10 research outputs found

    Microbiome dynamics of human epidermis following skin barrier disruption

    Get PDF
    Background - Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. Results - We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. Conclusions - We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermi

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions

    Get PDF
    Item does not contain fulltextAbsent in melanoma 2 (AIM2) is a double-stranded DNA receptor, and its activation initiates an interleukin-1 beta processing inflammasome. AIM2 is implicated in host defense against several pathogens, but could hypothetically also contribute to autoinflammatory or autoimmune diseases, such as is the case for NLRP3. Using thoroughly characterised antibodies, we analysed AIM2 expression in human tissues and primary cells. A strong epidermal upregulation of AIM2 protein expression was observed in several acute and chronic inflammatory skin disorders, such as psoriasis, atopic dermatitis, venous ulcera, contact dermatitis, and experimental wounds. We also found AIM2 induction by interferon-gamma in submerged and three-dimensional in vitro models of human epidermis. Our data highlight the dynamics of epidermal AIM2 expression, showing Langerhans cell and melanocyte-restricted expression in normal epidermis but a pronounced induction in subpopulations of epidermal keratinocytes under inflammatory conditions

    Supplementary Material for: The Effects of Human Beta-Defensins on Skin Cells in vitro

    No full text
    <p><b><i>Background:</i></b> Defensins are antimicrobial peptides that exert immunomodulatory and chemotactic functions. Based on these properties and their high expression levels in the skin, they are likely to affect skin inflammation, infection, and wound healing. This may lead to therapeutic applications in (burn) wound healing. <b><i>Objective:</i></b> We aimed to investigate the effects of human ÎČ-defensins (hBDs) on keratinocytes and fibroblasts, 2 major skin cell types involved in skin regeneration. <b><i>Methods:</i></b> Monolayer keratinocyte and fibroblast cultures were exposed to recombinant hBDs, and we overexpressed hBD2 and hBD3 in keratinocytes of reconstructed epidermal equivalents by lentiviral transduction. The effects were measured by immunohistochemistry, quantitative real-time PCR, and migration assays. Kinome analyses were performed on cultured keratinocytes to investigate the signal transduction events elicited by hBD stimulation. <b><i>Results:</i></b> We found that hBD3 induced the expression of cytokines and chemokines in keratinocytes, which was not observed in fibroblasts. hBD2, however, stimulated cell migration only in fibroblasts, which was not found for hBD3. Both defensins are likely to exert receptor-mediated effects in keratinocytes, as witnessed by changes in protein kinase activation following stimulation by hBD2 and hBD3. Kinome analysis suggested that protein kinase C activation was a common event for both defensins. We observed, however, considerable differences in keratinocyte responses between stimulation by exogenous recombinant defensins and endogenous defensins expressed following lentiviral transduction. <b><i>Conclusion:</i></b> Defensins exert modest biological effects on skin cells that are potentially beneficial in wound healing, but many questions regarding the biological mechanisms of action and relevance for the in vivo situation are still remaining.</p

    ResistĂȘncia a antimicrobianos de Escherichia coli isolada de dejetos suĂ­nos em esterqueiras Antibiotic-resistance of Escherichia coli isolates from stored pig slurry

    No full text
    <abstract language="eng">The antimicrobial resistance of 96 Escherichia coli strains isolated from a stabilization pond system on a pig-breeding farm was evaluated. Strains were tested for their resistance against 14 antimicrobial using the agar diffusion method. E. coli strains showed resistance to tetracycline (82.3%), nalidixic acid (64%), ampicilin (41%), sulfamethoxazole/trimethoprin (36%), sulfonamide (34%), cloranphenicol (274%), ciprofloxacin (19%), cefaclor (16%), streptomicyn (7.3%), neomicyn (1%), amoxacilin/ clavulanic acid (1%), and amikacin (1%). No resistance was observed to gentamicin and tobramycin, and 37.5% of E. coli strains were resistant to four or more antimicrobials. The multiresistance pattern was found in strains isolated during all sampled period. Strains showed a high variability in the antimicrobial resistance pattern

    Pharmacologic inhibition of hypoxia-inducible factor (HIF)-hydroxylases ameliorates allergic contact dermatitis

    No full text
    Background When an immune cell migrates from the bloodstream to a site of chronic inflammation, it experiences a profound decrease in microenvironmental oxygen levels leading to a state of cellular hypoxia. The hypoxia‐inducible factor‐1α (HIF‐1α) promotes an adaptive transcriptional response to hypoxia and as such is a major regulator of immune cell survival and function. HIF hydroxylases are the family of oxygen‐sensing enzymes primarily responsible for conferring oxygen dependence upon the HIF pathway. Methods Using a mouse model of allergic contact dermatitis (ACD), we tested the effects of treatment with the pharmacologic hydroxylase inhibitor DMOG, which mimics hypoxia, on disease development. Results Re‐exposure of sensitized mice to 2,4‐dinitrofluorobenzene (DNFB) elicited inflammation, edema, chemokine synthesis (including CXCL1 and CCL5) and the recruitment of neutrophils and eosinophils. Intraperitoneal or topical application of the pharmacologic hydroxylase inhibitors dymethyloxalylglycine (DMOG) or JNJ1935 attenuated this inflammatory response. Reduced inflammation was associated with diminished recruitment of neutrophils and eosinophils but not lymphocytes. Finally, hydroxylase inhibition reduced cytokine‐induced chemokine production in cultured primary keratinocytes through attenuation of the JNK pathway. Conclusion These data demonstrate that hydroxylase inhibition attenuates the recruitment of neutrophils to inflamed skin through reduction of chemokine production and increased neutrophilic apoptosis. Thus, pharmacologic inhibition of HIF hydroxylases may be an effective new therapeutic approach in allergic skin inflammation.This work was funded by Science Foundation Ireland grants to Cormac Taylor and Martin Steinhoff and a grant from the European Union (ERACoSYSMed) to Cormac Taylor and Martin Schneider. Moritz Strowitzki receives funding from the German Research Foundation (DFG; STR 1570/1-1) and the Braun Foundation (Braun; BBSTD18/00018).Scopu

    Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook

    No full text
    corecore