14 research outputs found

    Bespoke Biomolecular Wires for Transmembrane Electron Transfer: Spontaneous Assembly of a Functionalized Multiheme Electron Conduit.

    Get PDF
    Shewanella oneidensis exchanges electrons between cellular metabolism and external redox partners in a process that attracts much attention for production of green electricity (microbial fuel cells) and chemicals (microbial electrosynthesis). A critical component of this pathway is the outer membrane spanning MTR complex, a biomolecular wire formed of the MtrA, MtrB, and MtrC proteins. MtrA and MtrC are decaheme cytochromes that form a chain of close-packed hemes to define an electron transfer pathway of 185 Ã…. MtrA is wrapped inside MtrB for solubility across the outer membrane lipid bilayer; MtrC sits outside the cell for electron exchange with external redox partners. Here, we demonstrate tight and spontaneous in vitro association of MtrAB with separately purified MtrC. The resulting complex is comparable with the MTR complex naturally assembled by Shewanella in terms of both its structure and rates of electron transfer across a lipid bilayer. Our findings reveal the potential for building bespoke electron conduits where MtrAB combines with chemically modified MtrC, in this case, labeled with a Ru-dye that enables light-triggered electron injection into the MtrC heme chain

    Which Multi-Heme Protein Complex Transfers Electrons More Efficiently? Comparing MtrCAB from Shewanella with OmcS from Geobacter

    Get PDF
    Microbial nanowires are fascinating biological structures that allow bacteria to transport electrons over micrometers for reduction of extracellular substrates. It was recently established that the nanowires of both Shewanella and Geobacter are made of multi-heme proteins; but, while Shewanella employs the 20-heme protein complex MtrCAB, Geobacter uses a redox polymer made of the hexa-heme protein OmcS, begging the question as to which protein architecture is more efficient in terms of long-range electron transfer. Using a multiscale computational approach we find that OmcS supports electron flows about an order of magnitude higher than MtrCAB due to larger heme–heme electronic couplings and better insulation of hemes from the solvent. We show that heme side chains are an essential structural element in both protein complexes, accelerating rate-limiting electron tunnelling steps up to 1000-fold. Our results imply that the alternating stacked/T-shaped heme arrangement present in both protein complexes may be an evolutionarily convergent design principle permitting efficient electron transfer over very long distances

    Ultrafast Light-Driven Electron Transfer in a Ru(II)tris(bipyridine)-Labelled Multiheme Cytochrome

    Get PDF
    Multiheme cytochromes attract much attention for their electron transport properties. These proteins conduct electrons across bacterial cell walls, along extracellular filaments, and when purified can serve as bionanoelectronic junctions. Thus, it is important and necessary to identify and understand the factors governing electron transfer in this family of proteins. To this end we have used ultra-fast transient absorbance spectroscopy, to define heme-heme electron transfer dynamics in the representative multiheme cytochrome STC from Shewanella oneidensis in aqueous solution. STC was photo-sensitized by site-selective labelling with a Ru(II)(bipyridine)3 dye and the dynamics of light-driven electron transfer described by a kinetic model corroborated by molecular dynamics simulation and density functional theory calculations. With the dye attached adjacent to STC Heme IV, a rate constant of 87 x 106 s-1 was resolved for Heme IV → Heme III electron transfer. With the dye attached adjacent to STC Heme I, at the opposite terminus of the tetraheme chain, a rate constant of 125 x 106 s-1 was defined for Heme I → Heme II electron transfer. These rates are an order of magnitude faster than previously computed values for unlabeled STC. The Heme III/IV and I/II pairs exemplify the T-shaped heme packing arrangement, prevalent in multiheme cytochromes, whereby the adjacent porphyrin rings lie at 90o with edge-edge (Fe-Fe) distances of ≈6 (11) Å. The results are significant in demonstrating the opportunities for pump-probe spectroscopies to resolve inter-heme electron transfer in Ru-labeled multiheme cytochromes

    Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins

    Get PDF
    Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+Σ current–voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices

    Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy

    Get PDF
    Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the primary Mn2+-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential for its in vivo colonization and virulence. The recently reported high-resolution structures of metal- free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated metal binding. However, the conformational dynamics of metal-free PsaA in solution remain unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in metal-free PsaA and its distribution of conformations in solution. The results show that the crystal structure of the metal-free PsaA is a good representation of the dominant conformation in solution, but the protein also samples structurally distinct conformations that are not captured by the crystal structure. Further, these results suggest that the metal binding site is larger and more solvent exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the groundwork for future EPR and MD based studies of PsaA in solution

    Liquid-chromatography mass spectrometry describes post-translational modification of Shewanella outer membrane proteins

    Get PDF
    Electrogenic bacteria deliver excess respiratory electrons to externally located metal oxide particles and electrodes. The biochemical basis for this process is arguably best understood for species of Shewanella where the integral membrane complex termed MtrCAB is key to electron transfer across the bacterial outer membranes. A crystal structure was recently resolved for MtrCAB from S. baltica OS185. However, X-ray diffraction did not resolve the N-terminal residues so that the lipidation status of proteins in the mature complex was poorly described. Here we report liquid chromatography mass spectrometry revealing the intact mass values for all three proteins in the MtrCAB complexes purified from S. oneidensis MR-1 and S. baltica OS185. The masses of MtrA and MtrB are consistent with both proteins being processed by Signal Peptidase I and covalent attachment of ten c-type hemes to MtrA. The mass of MtrC is most reasonably interpreted as arising from protein processed by Signal Peptidase II to produce a diacylated lipoprotein containing ten c-type hemes. Our two-step protocol for liquid-chromatography mass spectrometry used a reverse phase column to achieve on-column detergent removal prior to gradient protein resolution and elution. We envisage the method will be capable of simultaneously resolving the intact mass values for multiple proteins in other membrane protein complexes

    Do multiheme cytochromes containing close-packed heme groups have a band structure formed from the heme π and π* orbitals?

    No full text
    Multiheme cytochromes (MHCs) are bacterial electron-transfer proteins. We show from optical spectra and calculations that some of these cytochromes probably contain occupied and unoccupied bands formed from heme π and π* orbitals that span the protein. In the fully oxidised proteins, the unoccupied π*-bands are energetically above the redox-active frontier orbitals, which according to NMR data and calculations, are formed of Fe3+ t2g and porphyrin π-orbitals. These orbitals on different hemes are electronically coupled according to EPR data and calculations, but only weakly so. We suggest a role for the heme bands in the electronic conductivity of single MHCs in bioelectronic junctions that is distinct from the role of the redox-active Fe3+ t2g and porphyrin π-orbitals in physiological electron transfer
    corecore