75 research outputs found

    Properties of bacterial endophytes and their proposed role in plant growth

    Get PDF
    Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant. Endophytes with this capacity might profit from association with the plant, because colonization is enhanced. In turn, host plants benefit by stress reduction and increased root growth. This mechanism leads to the concept of 'competent' endophytes, defined as endophytes that are equipped with genes important for maintenance of plant-endophyte associations. The ecological role of these endophytes and their relevance for plant growth are discussed here.</p

    Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes

    Get PDF
    Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.</p

    Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline

    Get PDF
    Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality

    Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agrifood systems' sustainability

    Get PDF
    In addition to challenges like climate change and biodiversity loss, the sustainability and resilience of agrifood systems worldwide are currently challenged by new threats, such as the COVID-19 pandemic and the Ukraine war. Furthermore, the resilience and sustainability of our agrifood systems need to be enhanced in ways that simultaneously increase agricultural production, decrease post-harvest food losses and food waste, protect the climate, environment and health, and preserve biodiversity. The precarious situation of agrifood systems is also illustrated by the fact that overall, around 3 billion people worldwide still do not have regular access to a healthy diet. This results in various forms of malnutrition, as well as increasing number of people suffering from overweight and obesity, and diet-related, non-communicable diseases (NCDs) around the world. Findings from microbiome research have shown that the human gut microbiome plays a key role in nutrition and diet-related diseases and thus human health. Furthermore, the microbiome of soils, plants, and animals play an equally important role in environmental health and agricultural production. Upcoming, microbiome-based solutions hold great potential for more resilient, sustainable, and productive agrifood systems and open avenues toward preventive health management. Microbiome-based solutions will also be key to make better use of natural resources and increase the resilience of agrifood systems to future emerging and already-known crises. To realize the promises of microbiome science and innovation, there is a need to invest in enhancing the role of microbiomes in agrifood systems in a holistic One Health approach and to accelerate knowledge translation and implementation.YS, KD'H, LL, HS, LO, TK, EM, AM, IS, and AS received funding from the European Union's H2020 Research and Innovation Programme under Grant No. 818116 (Microbiome Support).Peer reviewe

    Microbiome definition re-visited: old concepts and new challenges

    Get PDF
    peer-reviewedAbstract The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term “microbiome.” Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstrac

    The freshwater Sponge Ephydatia Fluviatilis harbours diverse pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity

    Get PDF
    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT-funded project [PTDC/BIA-MIC/3865/2012]; Federation of European Microbiological Societies (FEMS)info:eu-repo/semantics/publishedVersio

    Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    Get PDF
    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values

    Human Pathogens in Primary Production Systems

    No full text
    corecore