code with antipodal modulation and coherent
detection, the conditional PEP under maximum likelihood
(ML) decoding can be expressed as

P (d|α) = P (x → x̂|α) = Q

(√
2Es

N0

∑
n∈η

α2
n

)
, (4)

whered is the Hamming distance betweenx andx̂, Es

N0
repre-

sents the symbol energy-to-noise ratio,α = {α1, α2 . . . , αn}
is the set of fading coefficients,η = {n : xn 6= x̂n} (Note
that |η| = d), andQ(·) represents the Gaussian Q-function. A
particularly tight bound on the block error rate of linear codes
over quasi-static fading channels is [13],

Pblock ≤ 1−
∫
α

[
1−min

(
1,

dmax∑
d=dmin

a(d)P (d|α)
)]B

f(α)dα,

(5)
whereB is the block-size,a(d) represents the multiplicity of
error events with Hamming weightd, and f(α) represents
the joint probability density function (PDF) of the fading
coefficients. In a quasi-static or block-fading channel, the
fading amplitude is constant over all symbols in a block
and independent between blocks. The PDF characterizing a
Rayleigh fading channel with unit energy is given by

f(α) = 2αe−α2
u(α), (6)

whereu(α) is the unit step function. The joint PDFf(α) can
then be obtained depending on the scenario under considera-
tion.

B. Characterizing reliabilities at the output of a Max-Log-
MAP decoder

Reliability filling selects coded symbols for combining
based on the reliabilities of the decoded bits. Thus, the analysis
of reliability filling requires a mathematical characterization
of reliability that enables computation of various probabilities
involving bit reliabilities. Soft-information was first character-
ized mathematically in [14]. Analytically tractable expressions
for the cumulative density function (CDF) and PDF for bit
reliabilities at the output of a Max-Log-MAP decoder are given
in [15]. The reliability,Λ, is modeled as the absolute value of
a Gaussian random variable with variance equal to twice the
mean,(Λ ∼ N (µ, 2µ)) in [15]. The CDF and PDF can then
be obtained as,

FΛ(λ) =
{

Q

(
µ− λ√

2µ

)
−Q

(
µ + λ√

2µ

)}
u(α), (7)

and
fΛ(λ) =

u(α)
2
√

πµ

{
e−

(µ−λ)2

4µ + e−
(µ+λ)2

4µ
}
. (8)

Note thatµ in equations (7) and (8) represents the mean of the
soft information. An expression to compute the mean of the



reliabilities for transmission over an additive white Gaussian
noise (AWGN) channel was also given in [15] as,

µ(σ2) =
∫ ∞

0

dmax∏
d=dmin

{
Q

(
2σ2λ− 4d√

16dσ2

)}a(d)

dλ, (9)

whereσ2 denotes the noise variance anda(d) represents the
condensed event multiplicity (cf. Table 1 in[15]). Starting from
the definition of reliability in [15], it is straight-forward to
show that the mean of the reliabilities conditioned on the
fading coefficients of a quasi-static fading channel is given
by

µ = E[Λ|α] = µ(σ2/α2). (10)

C. Reliability filling with two cooperating nodes

If there are only two cooperating nodes (node1 and node
2), the genie controlling the reliability filling process can
select coded symbols for combining from either node1 or
node2 or from both nodes depending on the reliability of the
bit decisions. The genie combines coded symbols for trellis
section i from both nodes when the reliability of biti at
both nodes is less than the reliability filling thresholdT , i.e.,
max(Λi,1,Λi,2) < T . If the reliability of bit i at node1 is
greater than bothT and the reliability of biti at node2, then
the genie picks coded symbols corresponding to trellis section
i from only node1. That is, ifΛi,1 ≥ max(Λi,2, T ), the genie
picks coded symbols for biti from node1 only. Similarly,
if Λi,2 ≥ max(Λi,1, T ), the genie picks coded symbols from
node2 only. Note thatΛi,j ∼ N (µ(σ2/α2

j ), 2µ(σ2/α2
j )) is the

reliability of bit i at nodej, wherej ∈ {1, 2} andαj represents
the fading coefficient at nodej. Since we are considering a
block-fading channel wherein all the bits in a block experience
the same fading amplitude, the fading can be characterized by
a scalarαj at each node. For simplicity of exposition, we
will henceforth useµj to representµ(σ2/α2

j ). Thus, given the
fading coefficients at the two nodes,α1 andα2, the value of
the signal-to-noise ratio (SNR) for biti after combining can
be expressed by the random variableΦiEs/N0 where,

Φi =


α2

1, Λi,1 ≥ max(Λi,2, T )
α2

2, Λi,2 ≥ max(Λi,1, T )
(α2

1 + α2
2), T > max(Λi,1,Λi,2).

(11)

The conditional PEP in (4) can then be obtained as

P (d|α) =
∑

γ

Q

(√
2Es

N0
γ

)
PΓ(γ), (12)

whereγ =
∑

n∈η Φn and PΓ(γ) denotes the PDF ofγ. Since
Φ is a discrete random variable, we can use the multinomial
probability law to express the conditional PEP in (12) as

P (d|α) ≈
∑
a,b

a,b≥0
a+b≤d

Q

(√
2Es

N0

(
aα2

1 + bα2
2 + c(α2

1 + α2
2)
))

× d!
a!b!c!

P a(Φ = α2
1)P

b(Φ = α2
2)P

c(Φ = α2
1 + α2

2), (13)

where c = d − a − b. Note that the approximation in (13)
comes from the assumption that theΦi’s (and hence reliability
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of different bits) are conditionally independent givenα1 and
α2. The computation of the PEP in (13) requires knowledge
of the probability mass function (PMF) ofΦ. The PMF of
Φ can be computed as follows. Consider the probability of
combining received symbols from both nodes,

Prob{Φi = α2
1 + α2

2} = Prob{T > max(Λi,1,Λi,2)}
= Prob{Λi,1 < T} · Prob{Λi,2 < T}
= FΛ1(T ) · FΛ2(T ). (14)

Consider the probability of the genie choosing the coded
symbols of node1 only,

Prob{Φi = α2
1} = Prob{Λi,1 ≥ max(Λi,2, T )}

= Prob{Λi,1 ≥ Λi,2} · Prob{Λi,1 ≥ T}

=
∫ ∞

T

∫ λ1

0

fΛ1,Λ2(λ1, λ2)dλ1dλ2

=
∫ ∞

T

fΛ1(λ1)
∫ λ1

0

fΛ2(λ2)dλ2dλ1

=
∫ ∞

T

fΛ1(λ1)FΛ2(λ1)dλ1. (15)

The expressions forfΛ1(λ1) andFΛ2(λ1) makes the integral
in (15) hard to evaluate. We obtain an upper bound on
Prob{Φi = α2

1} by using an upper bound forFΛ2(λ). We
upper boundFΛ2(λ) by 1 for λ > µ2. For λ ≤ µ2, we use
the improved Chernoff bound forQ(), yielding

FΛ2(λ) ≤ Q
(µ2 − λ√

2µ2

)
≤ 1

2
e−

(µ2−λ)2

4µ2 , λ ≤ µ2. (16)

The upper bound onFΛ2(λ) is shown in Fig. 2 for two
different values ofµ2. Using (16) in (15), an upper bound
on Prob{Φi = α2

1} can be obtained as follows:

Case1 : T > µ2

Prob{Φi = α2
1} ≤

∫ ∞

T

fΛ1(λ)dλ = 1− FΛ1(T ). (17)



Case2 : T ≤ µ2

Prob{Φi = α2
1} ≤

∫ µ2

T

fΛ1(λ)
1
2
e−

(µ2−λ)2

4µ2 dλ

+
∫ ∞

µ2

fΛ1(λ)dλ

=
1

4
√

πµ1

[∫ µ2

T

e−
(µ1−λ)2

4µ1 e−
(µ2−λ)2

4µ2 dλ

+
∫ µ2

T

e−
(µ1+λ)2

4µ1 e−
(µ2−λ)2

4µ2 dλ

]
+ 1− FΛ1(µ2)

=
ke−

µ1+µ2
2

2
√

2µ1

[
e

k2
2

{
Q

(
T

k
− k

)
−Q

(
µ2

k
− k

)}
+Q
(T
k

)
−Q

(
µ2

k

)]
+1− FΛ1(µ2). (18)

wherek =
√

2µ1µ2
µ1+µ2

. Similarly a bound on Prob{Φi = α2
2}

can be obtained.
An upper bound on the block error rate can then be obtained

using (14), (17) and (18) in (13) and (5). We assume that
the two nodes experience independent fading and hence the
joint density function in (5) can be expressed asf(α1, α2) =
f(α1) · f(α2), wheref(·) denotes the density function of a
quasi-static Rayleigh fading channel.

D. Hybrid Selection Combining and reliability filling

An extension of our analysis toM > 2 cooperating nodes,
though straight forward, becomes computationally prohibitive.
However, we can extend the previous analysis to a system of
practical interest with more than two cooperating nodes. In
systems with many cooperating nodes, it may be most efficient
to apply some combination of selection diversity along with
combining to constrain the amount of information that must
be combined. We consider a hybridselection combiningand
reliability filling scheme that works as follows. If there are
more than two cooperating nodes, the genie controlling the
combining process chooses two nodes (selection) with the
highest signal-to-noise ratios (SNRs). Then reliability filling is
performed using the information at the two selected nodes.This
is an instance of ageneralized selection combining(GSC) [16]
scheme wherein combining is performed according to the rules
of reliability filling with two of the availableM nodes. In
keeping with the notation on GSC [16], we denote this scheme
as SC/RF(T )-2/M , where RF represents reliability filling and
T is the associated reliability threshold. Because reliability
filling is performed with only two nodes, all the equations
derived earlier can be used with no modifications. The only
change would be in the region of integration in (5) and in the
density function of the fading coefficientsf(α).

For a block fading channel, the node with the highest
SNR is the node with the highest fading amplitude. Let
α = {α1, α2, . . . , αM} represent the set of independent and
identically (i.i.d) distributed Rayleigh fading amplitudes at the
M cooperating nodes, and letα1:M ≥ α2:M ≥ . . . αM :M ≥ 0
be the order statistics obtained by arranging the elements of
α in decreasing order. Since the fading amplitudes (α) are

i.i.d, the joint PDFfα1:M ,α2:M ,...αL:M (α1:M , α2:M , . . . αL:M )
of the L ≤ M highest fading amplitudes is given by [16, p.
381, Eq.(9.311)],

fα1:M ,α2:M ,...αL:M (α1:M , α2:M , . . . αL:M )

= L!
(

M

L

)
[F (αL:M )]M−L

L∏
i=1

f(αi:M ), (19)

α1:M ≥ α2:M ≥ . . . αL:M , (20)

whereF (·) in (19) denotes the CDF of the Rayleigh random
variable and is given byF (α) =

∫∞
0

f(α)dα = 1 − e−α2
.

Using (19) in (5) and usingL = 2, we can bound the block
error rate for SC/RF(T )-2/M as

Pblock ≤ 1−∫ ∞

0

∫ α1

0

[
1−min

(
1,

dmax∑
d=dmin

a(d)P (d|α1, α2)
)]B

×M(M − 1)[F (α2)]M−2f(α1)f(α2)dα2dα1,

(21)

where the region of integration comes from (20) and
P (d|α1, α2) is given by (13).

E. Overhead of reliability-filling

We now derive expressions for the overhead of reliability
filling. Recall that the genie combines symbols from both
the nodes only if the reliability for the corresponding bit
is less than the threshold (T ) at both the nodes. Assuming
independent fading at the receivers the probability that a bit
has a reliability less thanT at both nodes is given in (14) as

p , Prob({Λi,1 < T}∩ {Λi,2 < T}) = FΛ1(T )FΛ2(T ) (22)

Thus, the average number of bits for which the genie combines
information from both nodes is given byNp, whereN is the
blocksize. For each information bit1R coded symbols from
each node are combined, whereR is the code-rate. Assumingq
bits are required to quantize each coded symbol, the overhead
due to the genie combining symbols from both nodes is given
by

Θboth nodes|α =
2Npq

R
. (23)

The factor of two arises in the above equation since infor-
mation is combined from two nodes. The conditioning onα
arises becauseFΛi

is a conditional distribution and hencep is
a conditional probability. Note that we refer to the number
of bits combined per transmitted block as the cooperation
overhead.

Similarly the average number of bit for which the genie
selects coded symbols from only one node is given by
N(1− p). The overhead for such bits is

Θone node|α =
N(1− p)q

R
. (24)

Thus, the total overhead conditioned on the fading coefficient
is given by

Θ|α = Θboth nodes|α + Θone node|α =
N(1 + p)q

R
. (25)
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Results are shown for reliability filling with two thresholds,5 and20. Results
are also presented for the hybrid selection combining and reliability filling
scheme, SC/RF(5)-2/8.

The net overhead of reliability filling can then be obtained
by integrating (25) over the density of the fading coefficients,
f(α1, α2).

IV. N UMERICAL RESULTS

For all the results shown in this paper, a rateR = 1
2 ,

constraint-length3 convolutional code with generator poly-
nomials 1 + D2 and 1 + D + D2 ((5, 7) in octal) is used
at the distant transmitter to encode the message sequence.
The information at the transmitter is segmented intoN =900
bit fragments before encoding it with the channel code. The
summation in (5) is performed withdmin = 5 anddmax = 15.
The performance of reliability filling is compared with the
performance of MRC. MRC is the best the nodes can do in
terms of diversity, but it is bandwidth expensive. The block
error rate of reliability filling with thresholds ofT = 20
and T = 5 is shown in Figure 3. The performance of the
two schemes are very close to that of MRC. Both thresholds
produce block error rates parallel to MRC and hence achieve
full diversity. Observe that there is only a small loss in
coding gain when reducing the threshold,T , from 20 to
5. Simulation results also show similar behavior. A lower
threshold leads to a smaller overhead because coded symbols
from fewer nodes can make the sum of the bit reliabilities
at those nodes exceed the threshold,T . Since fewer symbols
are combined per trellis section, there is a loss in coding gain
as can been seen from both the simulation results and the
analytical bounds. Analytical bounds and simulation results for
the hybrid selection combining and reliability filling scheme,
SC/RF(5)-2/8, is also shown in Figure 3. Observe that the
effect of the upper bound on the CDF is more pronounced in
the hybrid scheme when compared to the original reliability
filling scheme.
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Fig. 4. Simulated overhead for reliability and corresponding analytical
results. Results are shown for reliability filling with two thresholds,5 and20,
in the figure on the left. Results are also presented for the hybrid selection
combining and reliability filling scheme, SC/RF(5)-2/8 in the figure on the
right.

The overhead of the different reliability filling schemes
are shown in Figure 4. For these results, it is assumed that
q = 5 bits [17], [18] is enough to accurately represent the
received coded symbols at each node. The analytical results
for the overhead of reliability filling with two nodes are
by integrating (25) over the density functionf(α1, α2) =
f(α1) · f(α2), wheref(·) is given in (6). Analytical results
are also presented for the hybrid selection combining and
reliability filling scheme, SC/RF(5)-2/8 in the figure on the
right. This result was obtained by integrating (25) over the
density function given in (19). Note that the overhead of MRC
can be obtained usingp = 1 in (24). For the given parameters,
the overhead for MRC is obtained as1.8× 104 bits. Thus, it
is seen that the overhead of all the reliability filling schemes
shown in this section is less than that of MRC.

The block error rate achieved by reliability filling is shown
in Table I for various thresholds. The overhead required to
achieve the target block error rate is also shown as a percentage
with respect to the overhead of MRC. A threshold of∞ forces
the genie to combine information from all nodes for every
bit and thus, it represents the performance of MRC. Thus,
it is seen that performance of reliability filling approaches
the performance of MRC as the threshold increases. However,
the overhead also increases with an increase in the threshold.
Appropriate thresholds for reliability filling can be chosen
depending on the overhead a collaborative system can tolerate.

V. CONCLUSIONS

Reliability filling was introduced as a model for designing
cooperative protocols for use in scenarios that are limited in
bandwidth. An analysis of the performance of reliability filling
for transmission over a block-fading channel is presented.



TABLE I

BLOCK ERROR RATE AND OVERHEAD OF RELIABILITY FILLING AT

Eb/N0 = 5 DB

Threshold Percentage overhead Block error rate
(T ) relative to MRC
5 54.78% 0.318
10 58.37% 0.302
20 65.83% 0.213

∞ (MRC) 100% 0.176

Bounds on the block-error rate of reliability filling with two
cooperating nodes are given. Bounds are also presented for
the block error rate of a hybrid selection-combining and reli-
ability filling technique. We also present analytical estimates
of the overhead involved in reliability filling. The proximity
between the simulation and analytical results, and their similar
responses to change in system parameters (namely, T) make
the bounds a computationally more attractive tool to study
and understand reliability filling. The analytical results show
that a high value of the threshold leads to better performance
at the cost of additional overhead. It is shown that close-to-
optimal performance can be achieved with only a fraction
of the overhead. The analysis validates the fact that the bit
reliabilities can be exploited in the design of low-overhead
cooperation protocols, and that all the symbols in a packet
from all cooperating nodes need not be combined in order
to produce the best results. Thus, practical schemes can be
designed based on the principles of reliability filling that can
achieve good performance in bandwidth-constrained applica-
tions.
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