192 research outputs found

    AN AZORHIZOBIUM-CAULINODANS ORS571 LOCUS INVOLVED IN LIPOPOLYSACCHARIDE PRODUCTION AND NODULE FORMATION ON SESBANIA-ROSTRATA STEMS AND ROOTS

    Get PDF
    Azorhizobium caulinodans ORS571 is able to nodulate roots and stems of the tropical legume Sesbania rostrata. An ORS571 Tn5 insertion mutant, strain ORS571-X15, had a rough colony morphology, was nonmotile, and showed clumping behavior on various media. When this pleiotropic mutant was inoculated on roots or stems of the host, no nodules developed (Nod-). Compared with the wild type, strain ORS571-X15 produced lipopolysaccharides (LPS) with an altered ladder pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggestive of a different O-antigen structure with a lower degree of polymerization. A cosmid clone, pRG20, that fully complemented all phenotypes of ORS571-X15 was isolated. With a 6-kb EcoRI subfragment of pRG20, clumping was relieved and nodulation was almost completely restored, but the strain was still nonmotile. LPS preparations from these complemented strains resembled the wild-type LPS, although minor quantitative and qualitative differences were evident. The sequence of the locus hit by the Tn5 in ORS571-X15 (the oac locus) revealed a striking homology with the rfb locus of Salmonella typhimurium, which is involved in O-antigen biosynthesis. The Tn5 insertion position was mapped to the oac3 gene, homologous to rfbA, encoding dTDP-D-glucose synthase. Biochemical assaying showed that ORS571-X15 is indeed defective in dTDP-D-glucose synthase activity, essential for the production of particular deoxyhexoses. Therefore, it was proposed that the O antigen of the mutant strain is devoid of such sugars

    Antimicrobial resistance and the environment : assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing

    Get PDF
    A roundtable discussion held at the fourth International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR4) considered key issues concerning the impact on the environment of antibiotic use in agriculture and aquaculture, and emissions from antibiotic manufacturing. The critical control points for reducing emissions of antibiotics from agriculture are antibiotic stewardship and the pre-treatment of manure and sludge to abate antibiotic-resistant bacteria. Antibiotics are sometimes added to fish and shellfish production sites via the feed, representing a direct route of contamination of the aquatic environment. Vaccination reduces the need for antibiotic use in high value (e.g. salmon) production systems. Consumer and regulatory pressure will over time contribute to reducing the emission of very high concentrations of antibiotics from manufacturing. Research priorities include the development of technologies, practices and incentives that will allow effective reduction in antibiotic use, together with evidence-based standards for antibiotic residues in effluents. All relevant stakeholders need to be aware of the threat of antimicrobial resistance and apply best practice in agriculture, aquaculture and pharmaceutical manufacturing in order to mitigate antibiotic resistance development. Research and policy development on antimicrobial resistance mitigation must be cognizant of the varied challenges facing high and low income countries.Peer reviewe

    The impact of neurocognitive functioning on the course of posttraumatic stress symptoms following civilian traumatic brain injury

    Get PDF
    Background: One out of seven individuals who have suffered a traumatic brain injury (TBI) develops a posttraumatic stress disorder (PTSD), which is often associated with neurocognitive impairment. The present study explores the impact of neurocognitive functioning after mild, moderate, and severe TBI on the course of PTSD symptoms. Methods: The data of 671 adults admitted to hospital for a TBI was drawn from the Collaborative European Neurotrauma Effectiveness Research (CENTER-TBI) study. After six- and 12-months post-injury, participants completed the PTSD Checklist-5 (PCL-5), from which change scores were calculated. At six months, participants also completed a neurocognitive assessment including the Rey Auditory Verbal Learning Test, the Trail Making Test, and the Cambridge Neuropsychological Test Automated Battery (CANTAB). Linear regressions were performed to identify associations between cognitive functioning and PCL-5 change scores. Results: Overall, mean PCL-5 change scores showed no clear change (−0.20 ± 9.88), but 87 improved and 80 deteriorated by a change score of 10 or more. CANTAB Rapid Visual Information Processing scores were significantly associated with PCL-5 change scores. Conclusions: Strong sustained attention was associated with improvement in PTSD symptoms. Assessing cognitive performance may help identify individuals at risk of developing (persisting) PTSD post-TBI and offer opportunities for informing treatment strategies

    Structural and Functional Brain Abnormalities Associated With Exposure to Different Childhood Trauma Subtypes: A Systematic Review of Neuroimaging Findings

    Get PDF
    Background: Childhood trauma subtypes sexual abuse, physical abuse, emotional maltreatment, and neglect may have differential effects on the brain that persist into adulthood. A systematic review of neuroimaging findings supporting these differential effects is as yet lacking.Objectives: The present systematic review aims to summarize the findings of controlled neuroimaging trials regarding long-term differential effects of trauma subtypes on the human brain.Methods: A systematic literature search was performed using the PubMed and PsycINFO databases from January 2017 up to and including January 2018. Additional papers were identified by a manual search in the reference lists of selected papers and of relevant review articles retrieved by the initial database search. Studies were then assessed for eligibility by the first author. Only original human studies directly comparing neuroimaging findings of exposed and unexposed individuals to well-defined emotional, physical or sexual childhood maltreatment while controlling for the effects of other subtypes were included. A visual summary of extracted data was made for neuroimaging modalities for which comparison between trauma subtypes was feasible, taking the studies' numbers and sample sizes into account.Results: The systematic literature search yielded 25 publications. Sexual abuse was associated with structural deficits in the reward circuit and genitosensory cortex and amygdalar hyperreactivity during sad autobiographic memory recall. Emotional maltreatment correlated with abnormalities in fronto-limbic socioemotional networks. In neglected individuals, white matter integrity and connectivity were disturbed in several brain networks involved in a variety of functions. Other abnormalities, such as reduced frontal cortical volume, were common to all maltreatment types.Conclusions: There is some evidence for long-term differential effects of trauma subtypes on the human brain. The observed alterations may result from both protective adaptation of and damage to the brain following exposure to threatening life events. Though promising, the current evidence is incomplete, with few brain regions and neuroimaging modalities having been investigated in all subtypes. The comparability of the available evidence is further limited by the heterogeneity of study populations regarding gender, age and comorbid psychopathology. Future neuroimaging studies should take this potentially differential role of childhood trauma subtypes into account

    Use of pJANUS™-02-001 as a calibrator plasmid for Roundup Ready soybean event GTS-40-3-2 detection: an interlaboratory trial assessment

    Get PDF
    Owing to the labelling requirements of food and feed products containing materials derived from genetically modified organisms, quantitative detection methods have to be developed for this purpose, including the necessary certified reference materials and calibrator standards. To date, for most genetically modified organisms authorized in the European Union, certified reference materials derived from seed powders are being developed. Here, an assessment has been made on the feasibility of using plasmid DNA as an alternative calibrator for the quantitative detection of genetically modified organisms. For this, a dual-target plasmid, designated as pJANUS™-02-001, comprising part of a junction region of genetically modified soybean event GTS-40-3-2 and the endogenous soybean-specific lectin gene was constructed. The dynamic range, efficiency and limit of detection for the soybean event GTS-40-3-2 real-time quantitative polymerase chain reaction (Q-PCR) system described by Terry et al. (J AOAC Int 85(4):938–944, 2002) were shown to be similar for in house produced homozygous genomic DNA from leaf tissue of soybean event GTS-40-3-2 and for plasmid pJANUS™-02-001 DNA backgrounds. The performance of this real-time Q-PCR system using both types of DNA templates as calibrator standards in quantitative DNA analysis was further assessed in an interlaboratory trial. Statistical analysis and fuzzy-logic-based interpretation were performed on critical method parameters (as defined by the European Network of GMO Laboratories and the Community Reference Laboratory for GM Food and Feed guidelines) and demonstrated that the plasmid pJANUS™-02-001 DNA represents a valuable alternative to genomic DNA as a calibrator for the quantification of soybean event GTS-40-3-2 in food and feed products

    Plasmodium vivax Sub-Patent Infections after Radical Treatment Are Common in Peruvian Patients: Results of a 1-Year Prospective Cohort Study

    Get PDF
    BACKGROUND: There is an increasing body of literature reporting treatment failure of the currently recommended radical treatment of Plasmodium vivax infections. As P. vivax is the main malaria species outside the African continent, emerging tolerance to its radical treatment regime could have major consequences in countries like Peru, where 80% of malaria cases are due to P. vivax. Here we describe the results of a 1-year longitudinal follow up of 51 confirmed P. vivax patients living around Iquitos, Peruvian Amazon, and treated according to the Peruvian national guidelines. METHODOLOGY: Each month a blood sample for microscopy and later genotyping was systematically collected. Recent exposure to infection was estimated by detecting antibodies against the P. vivax circumsporozoite protein (CSP) and all PCR confirmed P. vivax infections were genotyped with 16 polymorphic microsatellites. RESULTS: During a 1-year period, 84 recurrent infections, 22 positive also by microscopy, were identified, with a median survival time to first recurrent infection of 203 days. Most of them (71%) were asymptomatic; in 13 patients the infection persisted undetected by microscopy for several consecutive months. The genotype of mostly recurrent infections differed from that at day 0 while fewer differences were seen between the recurrent infections. The average expected heterozygosity was 0.56. There was strong linkage disequilibrium (I(A) (s) = 0.29, p<1.10(-4)) that remained also when analyzing only the unique haplotypes, suggesting common inbreeding. CONCLUSION: In Peru, the P. vivax recurrent infections were common and displayed a high turnover of parasite genotypes compared to day 0. Plasmodium vivax patients, even when treated according to the national guidelines, may still represent an important parasite reservoir that can maintain transmission. Any elimination effort should consider such a hidden reservoir

    Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peru is one of the Latin American countries with the highest malaria burden, mainly due to <it>Plasmodium vivax </it>infections. However, little is known about <it>P. vivax </it>transmission dynamics in the Peruvian Amazon, where most malaria cases occur. The genetic diversity and population structure of <it>P. vivax </it>isolates collected in different communities around Iquitos city, the capital of the Peruvian Amazon, was determined.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>population structure was determined by multilocus genotyping with 16 microsatellites on 159 <it>P. vivax </it>infected blood samples (mono-infections) collected in four sites around Iquitos city. The population characteristics were assessed only in samples with monoclonal infections (n = 94), and the genetic diversity was determined by calculating the expected heterozygosity and allelic richness. Both linkage disequilibrium and the genetic differentiation (<it>θ</it>) were estimated.</p> <p>Results</p> <p>The proportion of polyclonal infections varied substantially by site (11% - 70%), with the expected heterozygosity ranging between 0.44 and 0.69; no haplotypes were shared between the different populations. Linkage disequilibrium was present in all populations (<it>I</it><sub>A</sub><sup>S </sup>0.14 - 0.61) but was higher in those with fewer polyclonal infections, suggesting inbreeding and a clonal population structure. Strong population differentiation (<it>θ </it>= 0.45) was found and the Bayesian inference cluster analysis identified six clusters based on distinctive allele frequencies.</p> <p>Conclusion</p> <p>The <it>P. vivax </it>populations circulating in the Peruvian Amazon basin are genetically diverse, strongly differentiated and they have a low effective recombination rate. These results are in line with the low and clustered pattern of malaria transmission observed in the region around Iquitos city.</p

    Optimising the future Belgian offshore wind farm monitoring programme

    Get PDF
    Six years of monitoring triggered a reflection on how to best continue with the monitoring programme. The basic monitoring has to be rationalised at the level of the likelihood of impact detection, the meaningfulness of impact size and representativeness of the findings. Targeted monitoring should continue to disentangle processes behind the observed impact, for instance the overarching artificial reef effect created by wind farms. The major challenge however remains to achieve a reliable assessment of the cumulative impacts. Continuing consultation and collaboration within the Belgian offshore wind farm monitoring team and with foreign marine scientists and managers will ensure an optimisation of the future monitoring programme

    The Porto European Cancer Research Summit 2021

    Get PDF
    Key stakeholders from the cancer research continuum met in May 2021 at the European Cancer Research Summit in Porto to discuss priorities and specific action points required for the successful implementation of the European Cancer Mission and Europe's Beating Cancer Plan (EBCP). Speakers presented a unified view about the need to establish high-quality, networked infrastructures to decrease cancer incidence, increase the cure rate, improve patient's survival and quality of life, and deal with research and care inequalities across the European Union (EU). These infrastructures, featuring Comprehensive Cancer Centres (CCCs) as key components, will integrate care, prevention and research across the entire cancer continuum to support the development of personalized/precision cancer medicine in Europe. The three pillars of the recommended European infrastructures – namely translational research, clinical/prevention trials and outcomes research – were pondered at length. Speakers addressing the future needs of translational research focused on the prospects of multiomics assisted preclinical research, progress in Molecular and Digital Pathology, immunotherapy, liquid biopsy and science data. The clinical/prevention trial session presented the requirements for next-generation, multicentric trials entailing unified strategies for patient stratification, imaging, and biospecimen acquisition and storage. The third session highlighted the need for establishing outcomes research infrastructures to cover primary prevention, early detection, clinical effectiveness of innovations, health-related quality-of-life assessment, survivorship research and health economics. An important outcome of the Summit was the presentation of the Porto Declaration, which called for a collective and committed action throughout Europe to develop the cancer research infrastructures indispensable for fostering innovation and decreasing inequalities within and between member states. Moreover, the Summit guidelines will assist decision making in the context of a unique EU-wide cancer initiative that, if expertly implemented, will decrease the cancer death toll and improve the quality of life of those confronted with cancer, and this is carried out at an affordable cost.Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. JT reports personal financial interest in form of scientific consultancy role for Array Biopharma, AstraZeneca, Avvinity, Bayer, Boehringer Ingelheim, Chugai, DaiichiSankyo, F. Hoffmann‐La Roche Ltd, Genentech Inc, HalioDX SAS, Hutchison MediPharma International, Ikena Oncology, IQVIA, Lilly, Menarini, Merck Serono, Merus, MSD, Mirati, Neophore, Novartis, Orion Biotechnology, Peptomyc, Pfizer, Pierre Fabre, Samsung Bioepis, Sanofi, Seattle Genetics, Servier, Taiho, Tessa Therapeutics and TheraMyc. And also educational collaboration with Imedex, Medscape Education, MJH Life Sciences, PeerView Institute for Medical Education and Physicians Education Resource (PER). JT also declares institutional financial interest in form of financial support for clinical trials or contracted research for Amgen Inc, Array Biopharma Inc, AstraZeneca Pharmaceuticals LP, BeiGene, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Debiopharm International SA, F. Hoffmann‐La Roche Ltd, Genentech Inc, HalioDX SAS, Hutchison MediPharma International, Janssen‐Cilag SA, MedImmune, Menarini, Merck Health KGAA, Merck Sharp & Dohme, Merus NV, Mirati, Novartis Farmacéutica SA, Pfizer, Pharma Mar, Sanofi Aventis Recherche & Développement, Servier, Taiho Pharma USA Inc, Spanish Association Against Cancer Scientific Foundation and Cancer Research UK. MB has received funding for his research projects and for educational grants to the University of Dresden by Bayer AG (2016‐2018), Merck KGaA (2014‐open) and Medipan GmbH (2014‐2018). He is on the supervisory board of HI‐STEM GmbH (Heidelberg) for the German Cancer Research Center (DKFZ, Heidelberg) and also member of the supervisory body of the Charité University Hospital, Berlin. As former chair of OncoRay (Dresden) and present CEO and Scientific Chair of the German Cancer Research Center (DKFZ, Heidelberg), he has been or is responsible for collaborations with a multitude of companies and institutions, worldwide. In this capacity, he has discussed potential projects and signed contracts for research funding and/or collaborations with industry and academia for his institute(s) and staff, including but not limited to pharmaceutical companies such as Bayer, Boehringer Ingelheim, Bosch, Roche and other companies such as Siemens, IBA, Varian, Elekta, Bruker, etc. In this role, he was/is also responsible for the commercial technology transfer activities of his institute(s), including the creation of start‐ups and licensing. This includes the DKFZ‐PSMA617 related patent portfolio [WO2015055318 (A1), ANTIGEN (PSMA)] and similar IP portfolios. MB confirms that, to the best of his knowledge, none of the above funding sources were involved in the preparation of this paper. BB has received research funding from 4D Pharma, Abbvie, Amgen, Aptitude Health, AstraZeneca, BeiGene, Blueprint Medicines, BMS, Boehringer Ingelheim, Celgene, Cergentis, Cristal Therapeutics, Daiichi‐Sankyo, Eli Lilly, GSK, Inivata, Janssen, Onxeo, OSE immunotherapeutics, Pfizer, Roche‐Genentech, Sanofi, Takeda, Tolero Pharmaceuticals. FC declares consultancy role for: Amgen, Astellas/Medivation, AstraZeneca, Celgene, Daiichi‐Sankyo, Eisai, GE Oncology, Genentech, GlaxoSmithKline, Macrogenics, Medscape, Merck‐Sharp, Merus BV, Mylan, Mundipharma, Novartis, Pfizer, Pierre‐Fabre, prIME Oncology, Roche, Sanofi, Samsung Bioepis, Seagen, Teva. SF is a consulting or advisory board member at Bayer, Illumina, Roche; has received honoraria from Amgen, Eli Lilly, PharmaMar, Roche; has received research funding from AstraZeneca, Pfizer, PharmaMar, Roche; has received sponsorship of travel or accommodation expenses by Amgen, Eli Lilly, Illumina, PharmaMar, Roche. SG owns AstraZeneca stock and is a full‐time employee of AstraZeneca. PN has had an advisory role at Bayer, MSD Oncology, has received honoraria from Bayer, Novartis and MSD Oncology, and has had travel expenses paid by Novartis. JO has been an advisory board member at Roche, Novartis, Bayer, Merck, Eisai, Astrazeneca, Pierre Fabre Medicament and Bristol‐Myers Squibb. He has also received research funding by IPO Porto, Astrazeneca, Fundação para a Ciencia e a Tecnologia (FCT) and Liga Portuguesa Contra o Cancro (LPCC). AR is an employee of European Federation of Pharmaceutical Industries and Associations, Brussels, MSD International Business GmbH, Kriens, Switzerland[CvG1], and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ USA, who may own stock and/or hold stock options in the Company.RS serves as principal investigator of the ASCO TAPUR study. ASCO receives research grants from the following companies in support of the study: Astra‐Zeneca, Bayer, Boehringer‐Ingelheim, Bristol Myers Squibb, Genentech, Lilly, Merck, Pfizer, Seattle Genetics. Dr. Schilsky serves as a member of the managing board of Clariifi and as a consultant to Bryologyx, Cellworks Group, EQRx, and Scandion Oncology. The Netherlands Cancer Institute receives research support via EV from Roche, Astrazeneca, Eisai, Novartis, GSK, Clovis, BMS, MSD, Pfizer, Amgen, Bayer, Lilly, Janssen and Seagen. LZ is founder of everImmune, member of the board of directors of Transgene, member of the scientific advisory board of Transgene, EpiVax, Lytix Biopharma. LZ has also had research contracts with: Merus, Roche, Tusk, Kaleido, GSK, BMS, Incyte, Pileje, Innovate Pharma, and Transgene and has received honoraria by Transgene. All other authors have no conflicts of interest to declare. Regarding the design of innovative and adaptive clinical trials, two examples were illustrated: the first European multimodular, two‐part academic CCE‐endorsed Basket of Baskets (BoB) study, and the recently launched CCE Building Data Rich Clinical Trials (DART) Consortium, which is supported by EU’s Horizon 2020 research and innovation programme (Box 13 ). We are grateful for the support by Carolina Espina, International Agency for Research on Cancer; Christina von Gertten, European Academy of Cancer Sciences; Ana Augusta Silva, Portuguese Oncology Institute of Porto; and Teresa Tavares, Ministry of Science, Technology and Higher Education, Portugal for their excellent cooperation. Carmen Jeronimo, Portuguese Oncology Institute of Porto, collaborated in the presentation of Porto Comprehensive Cancer Center by Raquel Seruca
    corecore