1,487 research outputs found

    Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces.

    Get PDF
    Atmospheric pollutants represent an important source of oxidative and nitrosative stress to both terrestrial plants and to animals. The exposed biosurfaces of plants and animals are directly exposed to these pollutant stresses. Not surprisingly, living organisms have developed complex integrated extracellular and intracellular defense systems against stresses related to reactive oxygen and nitrogen species (ROS, RNS), including O3 and NO2. Plant and animal epithelial surfaces and respiratory tract surfaces contain antioxidants that would be expected to provide defense against environmental stress caused by ambient ROS and RNS, thus ameliorating their injurious effects on more delicate underlying cellular constituents. Parallelisms among these surfaces with regard to their antioxidant constituents and environmental oxidants are presented. The reactive substances at these biosurfaces not only represent an important protective system against oxidizing environments, but products of their reactions with ROS/RNS may also serve as biomarkers of environmental oxidative stress. Moreover, the reaction products may also induce injury to underlying cells or cause cell activation, resulting in production of proinflammatory substances including cytokines. In this review we discuss antioxidant defense systems against environmental toxins in plant cell wall/apoplastic fluids, dead keratinized cells/interstitial fluids of stratum corneum (the outermost skin layer), and mucus/respiratory tract lining fluids

    CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond

    Get PDF
    CD1d-restricted invariant natural killer T (iNKT) cells are considered an attractive target for cancer immunotherapy. Upon their activation by glycolipid antigen and/or cytokines, iNKT cells can induce direct lysis of tumor cells but can also induce an antitumor immune response via their rapid production of proinflammatory cytokines that trigger the cytotoxic machinery of other components of the innate and adaptive immune system. Here, we provide an overview of various therapeutic approaches that have been evaluated or that are currently being developed and/or explored. These include administration of α-GalCer or alternative (glyco) lipid antigens, glycolipid-loaded antigen-presenting cells and liposomes, strategies that enhance CD1d expression levels or are based on ligation of CD1d, adoptive transfer of iNKT cells or chimeric antigen receptor iNKT cells, and tumor targeting of iNKT cells

    Gut-microbiome composition in response to phenylketonuria depends on dietary phenylalanine in BTBR Pah<sup>enu2</sup> mice

    Get PDF
    Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pah(enu2) mice received either a control diet (normal protein, “high” Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account

    Corrigendum: CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond

    Get PDF
    by King, L. A., Lameris, R., de Gruijl, T. D., and van der Vliet, H. J. (2018). Front. Immunol. 9:1519. doi: 10.3389/fimmu.2018.01519 In the original article, we neglected to disclose that authors Lisa A. King and Roeland Lameris are currently funded by Lava Therapeutics and that Hans J. van der Vliet also acts as chief scientific officer of Lava Therapeutics. Hans J. van der Vliet's affiliation has been updated to reflect this. The corrected Conflict of Interest statement appears below

    Long-term dietary intervention with low Phe and/or a specific nutrient combination improve certain aspects of brain functioning in phenylketonuria (PKU)

    Get PDF
    Introduction In phenylketonuria (PKU), a gene mutation in the phenylalanine metabolic pathway causes accumulation of phenylalanine (Phe) in blood and brain. Although early introduction of a Phe-restricted diet can prevent severe symptoms from developing, patients who are diagnosed and treated early still experience deficits in cognitive functioning indicating shortcomings of current treatment. In the search for new and/or additional treatment strategies, a specific nutrient combination (SNC) was postulated to improve brain function in PKU. In this study, a long-term dietary intervention with a low-Phe diet, a specific combination of nutrients designed to improve brain function, or both concepts together was investigated in male and female BTBR PKU and WT mice. Material & methods 48 homozygous wild-types (WT, +/+) and 96 PKU BTBRPah2 (-/-) male and female mice received dietary interventions from postnatal day 31 till 10 months of age and were distributed in the following six groups: high Phe diet (WT C-HP, PKU C-HP), high Phe plus specific nutrient combination (WT SNC-HP, PKU SNC-HP), PKU low-Phe diet (PKU C-LP), and PKU low-Phe diet plus specific nutrient combination (PKU SNC- LP). Memory and motor function were tested at time points 3, 6, and 9 months after treatment initiation in the open field (OF), novel object recognition test (NOR), spatial object recognition test (SOR), and the balance beam (BB). At the end of the experiments, brain neurotransmitter concentrations were determined. Results In the NOR, we found that PKU mice, despite being subjected to high Phe conditions, could master the task on all three time points when supplemented with SNC. Under low Phe conditions, PKU mice on control diet could master the NOR at all three time points, while PKU mice on the SNC supplemented diet could master the task at time points 6 and 9 months. SNC supplementation did not consistently influence the performance in the OF, SOR or BB in PKU mice. The low Phe diet was able to normalize concentrations of norepinephrine and serotonin; however, these neurotransmitters were not influenced by SNC supplementation. Conclusion This study demonstrates that both a long-lasting low Phe diet, the diet enriched with SNC, as well as the combined diet was able to ameliorate some, but not all of these PKU-induced abnormalities. Specifically, this study is the first long-term intervention study in BTBR PKU mice that shows that SNC supplementation can specifically improve novel object recognition

    Essential features of Chiari II malformation in MR imaging: an interobserver reliability study—part 1

    Get PDF
    Item does not contain fulltextPURPOSE: Brain MR imaging is essential in the assessment of Chiari II malformation in clinical and research settings concerning spina bifida. However, the interpretation of morphological features of the malformation on MR images may not always be straightforward. In an attempt to select those features that unambiguously characterize the Chiari II malformation, we investigated the interobserver reliability of all its well-known MR features. METHODS: Brain MR images of 79 children [26 presumed to have Chiari II malformation, 36 presumed to have no cerebral abnormalities, and 17 children in whom some Chiari II malformation features might be present; mean age 10.6 (SD 3.2; range, 6-16) years] were blindly and independently reviewed by three observers. They rated 33 morphological features of the Chiari II malformation as present, absent, or indefinable in three planes (sagittal, axial, and coronal). The interobserver reliability was assessed using kappa statistics. RESULTS: Twenty-three of the features studied turned out to be unreliable, whereas the interobserver agreement was almost perfect (kappa value > 0.8) for nine features (eight in the sagittal plane and one in the axial plane, but none in the coronal plane). CONCLUSIONS: This study presents essential features of the Chiari II malformation on MR images by ruling out the unreliable features. Using these features may improve the assessment of Chiari II malformation in clinical and research settings.1 juli 201

    Blood and brain biochemistry and behaviour in NTBC and dietary treated tyrosinemia type 1 mice

    Get PDF
    Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Neurocognitive deficiencies have been described in TT1 patients, that have, among others, been related to changes in plasma large neutral amino acids (LNAA) that could result in changes in brain LNAA and neurotransmitter concentrations. Therefore, this project aimed to investigate plasma and brain LNAA, brain neurotransmitter concentrations and behavior in C57 Bl/6 fumarylacetoacetate hydrolase deficient (FAH-/-) mice treated with 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and/or diet and wild-type mice. Plasma and brain tyrosine concentrations were clearly increased in all NTBC treated animals, even with diet (p <0.001). Plasma and brain phenylalanine concentrations tended to be lower in all FAH-/- mice. Other brain LNAA, were often slightly lower in NTBC treated FAH-/- mice. Brain neurotransmitter concentrations were usually within a normal range, although serotonin was negatively correlated with brain tyrosine concentrations (p <0.001). No clear behavioral differences between the different groups of mice could be found. To conclude, this is the first study measuring plasma and brain biochemistry in FAH-/- mice. Clear changes in plasma and brain LNAA have been shown. Further research should be done to relate the biochemical changes to neurocognitive impairments in TT1 patients

    Shot Noise in Linear Macroscopic Resistors

    Get PDF
    We report on a direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. Present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.Comment: 10 pages, 5 figure

    The perspective of people with axial spondyloarthritis regarding physiotherapy : room for the implementation of a more active approach

    Get PDF
    Objectives. Physiotherapy is recommended in the management of people with axial spondyloarthritis (axSpA), with new insights into its preferred content and dosage evolving. The aim of this study was to describe the use and preferences regarding individual and group physiotherapy among people with axSpA. Methods. A cross-sectional survey was conducted among people with axSpA living in The Netherlands (NL) and Switzerland (CH). Results. Seven hundred and thirteen people with axSpA participated (56.7% male, median age 55 years, median Assessment of Spondyloarthritis International Society Health Index score 4.2). Response rates were 45% (n¼206) in NL and 29% in CH (n¼507). Of these participants, 83.3% were using or had been using physiotherapy. Individual therapy only was used or had been used by 36.7%, a combination of individual plus land- and water-based group therapy by 29.1% and group therapy by only 5.3%. Fewer than half of the participants attending individual therapy reported active therapy (such as aerobic, muscle strength and flexibility exercises). Although the majority (75.9%) were not aware of the increased cardiovascular risk, participants showed an interest in cardiovascular training, either individually or in a supervised setting. If supervised, a majority, in CH (75.0%) more than in NL (55.7%), preferred supervision by a specialized physiotherapist. Conclusion. The majority of people with axSpA use or have used physiotherapy, more often in an individual setting than in a group setting. The content of individual therapy should be more active; in both therapy settings, aerobic exercises should be promoted. In particular, enabling people with axSpA to perform exercises independently would meet their needs and might enhance their daily physical activity

    Василь Васильович Тарновський: духовні витоки українського патріотизму та благодійності

    Get PDF
    Context: Climate change can directly affect habitats within ecological networks, but may also have indirect effects on network quality by inducing land use change. The relative impact of indirect effects of climate change on the quality of ecological networks currently remains largely unknown. Objectives: The objective of this study was to determine the relative impact of direct and indirect effects of climate change on a network of breeding habitat of four meadow bird species (Black-tailed godwit, Common redshank, Eurasian oystercatcher and Northern lapwing) in the Netherlands. Methods: Habitat models were developed that link meadow bird breeding densities to three habitat characteristics that are sensitive to environmental change (landscape openness, land use and groundwater level). These models were used to assess the impact of scenarios of landscape change with and without climate change on meadow bird breeding habitat quality for a case study area in the peat meadow district of the Netherlands. Results: All scenarios led to significantly reduced habitat quality for all species, mainly as a result of conversion of grassland to bioenergy crops, which reduces landscape openness. Direct effects of climate change on habitat quality were largely absent, indicating that especially human adaptation to climate change rather than direct effects of climate change was decisive for the degradation of ecological network quality for breeding meadow birds. Conclusions: We conclude that scenario studies exploring impacts of climate change on ecological networks should incorporate both land use change resulting from human responses to climate change and direct effects of climate change on landscapes
    corecore