40 research outputs found

    Transcriptional profiling identifies the metabolic phenotype of gonococcal biofilms

    Get PDF
    Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms on glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of gonococcal biofilm formation, we compared transcriptional profiles of N. gonorrhoeae biofilms to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 h in continuous-flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. In comparing biofilm with planktonic growth, 3.8% of the genome was differentially regulated. Genes that were highly upregulated in biofilms included aniA, norB, and ccp. These genes encode enzymes that are central to anaerobic respiratory metabolism and stress tolerance. Downregulated genes included members of the nuo gene cluster, which encodes the proton-translocating NADH dehydrogenase. Furthermore, it was observed that aniA, ccp, and norB insertional mutants were attenuated for biofilm formation on glass and transformed human cervical epithelial cells. These data suggest that biofilm formation by the gonococcus may represent a response that is linked to the control of nitric oxide steady-state levels during infection of cervical epithelial cells

    European union leadership in biofuels regulation: Europe as a normative power?

    Get PDF
    The rapid emergence of the European Union (EU) as a leader in global environmental politics has led many scholars to argue in favour of the EU being a ‘normative power’ in international relations. This paper critically examines the EU's biofuels policy and evaluates whether its attempts to lead by example and shape international practice in this field could support such arguments. Europe's biofuel policies are evaluated through a sustainable development lens, so as to determine the extent to which it has embraced a holistic approach to sustainability. While not dismissing that the identity of the EU is indeed an explanatory factor and that normative intentions may well be regarded as a motivating force, this study argues that an interest-based perspective on international environmental regulation offers a supplementary view of how an actor's preferences for an international regime are shaped. By erecting barriers aimed at shielding its own inefficient domestic biofuels production the EU is in essence placing trade competitiveness and economic growth above environmental protection, thus permitting sustainability concerns to be addressed only in part

    Cold-adapted arsenite oxidase from a psychrotolerant Polaromonas species.

    Get PDF
    Polaromonas sp. str. GM1 is an aerobic, psychrotolerant, heterotrophic member of the Betaproteobacteria and is the only isolate capable of oxidising arsenite at temperatures below 10 °C. Sequencing of the aio gene cluster in GM1 revealed the presence of the aioB and aioA genes, which encode the arsenite oxidase but the regulatory genes typically found upstream of aioB in other members of the Proteobacteria were absent. The GM1 Aio was purified to homogeneity and was found to be a heterodimer. The enzyme contained Mo and Fe as cofactors and had, using the artificial electron acceptor 2,6-dichlorophenolindophenol, a Km for arsenite of 111.70 ± 0.88 μM and a Vmax of 12.16 ± 0.30 U mg(-1), which is the highest reported specific activity for any known Aio. The temperature-activity profiles of the arsenite oxidases from GM1 and the mesophilic betaproteobacterium Alcaligenes faecalis were compared and showed that the GM1 Aio was more active at low temperatures than that of A. faecalis. A homology model of the GM1 Aio was made using the X-ray crystal structure of the Aio from A. faecalis as the template. Structural changes that account for cold adaptation were identified and it was found that these resulted in increased enzyme flexibility and a reduction in the hydrophobicity of the core

    Molybdenum-Containing Arsenite Oxidase of the Chemolithoautotrophic Arsenite Oxidizer NT-26

    No full text
    The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an α(2)β(2) configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per α(2)β(2) unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc(1) and b(6)f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate

    An ethico-legal framework for social data science

    No full text
    This paper presents a framework for research infrastructures enabling ethically sensitive and legally compliant data science in Europe. Our goal is to describe how to design and implement an open platform for big data social science, including, in particular, personal data. To this end, we discuss a number of infrastructural, organizational and methodological principles to be developed for a concrete implementation. These include not only systematically tools and methodologies that effectively enable both the empirical evaluation of the privacy risk and data transformations by using privacy-preserving approaches, but also the development of training materials (a massive open online course) and organizational instruments based on legal and ethical principles. This paper provides, by way of example, the implementation that was adopted within the context of the SoBigData Research Infrastructure

    Metal Binding Specificity of the MntABC Permease of Neisseria gonorrhoeae and Its Influence on Bacterial Growth and Interaction with Cervical Epithelial Cells▿ †

    Get PDF
    mntABC from Neisseria gonorrhoeae encodes an ABC permease which includes a periplasmic divalent cation binding receptor protein of the cluster IX family, encoded by mntC. Analysis of an mntC mutant showed that growth of N. gonorrhoeae could be stimulated by addition of either manganese(II) or zinc(II) ions, suggesting that the MntABC system could transport both ions. In contrast, growth of the mntAB mutant in liquid culture was possible only when the medium was supplemented with an antioxidant such as mannitol, consistent with the view that ion transport via MntABC is essential for protection of N. gonorrhoeae against oxidative stress. Using recombinant MntC, we determined that MntC binds Zn2+ and Mn2+ with almost equal affinity (dissociation constant of ∼0.1 μM). Competition assays with the metallochromic zinc indicator 4-(2-pyridylazo)resorcinol showed that MntC binds Mn2+ and Zn2+ at the same binding site. Analysis of the N. gonorrhoeae genome showed that MntC is the only Mn/Zn metal binding receptor protein cluster IX in this bacterium, in contrast to the situation in many other bacteria which have systems with dedicated Mn and Zn binding proteins as part of distinctive ABC cassette permeases. Both the mntC and mntAB mutants had reduced intracellular survival in a human cervical epithelial cell model and showed reduced ability to form a biofilm. These data suggest that the MntABC transporter is of importance for survival of Neisseria gonorrhoeae in the human host

    A Role for Lactate Dehydrogenases in the Survival of Neisseria gonorrhoeae in Human Polymorphonuclear Leukocytes and Cervical Epithelial Cells

    No full text
    Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD+-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells

    Characterization of an ntrX Mutant of Neisseria gonorrhoeae Reveals a Response Regulator That Controls Expression of Respiratory Enzymes in Oxidase-Positive Proteobacteria

    No full text
    NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens
    corecore