137 research outputs found

    Self consistent theory of unipolar charge-carrier injection in metal/insulator/metal systems

    Full text link
    A consistent device model to describe current-voltage characteristics of metal/insulator/metal systems is developed. In this model the insulator and the metal electrodes are described within the same theoretical framework by using density of states distributions. This approach leads to differential equations for the electric field which have to be solved in a self consistent manner by considering the continuity of the electric displacement and the electrochemical potential in the complete system. The model is capable of describing the current-voltage characteristics of the metal/insulator/metal system in forward and reverse bias for arbitrary values of the metal/ insulator injection barriers. In the case of high injection barriers, approximations are provided offering a tool for comparison with experiments. Numerical calculations are performed exemplary using a simplified model of an organic semiconductor.Comment: 21 pages, 8 figure

    Purification of Chitin from Pupal Exuviae of the Black Soldier Fly

    Get PDF
    Purpose: Chitin purification from remains (pupal exuviae after metamorphosis to adult flies) of Hermetia illucens farming was optimized performing demineralization, deproteinization and bleaching under different conditions. The optimal parameters to obtain high-purity chitin were determined. Methods: Dried and ground pupal exuviae, whose composition was initially determined, were demineralized using six different acids. Proteins were removed with a NaOH treatment in which temperature, molarity and duration were varied in a randomized experiment. Bleaching was carried out testing ten different chemicals, including NaOCl, H2O2, solvent mixtures and enzymes. The efficiency of each step was determined to assess the optimal conditions for each of them. The resulting chitin was subjected to spectroscopic characterization. Results: The highest demineralization efficiency (90%) was achieved using 0.5 M formic acid for 2 h at 40 °C, confirming the validity of organic acids as a more sustainable alternative to inorganic acids. The treatment with 1.25 M NaOH at 90 °C for 4 h showed the highest deproteinization efficiency, removing 96% of the proteins. Temperature and NaOH concentration were the significant parameters for deproteinization efficiency. The most efficient bleaching treatment was with 6% NaOCl at 60 °C for 1 h (67% efficiency). H2O2 could also be a valid alternative to avoid environmental risk related to chlorine-containing compounds. At the end of the purification process 17% of the original biomass was retained with a chitin content of 85%, corresponding to a chitin yield of 14% related to the initial biomass. Solid-state nuclear magnetic resonance showed that the purified chitin had a degree of acetylation of 96% and X-ray powder diffraction gave a crystallinity index of 74%. Conclusion: This investigation shows an optimized method for extraction of high-purity chitin from H. illucens pupal exuviae, supporting the validity of insect-farming remains as source of this versatile biopolymer. Graphical Abstract: [Figure not available: see fulltext.

    Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface

    Full text link
    We present a closed description of the charge carrier injection process from a conductor into an insulator. Common injection models are based on single electron descriptions, being problematic especially once the amount of charge-carriers injected is large. Accordingly, we developed a model, which incorporates space charge effects in the description of the injection process. The challenge of this task is the problem of self-consistency. The amount of charge-carriers injected per unit time strongly depends on the energy barrier emerging at the contact, while at the same time the electrostatic potential generated by the injected charge- carriers modifies the height of this injection barrier itself. In our model, self-consistency is obtained by assuming continuity of the electric displacement and the electrochemical potential all over the conductor/insulator system. The conductor and the insulator are properly taken into account by means of their respective density of state distributions. The electric field distributions are obtained in a closed analytical form and the resulting current-voltage characteristics show that the theory embraces injection-limited as well as bulk-limited charge-carrier transport. Analytical approximations of these limits are given, revealing physical mechanisms responsible for the particular current-voltage behavior. In addition, the model exhibits the crossover between the two limiting cases and determines the validity of respective approximations. The consequences resulting from our exactly solvable model are discussed on the basis of a simplified indium tin oxide/organic semiconductor system.Comment: 23 pages, 6 figures, accepted to Phys.Rev.

    Sociodemographic influences on youth sport participation and physical activity among children living within concentrated Hispanic/Latino rural communities

    Get PDF
    IntroductionLack of physical activity (PA) among children living in rural communities is a documented public health problem. Although studies have examined community conditions defined by a rural–urban dichotomy, few have investigated rural community conditions with a concentration of Hispanic/Latino people. This cross-sectional study examined sociodemographic characteristics associated with youth sport (YS) participation and daily PA among children living within concentrated Hispanic/Latino rural U.S. Midwest communities.MethodsDuring spring 2022, 97% of 3rd–6th grade children (n = 281, aged approximately 8–12 years) attending school in rural Midwestern communities (n = 2) with >50% concentration of Hispanic students participated in the Wellscapes Project, a community randomized trial. Participants completed the Youth Activity Profile and supplemental National Survey of Children’s Health questions assessing PA behaviors and YS participation. Caregivers of a subsample of children (n = 215; males, n = 93; females, n = 122) consented to pair their child’s survey results with school enrollment records (e.g., free/reduced lunch status and race and ethnicity). Mixed models with community as a random effect examined main and interaction effects of grade, sex, ethnoracial status, and family income on YS participation and these sociodemographic characteristics and YS participation on daily moderate-to-vigorous PA (MVPA).ResultsApproximately half of children participated in YS. Non-Hispanic White children (n = 82) were over five times more likely to participate in YS than Hispanic peers (n = 133) (OR = 5.54, 95% CI = 2.64–11.61, p < 0.001). YS participants accumulated 8.3 ± 2.3 more minutes of daily MVPA than non-participants (p < 0.001). Sixth graders, females, and Hispanic children reported lower daily MVPA than comparison groups (p < 0.05). Significant interaction effects on daily MVPA between grade and ethnoracial status (F(3, 204) = 3.04, p = 0.030) were also found.DiscussionDisparities in sport participation and PA outcomes based on sociodemographic characteristics exist among children living in ethnoracially diverse rural communities. Strategies to promote YS participation, including community structural changes, may help reduce PA disparities. The research provides valuable insights for policymakers, public health professionals, and community members to address YS participation barriers, not limited to cost, while considering other PA-promotion efforts to improve child population health

    Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis

    Get PDF
    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors

    Frequency of Solar-Like Systems and of Ice and Gas Giants Beyond the Snow Line from High-Magnification Microlensing Events in 2005-2008

    Get PDF
    We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-ratios[-4.5<log q<-2]: d^2 N/dlog q/dlog s=(0.36+-0.15)/dex^2 at mean mass ratio q=5e-4, and consistent with being flat in log projected separation, s. Our result is based on a sample of 6 planets detected from intensive follow-up of high-mag (A>200) microlensing events during 2005-8. The sample host stars have typical mass M_host 0.5 Msun, and detection is sensitive to planets over a range of projected separations (R_E/s_max,R_E*s_max), where R_E 3.5 AU sqrt(M_host/Msun) is the Einstein radius and s_max (q/5e-5)^{2/3}, corresponding to deprojected separations ~3 times the "snow line". Though frenetic, the observations constitute a "controlled experiment", which permits measurement of absolute planet frequency. High-mag events are rare, but the high-mag channel is efficient: half of high-mag events were successfully monitored and half of these yielded planet detections. The planet frequency derived from microlensing is a factor 7 larger than from RV studies at factor ~25 smaller separations [2<P<2000 days]. However, this difference is basically consistent with the gradient derived from RV studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in semi-major axis, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the Solar System, our sample would have yielded 18.2 planets (11.4 "Jupiters", 6.4 "Saturns", 0.3 "Uranuses", 0.2 "Neptunes") including 6.1 systems with 2 or more planet detections. This compares to 6 planets including one 2-planet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.Comment: 42 pages, 10 figure

    MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf

    Get PDF
    We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90% confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but the other (the microlens parallax \pi_E, which is due to the Earth's orbital motion) is highly degenate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6 yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011
    corecore