132 research outputs found

    Polymeric peptide pigments with sequence-encoded properties

    Get PDF
    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine

    Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin

    Get PDF
    Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions—primarily different forms of charge reduction—occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we find that more extended states are more prone to fragment release. We obtain evidence that for a given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or through collapse of more extended states upon charge reduction, span a similar range of collision cross-sections. Products of gas-phase collapse are, however, less stabilized towards unfolding than the native conformation, indicating that the ions retain a memory of previous conformational states. Furthermore, this collapse of charge-reduced ions is promoted if the ions are ‘preheated’ using collisional activation, with possible implications for the kinetics of gas-phase compaction

    Do ionic charges in ESI MS provide useful information on macromolecular structure?

    Get PDF
    Multiple charging is an intrinsic feature of electrospray ionization (ESI) of macromolecules. While multiple factors influence the appearance of protein ion charge state distributions in ESI mass spectra, physical dimensions of protein molecules in solution are the major determinants of the extent of multiple charging. This article reviews the information that can be obtained by analyzing ionic charge state distributions in ESI MS, as well as potential pitfalls and limitations of this powerful technique. We also discuss future areas of growth with particular emphasis on applications in structural biology, biotechnology (protein-polymer conjugates), and nanomedicine
    • …
    corecore