11,537 research outputs found

    Model-independent bubble wall velocities in local thermal equilibrium

    Full text link
    Accurately determining bubble wall velocities in first-order phase transitions is of great importance for the prediction of gravitational wave signals and the matter-antimatter asymmetry. However, it is a challenging task which typically depends on the underlying particle physics model. Recently, it has been shown that assuming local thermal equilibrium can provide a good approximation when calculating the bubble wall velocity. In this paper, we provide a model-independent determination of bubble wall velocities in local thermal equilibrium. Our results show that, under the reasonable assumption that the sound speeds in the plasma are approximately uniform, the hydrodynamics can be fully characterized by four quantities: the phase strength αn\alpha_n, the ratio of the enthalpies in the broken and symmetric phases, Ψn\Psi_n, and the sound speeds in both phases, csc_s and cbc_b. We provide a code snippet that allows for a determination of the wall velocity and energy fraction in local thermal equilibrium in any model. In addition, we present a fit function for the wall velocity in the case cs=cb=1/3c_s = c_b = 1/\sqrt 3.Comment: 34 pages, 6 figures; v2 matches published versio

    The chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) controls cellular quiescence by hyperpolarizing the cell membrane during diapause in the crustacean Artemia

    Get PDF
    Cellular quiescence, a reversible state in which growth, proliferation, and other cellular activities are arrested, is important for self-renewal, differentiation, development, regeneration, and stress resistance. However, the physiological mechanisms underlying cellular quiescence remain largely unknown. In the present study, we used embryos of the crustacean Artemia in the diapause stage, in which these embryos remain quiescent for prolonged periods, as a model to explore the relationship between cell-membrane potential (V-mem) and quiescence. We found that V-mem is hyperpolarized and that the intracellular chloride concentration is high in diapause embryos, whereas V-mem is depolarized and intracellular chloride concentration is reduced in postdiapause embryos and during further embryonic development. We identified and characterized the chloride ion channel protein cystic fibrosis transmembrane conductance regulator (CFTR) of Artemia (Ar-CFTR) and found that its expression is silenced in quiescent cells of Artemia diapause embryos but remains constant in all other embryonic stages. Ar-CFTR knockdown and GlyH-101-mediated chemical inhibition of Ar-CFTR produced diapause embryos having a high V-mem and intracellular chloride concentration, whereas control Artemia embryos released free-swimming nauplius larvae. Transcriptome analysis of embryos at different developmental stages revealed that proliferation, differentiation, and metabolism are suppressed in diapause embryos and restored in postdiapause embryos. Combined with RNA sequencing (RNA-Seq) of GlyH-101-treated MCF-7 breast cancer cells, these analyses revealed that CFTR inhibition down-regulates the Wnt and Aurora Kinase A (AURKA) signaling pathways and up-regulates the p53 signaling pathway. Our findings provide insight into CFTR-mediated regulation of cellular quiescence and V-mem in the Artemia model

    Leaving Goals on the Pitch: Evaluating Decision Making in Soccer

    Full text link
    Analysis of the popular expected goals (xG) metric in soccer has determined that a (slightly) smaller number of high-quality attempts will likely yield more goals than a slew of low-quality ones. This observation has driven a change in shooting behavior. Teams are passing up on shots from outside the penalty box, in the hopes of generating a better shot closer to goal later on. This paper evaluates whether this decrease in long-distance shots is warranted. Therefore, we propose a novel generic framework to reason about decision-making in soccer by combining techniques from machine learning and artificial intelligence (AI). First, we model how a team has behaved offensively over the course of two seasons by learning a Markov Decision Process (MDP) from event stream data. Second, we use reasoning techniques arising from the AI literature on verification to each team's MDP. This allows us to reason about the efficacy of certain potential decisions by posing counterfactual questions to the MDP. Our key conclusion is that teams would score more goals if they shot more often from outside the penalty box in a small number of team-specific locations. The proposed framework can easily be extended and applied to analyze other aspects of the game

    Influence of random roughness on the Casimir force at small separations

    Get PDF
    The influence of random surface roughness of Au films on the Casimir force is explored with atomic force microscopy in the plate-sphere geometry. The experimental results are compared to theoretical predictions for separations ranging between 20 and 200 nm. The optical response and roughness of the Au films were measured and used as input in theoretical predictions. It is found that at separations below 100 nm, the roughness effect is manifested through a strong deviation from the normal scaling of the force with separation distance. Moreover, deviations from theoretical predictions based on perturbation theory can be larger than 100%.Comment: 18, 5 figure

    Determination of incommensurate modulated structure in Bi2Sr1.6La0.4CuO6+{\delta} by aberration-corrected transmission electron microscopy

    Full text link
    Incommensurate modulated structure (IMS) in Bi2Sr1.6La0.4CuO6+{\delta} (BSLCO) has been studied by aberration corrected transmission electron microscopy in combination with high-dimensional (HD) space description. Two images in the negative Cs imaging (NCSI) and passive Cs imaging (PCSI) modes were deconvoluted, respectively. Similar results as to IMS have been obtained from two corresponding projected potential maps (PPMs), but meanwhile the size of dots representing atoms in the NCSI PPM is found to be smaller than that in PCSI one. Considering that size is one of influencing factors of precision, modulation functions for all unoverlapped atoms in BSLCO were determined based on the PPM obtained from the NCSI image in combination with HD space description

    Emission of photon echoes in a strongly scattering medium

    Full text link
    We observe the two- and three-pulse photon echo emission from a scattering powder, obtained by grinding a Pr3+^{3+}:Y2_2SiO5_5 rare earth doped single crystal. We show that the collective emission is coherently constructed over several grains. A well defined atomic coherence can therefore be created between randomly placed particles. Observation of photon echo on powders as opposed to bulk materials opens the way to faster material development. More generally, time-domain resonant four-wave mixing offers an attractive approach to investigate coherent propagation in scattering media

    Transport Measurements on Nano-engineered Two Dimensional Superconducting Wire Networks

    Full text link
    Superconducting triangular Nb wire networks with high normal-state resistance are fabricated by using a negative tone hydrogen silsesquioxane (HSQ) resist. Robust magnetoresistance oscillations are observed up to high magnetic fields and maintained at low temperatures, due to the eective reduction of wire dimensions. Well-defined dips appear at integral and rational values (1/2, 1/3, 1/4) of the reduced flux f = Phi/Phi_0, which is the first observation in the triangular wire networks. These results are well consistent with theoretical calculations for the reduced critical temperature as a function of f.Comment: 4 pages, 3 figure

    Density-Dependent Relativistic Hartree-Fock Approach

    Get PDF
    A new relativistic Hartree-Fock approach with density-dependent σ\sigma, ω\omega, ρ\rho and π\pi meson-nucleon couplings for finite nuclei and nuclear matter is presented. Good description for finite nuclei and nuclear matter is achieved with a number of adjustable parameters comparable to that of the relativistic mean field approach. With the Fock terms, the contribution of the π\pi-meson is included and the description for the nucleon effective mass and its isospin and energy dependence is improved.Comment: 4 pages, 3 figure

    Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp

    Get PDF
    BACKGROUND: Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. RESULTS: We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7-1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. CONCLUSIONS: Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts' sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects

    Which behaviour change techniques are effective to promote physical activity and reduce sedentary behaviour in adults : a factorial randomized trial of an e- and m-health intervention

    Get PDF
    Background: E- and m-health interventions are promising to change health behaviour. Many of these interventions use a large variety of behaviour change techniques (BCTs), but it's not known which BCTs or which combination of BCTs contribute to their efficacy. Therefore, this experimental study investigated the efficacy of three BCTs (i.e. action planning, coping planning and self-monitoring) and their combinations on physical activity (PA) and sedentary behaviour (SB) against a background set of other BCTs. Methods: In a 2 (action planning: present vs absent) x 2 (coping planning: present vs absent) x 2 (self-monitoring: present vs absent) factorial trial, 473 adults from the general population used the self-regulation based e- and m-health intervention 'MyPlan2.0' for five weeks. All combinations of BCTs were considered, resulting in eight groups. Participants selected their preferred target behaviour, either PA (n = 335, age = 35.8, 28.1% men) or SB (n = 138, age = 37.8, 37.7% men), and were then randomly allocated to the experimental groups. Levels of PA (MVPA in minutes/week) or SB (total sedentary time in hours/day) were assessed at baseline and post-intervention using self-reported questionnaires. Linear mixed-effect models were fitted to assess the impact of the different combinations of the BCTs on PA and SB. Results: First,overall efficacyof each BCT was examined. The delivery of self-monitoring increased PA (t = 2.735, p = 0.007) and reduced SB (t = - 2.573, p = 0.012) compared with no delivery of self-monitoring. Also, the delivery of coping planning increased PA (t = 2.302, p = 0.022) compared with no delivery of coping planning. Second, we investigated to what extentadding BCTs increased efficacy. Using the combination of the three BCTs was most effective to increase PA (x(2) = 8849, p = 0.003) whereas the combination of action planning and self-monitoring was most effective to decrease SB (x(2) = 3.918, p = 0.048). To increase PA, action planning was always more effective in combination with coping planning (x(2) = 5.590, p = 0.014; x(2) = 17.722, p < 0.001; x(2) = 4.552, p = 0.033) compared with using action planning without coping planning. Of note, the use of action planning alone reduced PA compared with using coping planning alone (x(2) = 4.389, p = 0.031) and self-monitoring alone (x(2) = 8.858, p = 003), respectively. Conclusions: This study provides indications that different (combinations of) BCTs may be effective to promote PA and reduce SB. More experimental research to investigate the effectiveness of BCTs is needed, which can contribute to improved design and more effective e- and m-health interventions in the future
    corecore