94 research outputs found

    PARP1 is required for adhesion molecule expression in atherogenesis

    Get PDF
    Aims Atherosclerosis is the leading cause of death in Western societies and a chronic inflammatory disease. However, the key mediators linking recruitment of inflammatory cells to atherogenesis remain poorly defined. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme, which plays a role in acute inflammatory diseases. Methods and results In order to test the role of PARP in atherogenesis, we applied chronic pharmacological PARP inhibition or genetic PARP1 deletion in atherosclerosis-prone apolipoprotein E-deficient mice and measured plaque formation, adhesion molecules, and features of plaque vulnerability. After 12 weeks of high-cholesterol diet, plaque formation in male apolipoprotein E-deficient mice was decreased by chronic inhibition of enzymatic PARP activity or genetic deletion of PARP1 by 46 or 51%, respectively (P < 0.05, n ≥ 9). PARP inhibition or PARP1 deletion reduced PARP activity and diminished expression of inducible nitric oxide synthase, vascular cell adhesion molecule-1, and P- and E-selectin. Furthermore, chronic PARP inhibition reduced plaque macrophage (CD68) and T-cell infiltration (CD3), increased fibrous cap thickness, and decreased necrotic core size and cell death (P < 0.05, n ≥ 6). Conclusion Our data provide pharmacological and genetic evidence that endogenous PARP1 is required for atherogenesis in vivo by increasing adhesion molecules with endothelial activation, enhancing inflammation, and inducing features of plaque vulnerability. Thus, inhibition of PARP1 may represent a promising therapeutic target in atherosclerosi

    Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo

    Get PDF
    Aims Lectin-like oxLDL receptor-1 (LOX-1) mediates the uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells and macrophages. However, the different atherogenic potential of LOX-1-mediated endothelial and macrophage oxLDL uptake remains unclear. The present study was designed to investigate the in vivo role of endothelial LOX-1 in atherogenesis. Methods and results Endothelial-specific LOX-1 transgenic mice were generated using the Tie2 promoter (LOX-1TG). Oxidized low-density lipoprotein uptake was enhanced in cultured endothelial cells, but not in macrophages of LOX-1TG mice. Six-week-old male LOX-1TG and wild-type (WT) mice were fed a high-cholesterol diet (HCD) for 30 weeks. Increased reactive oxygen species production, impaired endothelial nitric oxide synthase activity and endothelial dysfunction were observed in LOX-1TG mice as compared with WT littermates. LOX-1 overexpression led to p38 phosphorylation, increased nuclear factor κB activity and subsequent up-regulation of vascular cell adhesion molecule-1, thereby favouring macrophage accumulation and aortic fatty streaks. Consistently, HCD-fed double-mutant LOX-1TG/ApoE−/− displayed oxidative stress and vascular inflammation with higher aortic plaques than ApoE−/− controls. Finally, bone marrow transplantation experiments showed that endothelial LOX-1 was sufficient for atherosclerosis development in vivo. Conclusions Endothelial-specific LOX-1 overexpression enhanced aortic oxLDL levels, thereby favouring endothelial dysfunction, vascular inflammation and plaque formation. Thus, LOX-1 may serve as a novel therapeutic target for atherosclerosi

    CO2 Image: The design of an imaging spectrometer for CO2 point source quantification

    Get PDF
    CO2Image is a satellite demonstration mission, now in Phase B, to be launched in 2026 by the German Aerospace Center (DLR). The satellite will carry a next generation imaging spectrometer for measuring atmospheric column concentrations of Carbon Dioxide (CO2). The instrument concept reconciles compact design with fine ground resolution (50-100 m) with decent spectral resolution (1.0-1.3 nm) in the shortwave infrared spectral range (2000 nm). Thus, CO2Image will enable quantification of point source CO2 emission rates of less than 1 MtCO2/a. This will complement global monitoring missions such as CO2M, which are less sensitive to point sources due to their coarser ground resolution and hyperspectral imagers, which suffer from spectroscopic interference errors that limit the quantification

    Nocturnal Oximetry-based Evaluation of Habitually Snoring Children

    Get PDF
    Rationale: The vast majority of children around the world undergoing adenotonsillectomy for obstructive sleep apnea–hypopnea syndrome (OSA) are not objectively diagnosed by nocturnal polysomnography because of access availability and cost issues. Automated analysis of nocturnal oximetry (nSpO2), which is readily and globally available, could potentially provide a reliable and convenient diagnostic approach for pediatric OSA. Methods: DeidentifiednSpO2 recordings froma total of 4,191 children originating from13 pediatric sleep laboratories around the worldwere prospectively evaluated after developing and validating an automated neural network algorithm using an initial set of single-channel nSpO2 recordings from 589 patients referred for suspected OSA. Measurements and Main Results: The automatically estimated apnea–hypopnea index (AHI) showed high agreement with AHI from conventional polysomnography (intraclass correlation coefficient, 0.785) when tested in 3,602 additional subjects. Further assessment on the widely used AHI cutoff points of 1, 5, and 10 events/h revealed an incremental diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and 0.913 area under the receiver operating characteristic curve, respectively). Conclusions: Neural network–based automated analyses of nSpO2 recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.Supported in part by project VA037 U16 from the Consejer´ıa de Educacio´ n de la Junta de Castilla y Leo´ n and the European Regional Development Fund (FEDER), project RTC-2015-3446-1 from the Ministerio de Econom´ıa y Competitividad and FEDER, and project 153/2015 of the Sociedad Espan˜ ola de Neumolog´ıa y Cirug´ıa Tora´ cica (SEPAR). L.K.-G. is supported by NIH grant 1R01HL130984. M.F.P. was supported by a Fellowship Educational grant award from the Kingdom of Saudi Arabia. D.´A. was in receipt of a Juan de la Cierva grant from the Ministerio de Econom´ıa y Competitividad. The funders played no role in the study design, data collection, data analysis, interpretation, and writing of the manuscript

    Nocturnal Oximetry-based Evaluation of Habitually Snoring Children

    Get PDF
    Rationale: The vast majority of children around the world undergoing adenotonsillectomy for obstructive sleep apnea–hypopnea syndrome (OSA) are not objectively diagnosed by nocturnal polysomnography because of access availability and cost issues. Automated analysis of nocturnal oximetry (nSpO2), which is readily and globally available, could potentially provide a reliable and convenient diagnostic approach for pediatric OSA. Methods: DeidentifiednSpO2 recordings froma total of 4,191 children originating from13 pediatric sleep laboratories around the worldwere prospectively evaluated after developing and validating an automated neural network algorithm using an initial set of single-channel nSpO2 recordings from 589 patients referred for suspected OSA. Measurements and Main Results: The automatically estimated apnea–hypopnea index (AHI) showed high agreement with AHI from conventional polysomnography (intraclass correlation coefficient, 0.785) when tested in 3,602 additional subjects. Further assessment on the widely used AHI cutoff points of 1, 5, and 10 events/h revealed an incremental diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and 0.913 area under the receiver operating characteristic curve, respectively). Conclusions: Neural network–based automated analyses of nSpO2 recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.Supported in part by project VA037 U16 from the Consejer´ıa de Educacio´ n de la Junta de Castilla y Leo´ n and the European Regional Development Fund (FEDER), project RTC-2015-3446-1 from the Ministerio de Econom´ıa y Competitividad and FEDER, and project 153/2015 of the Sociedad Espan˜ ola de Neumolog´ıa y Cirug´ıa Tora´ cica (SEPAR). L.K.-G. is supported by NIH grant 1R01HL130984. M.F.P. was supported by a Fellowship Educational grant award from the Kingdom of Saudi Arabia. D.´A. was in receipt of a Juan de la Cierva grant from the Ministerio de Econom´ıa y Competitividad. The funders played no role in the study design, data collection, data analysis, interpretation, and writing of the manuscript

    Imaging of the unstable plaque: how far have we got?

    Get PDF
    Rupture of unstable plaques may lead to myocardial infarction or stroke and is the leading cause of morbidity and mortality in western countries. Thus, there is a clear need for identifying these vulnerable plaques before the rupture occurs. Atherosclerotic plaques are a challenging imaging target as they are small and move rapidly, especially in the coronary tree. Many of the currently available imaging tools for clinical use still provide minimal information about the biological characteristics of plaques, because they are limited with respect to spatial and temporal resolution. Moreover, many of these imaging tools are invasive. The new generation of imaging modalities such as magnetic resonance imaging, nuclear imaging such as positron emission tomography and single photon emission computed tomography, computed tomography, fluorescence imaging, intravascular ultrasound, and optical coherence tomography offer opportunities to overcome some of these limitations. This review discusses the potential of these techniques for imaging the unstable plaque

    Age Related Changes in NAD+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats

    Get PDF
    The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose) polymerase (PARP), an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD∶NADH ratio in all organs by middle age (i.e.12 months) compared to young (i.e. 3 month old) rats. These changes in [NAD(H)] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine) formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX) was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I–IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor

    Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours

    Get PDF
    BACKGROUND: Hypoxia, which is commonly observed in areas of primary tumours and of metastases, influences response to treatment. However, its characterisation has so far mainly been restricted to the ex vivo analysis of tumour sections using monoclonal antibodies specific to carbonic anhydrase IX (CA IX) or by pimonidazole staining, after the intravenous administration of this 2-nitroimidazole compound in experimental animal models.METHODS: In this study, we describe the generation of high-affinity human monoclonal antibodies (A3 and CC7) specific to human CA IX, using phage technology.RESULTS: These antibodies were able to stain CA IX ex vivo and to target the cognate antigen in vivo. In one of the two animal models of colorectal cancer studied (LS174T), CA IX imaging closely matched pimonidazole staining, with a preferential staining of tumour areas characterised by little vascularity and low perfusion. In contrast, in a second animal model (SW1222), distinct staining patterns were observed for pimonidazole and CA IX targeting. We observed a complementary pattern of tumour regions targeted in vivo by the clinical-stage vascular-targeting antibody L19 and the anti-CA IX antibody A3, indicating that a homogenous pattern of in vivo tumour targeting could be achieved by a combination of the two antibodies.CONCLUSION: The new human anti-CA IX antibodies are expected to be non-immunogenic in patients with cancer and may serve as broadly applicable reagents for the non-invasive imaging of hypoxia and for pharmacodelivery applications. British Journal of Cancer (2009) 101, 645-657. doi: 10.1038/sj.bjc.6605200 www.bjcancer.com Published online 21 July 2009 (C) 2009 Cancer Research U

    Advances in tenascin-C biology

    Get PDF
    Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology
    corecore