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Abstract

A new relativistic Hartree–Fock approach with density-dependent σ , ω, ρ and π meson–nucleon couplings for finite nuclei and nuclear matter
is presented. Good description for finite nuclei and nuclear matter is achieved with a number of adjustable parameters comparable to that of the
relativistic mean field approach. With the Fock terms, the contribution of the π -meson is included and the description for the nucleon effective
mass and its isospin and energy dependence is improved.
© 2006 Elsevier B.V.
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The relativistic mean field (RMF) theory [1,2] has received
much attention due to its successful description of numerous
nuclear phenomena [3–9]. In its most widely employed ver-
sions, i.e., with either self-coupling interactions or density-
dependent meson–nucleon couplings, the RMF theory with a
limited number of parameters can describe very well a very
large amount of data: saturation properties of nuclear mat-
ter [10], nuclear binding energies and radii, the isotopic shifts
in the Pb-region [11]. It gives a natural description of the nu-
clear spin–orbit potential [12], and explains the origin of the
pseudospin symmetry [13,14] and spin symmetry of the anti-
nucleon spectrum [15] as a relativistic symmetry [15–18]. In
spite of these successes, there are still a number of questions
needed to be answered in the RMF theory: the contributions due
to the exchange (Fock) terms and the pseudo-vector π -meson.

There exist attempts to include the exchange terms in the rel-
ativistic description of nuclear matter and finite nuclei. The ear-
lier relativistic Hartree–Fock (RHF) method led to underbound
nuclei due to the missing of the meson self-interactions [19].
Further developments were made by taking into account ap-
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proximately the non-linear self-couplings of the σ -field [20] or
by introducing the products of six and eight nucleon spinors in
the zero-range limit [21]. Although some improvements were
obtained, the RHF method is still not comparable with the RMF
theory in the quantitative description of nuclear systems. The
relativistic point coupling model has been used to investigate
nuclear systems [22] and the consequences of Fierz transfor-
mations acting upon the contact interactions for nucleon fields
occurring in relativistic point coupling models has been inves-
tigated in Hartree approximation, which yield the same models
but in Hartree–Fock approximation instead [23,24]. It has been
suggested that the Hartree–Fock approximation may constitute
a physically more realistic framework for power counting and
QCD scaling than the Hartree approximation.

In this work, a new RHF approach which contains density-
dependent meson–nucleon couplings is developed. With a num-
ber of adjustable parameters comparable to that of RMF La-
grangians, this density-dependent RHF (DDRHF) theory can
give a good description of nuclear systems without dropping
the Fock terms. Furthermore, important features like the behav-
ior of neutron and proton effective masses [25] can be inter-
preted well in DDRHF in comparison with the results of non-
relativistic Brueckner–Hartree–Fock (BHF) [26] and Dirac–
Brueckner–Hartree–Fock (DBHF) calculations [27,28].
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The most important parts of the nuclear force are the short-
range repulsive and medium-range attractive components. In
analogy with the strong interaction in free space which is de-
scribed by meson exchanges, it is convenient to represent the
strong interaction in nuclear medium by the exchange of effec-
tive isoscalar and isovector mesons. The description of nucleon
and meson degrees of freedom has to rely ultimately on the rel-
ativistic quantum field approach. According to this spirit, we
start from an effective Lagrangian density L constructed with
the degrees of freedom associated with the nucleon field (ψ),
two isoscalar meson fields (σ and ω), two isovector meson
fields (π and ρ) and the photon field (A). The parameters of
the model are the effective meson masses and meson–nucleon
couplings.

With the general Legendre transformation

(1)H = T 00 = ∂L

∂φ̇i

φ̇i − L,

one can obtain the effective Hamiltonian from the Lagrangian
density L as

H = ψ̄(−iγ · ∇ + M)ψ

(2)

+ 1

2

∫
d4x2

∑
i=σ,ω
ρ,π,A

ψ̄(x1)ψ̄(x2)ΓiDi(x1, x2)ψ(x2)ψ(x1),

where Di(x1, x2) represent the corresponding meson propaga-
tors, and the interaction vertices Γi are defined as,

(3a)Γσ (1,2) ≡ −gσ (1)gσ (2),

(3b)Γω(1,2) ≡ +gω(1)γμ(1)gω(2)γ μ(2),

(3c)Γρ(1,2) ≡ +gρ(1)γμ(1)�τ (1) · gρ(2)γ μ(2)�τ(2),

(3d)Γπ(1,2) ≡ −
[

fπ

mπ

�τγ5γμ∂μ

]
1
·
[

fπ

mπ

�τγ5γν∂
ν

]
2
,

(3e)ΓA(1,2) ≡ +e2

4

[
γμ(1 − τ3)

]
1

[
γ μ(1 − τ3)

]
2.

Following the experience and success in DDRMF [8,29–34],
the meson–nucleon couplings gσ , gω, gρ and fπ are taken as
functions of the baryonic density ρb. For σ - and ω-meson, the
density-dependence of the couplings gσ and gω are chosen as

(4)gi(ρb) = gi(ρ0)fi(ξ),

where i = σ,ω, and

(5)fi(ξ) = ai

1 + bi(ξ + di)
2

1 + ci(ξ + di)2
,

is a function of ξ = ρb/ρ0, and ρ0 denotes the baryonic sat-
uration density of nuclear matter. In addition, five constraint
conditions fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0 are intro-
duced to reduce the number of free parameters. For simplicity,
the exponential density-dependence is adopted for fπ as well
as gρ [35]:

(6a)gρ(ρb) = gρ(0)e−aρξ ,

(6b)fπ(ρb) = fπ(0)e−aπ ξ .
The coupling constants gρ(0) and fπ(0) are fixed to their values
in free space. One reason to do so is just to reduce the number
of free parameters and another reason is that the inclusion of
Fock terms allows such choice. There are in total 8 free para-
meters, i.e., mσ , gσ (ρ0), gω(ρ0), aρ , aπ , and three others from
the density-dependence of gσ and gω. A new parametrization
called PKO1 is found (see Table 1) by fitting the masses of the
nuclei 16O, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 116Sn, 132Sn, 182Pb,
194Pb, 208Pb and 214Pb, and the values of the baryonic satura-
tion density ρ0, the compression modulus K and the symmetry
energy J of nuclear matter at the saturation point.

It should be emphasized that here the effective interac-
tion PKO1 is obtained by fitting the empirical properties of
nuclei and the nuclear matter at the saturation point. In Ta-
ble 1 one finds aρ = 0.076 and aπ = 1.232. This means that
gρ(1)/gρ(0) = 0.93 and fπ(1)/fπ(0) = 0.36, i.e., the contri-
bution from the pion is strongly reduced as compared to that in
free space. In fact, the effect of pion has been taken into account
effectively via the other mesons. It will be refined in the future
if more information is used to constrain the density dependence
of the effective interaction in the medium.

The PKO1 parameter set gives the following nuclear mat-
ter bulk properties: compression modulus K = 250.24 MeV,
symmetry energy J = 34.37 MeV, binding energy per parti-
cle E/A = −15.996 MeV, saturation baryonic density ρ0 =
0.1520 fm−3.

For finite nuclei, the self-consistent Dirac equations are
solved in coordinate space with techniques similar to those
used in RMF [36,37]. The non-local exchange (Fock) poten-
tials are treated exactly as in Ref. [19]. Calculations are carried
out for a set of selected nuclei (S.N.), i.e., 16O, 40Ca, 48Ca,
56Ni, 58Ni, 68Ni, 90Zr, 112Sn, 116Sn, 124Sn, 132Sn, 182Pb, 194Pb,
204Pb, 208Pb, 214Pb, and 210Po, as well as the Sn and Pb iso-
topic chains. For the open shell nuclei, the pairing correlations
are treated by the BCS method with a density-dependent delta
force [38]. A detailed comparison with the predictions of some
typical RMF parameterizations: PK1 [34], PKDD [34], NL3
[39] and DD-ME1 [33] are summarized in Table 2 where the
root mean square (rms) deviations from the data are shown. As
one can see in Table 2, the DDRHF approach with PKO1 pro-
vides a good quantitative description of finite nuclei, sometimes
better than the RMF approach. It should be emphasized that this
is the first time for the RHF approach to provide such a good
quantitative description for the finite nuclei and nuclear matter.

From previous discussion, one can find that good description
of nuclear systems comparable to that of RMF can be obtained
without dropping the Fock terms. Taking 208Pb as an example,
shown in Fig. 1 are the neutron energy densities from Hartree

Table 1
The effective interaction PKO1 for DDRHF with M = 938.9 MeV, mω =
783.0 MeV, mρ = 769.0 MeV, mπ = 138.0 MeV

mσ 525.7691 aσ 1.3845 aω 1.4033
gσ 8.8332 bσ 1.5132 bω 2.0087
gω 10.7299 cσ 2.2966 cω 3.0467
gρ(0) 2.6290 dσ 0.3810 dω 0.3308
fπ (0) 1.0000 aρ 0.0768 aπ 1.2320
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Table 2
The rms deviations Δ from the data for the RHF calculations with PKO1 in comparison with that of RMF with PK1, PKDD, NL3 and DD-ME1. The rows from
two to ten respectively correspond to: the binding energies Eb of the selected nuclei (S.N.) and the even–even nuclei in Pb and Sn chains; two-neutron separation
energies S2n of Pb and Sn isotopes; charge radii rc of the S.N. and Pb isotopes; isotope shifts (I.S.) of Pb isotopes; spin–orbit (S.O.) splittings of doubly magic
nuclei

PKO1 PK1 PKDD NL3 DD-ME1

ΔEb
S.N. 1.6177 1.8825 2.3620 2.2506 2.7561
Pb 1.8995 2.0336 2.7007 2.0021 2.1491
Sn 1.2665 1.9552 2.4567 1.6551 0.9168

ΔS2n
Pb 0.6831 0.9192 1.3139 0.9359 1.2191
Sn 0.6813 0.7762 1.0629 0.8463 0.7646

Δrc S.N. 0.0269 0.0204 0.0188 0.0177 0.0163
Pb 0.0056 0.0061 0.0060 0.0143 0.0150

ΔI.S. Pb 0.0760 0.0784 0.0784 0.0679 0.0567

ΔS.O. O 0.1761 0.2879 0.6817 0.2195 0.1107
Ca 0.5078 0.6638 0.8159 0.7184 0.6041
Ni 0.3959 0.9923 1.3287 1.3315 0.9029
Sn 0.1650 0.3300 0.6913 0.4757 0.5408
Pb 0.2014 0.3902 0.6370 0.4604 0.4588
Fig. 1. Energy density contributions from Hartree and Fock terms in different
channels for neutrons in 208Pb given by DDRHF with PKO1, in comparison
with RMF with PKDD.

and Fock terms in different meson channels in DDRHF, com-
pared with the results of RMF with PKDD [34]. There exist
significant and remarkable differences between DDRHF and
RMF results.

Although the attractive and repulsive parts of the nuclear
force are mainly provided by σ - and ω-mesons respectively,
the contributions in DDRHF are much less than their corre-
sponding ones in RMF, as shown in Fig. 1. For the isovector
channels, the isovector ρ- and π -mesons in the DDRHF ap-
proach become attractive due to the strong Fock terms. While
in the standard RMF with σ -, ω- and ρ-mesons, the isospin part
of nuclear force is provided only by the direct part of ρ-meson,
which gives the repulsive interaction for the neutrons. Further-
more it should be emphasized that one of the advantage of the
DDRHF is the inclusion of the π -meson which is very impor-
tant at large distance in DDRHF.

An important difference between the RHF and RMF ap-
proaches is the nucleon effective mass. In the medium, particles
or quasi-particles behave as if their mass is different from their
bare mass due to interactions with surrounding particles, which
is reflected in the level density as an example. In Ref. [25],
the nucleon effective mass has been discussed and it is shown
that there are two sources of modification of the bare mass: the
non-locality of the mean field which gives rise to the so-called
k-mass M∗

k , and the energy dependence of the mean field which
leads to the E-mass M∗

E . The total effective mass M∗ is related
to M∗

k and M∗
E . One can already note that the RMF (RHF) mean

field is local (non-local) in coordinate space and therefore, it
can be expected that their effective masses will differ. It should
be also emphasized that, in RMF theory appears the Lorentz
scalar mass MS = M + ΣS where ΣS is the scalar self-energy.
It should not be confused with any of the M∗ and one should
refer to it as the scalar mass, or Dirac mass.

In the non-relativistic framework, the energy–momentum re-
lation

(7)
1

2M
k2 + V (k; ε) = ε

leads to the effective mass M∗ [25]:

(8)
M∗

M
≡ 1 − dV (k(ε); ε)

dε
,

where ε = E − M is the single-particle energy and V (k; ε) is
the momentum- and energy-dependent mean field.

In a relativistic framework like RMF or RHF, the energy–
momentum relation is,

(9)(k + k̂ΣV )2 + (M + ΣS)2 = (E − Σ0)
2,

where ΣS , ΣV , and Σ0 are respectively the scalar, spacelike-
and timelike-vector components of the self-energy. Its Schrö-
dinger-type form can be derived as:

(10)
1

2M
k2 + V (k; ε) − ε2

2M
= ε,

which give the effective masses M∗
R,

(11)
M∗

R

M
= 1 − d

dε

[
V

(
k(ε); ε) − ε2

2M

]
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Fig. 2. Neutron and proton effective masses M∗
NR at their corresponding Fermi

energy EF calculated in DDRHF with PKO1 as functions of β = (N − Z)/A

for different baryonic densities.

Fig. 3. Same as Fig. 2, but for M∗
R.

and M∗
NR = M∗

R − ε in the non-relativistic approximation by
neglecting the last term at the left side of Eq. (10). One can
see that M∗

NR is the effective mass in Refs. [25,27] and M∗
R

the group mass in Ref. [25], and they are the same in the non-
relativistic approach. In the relativistic approach they can be
significantly different, as shown in the following.

The neutron and proton effective masses M∗
NR and M∗

R at
their corresponding Fermi energy EF from the DDRHF cal-
culations with PKO1 are respectively shown as functions of
β = (N − Z)/A in Figs. 2 and 3 for different density ρb . At
lower density, the RHF gives the trend that M∗

NR,n(EF,n) >

M∗
NR,p(EF,p) but this trend is reversed around 0.8ρ0. For M∗

R,
one always have M∗

R,n(EF,n) > M∗
R,p(EF,p) for all densities.

In contrast, for RMF, the relatively simple expressions tell
us that one always have M∗

NR,n < M∗
NR,p and M∗

R,n(EF,n) >

M∗
R,p(EF,p) for neutron rich system. This difference between

RHF and RMF is related to the presence of exchange (Fock)
terms which bring non-locality effects to the RHF self-energies.
It is worthwhile to mention that in Brueckner–Hartree–Fock
studies it is found that M∗

n(EF,n) > M∗
p(EF,p) [28,40], but at

larger density (ρb = 0.17 fm−3) [40].
Another significant difference between RMF and DDRHF

predictions is the energy dependence of M∗
NR. In RMF, M∗

NR is
a constant whereas it is a function of E or k in RHF. In Fig. 4,
Fig. 4. The energy dependence of the effective mass M∗
NR calculated in RHF

with PKO1, for ρ = 0.8ρ0 and different values of neutron excess β .

the energy dependence of M∗
NR for different β at ρb = 0.8ρ0 is

shown. The neutron effective mass tends to decrease with the
energy whereas the proton mass is more constant or slightly
increases in neutron rich matter.

One can see that the neutron effective masses are larger than
the proton ones at low energy, i.e., M∗

NR,n(E) > M∗
NR,p(E),

and depending on the β , a different feature appears at en-
ergy E ∼ 15–20 MeV (solid points). It was also found in
Dirac–Brueckner–Hartree–Fock calculations that M∗

NR,n(E) >

M∗
NR,p(E) [27], but at higher energy (E = 50 MeV). Combin-

ing with the discussion of Fig. 2, one can conclude that the
DDRHF will predict M∗

NR,n > M∗
NR,p at low energy or low den-

sity in neutron rich system while M∗
NR,n < M∗

NR,p for the RMF.
In summary, it has been demonstrated that one can go be-

yond the standard relativistic mean field approach to include
the exchange (Fock) terms and the new couplings such as pion–
nucleon couplings which are effective only through exchange
terms. These exchange terms are the cause of subtle effects such
as the isospin dependence of the effective masses. The same (or
even better) quantitative description of nuclear properties com-
parable to RMF can be achieved with a comparable number of
adjusted parameters. It will open the door to the future inves-
tigation of nuclei by the relativistic Hartree–Fock–Bogoliubov
approach and the relativistic RPA on top of RHF approxima-
tion.
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