6 research outputs found

    Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis

    Get PDF
    Two new Amaryllidaceae alkaloids, belonging to the mesembrine- and crinine-types, named crinsarnine (1) and sarniensinol (2), were isolated from the dried bulbs of Nerine sarniensis together with bowdensine (3), sarniensine (4), hippadine (5) and 1-O-acetyl-lycorine (6). Crinsarnine (1) and sarniensinol (2) were characterized using spectroscopic and chiroptical methods as (1S,2S,4aR,10bS)-2,7-dimethoxy-1,2,3,4,4a,6-hexahydro-5,11b-ethano[1,3]dioxolo-[4,5-j]phenanthridin- 1-yl acetate and (6-(3aR,4Z,6S,7aS)-6-methoxy-1-methyl-2,3,3a,6,7,7a-hexa-hydro-1H-indol-3a-yl)benzo [d][1,3]dioxol-5-yl)methanol, respectively. Furthermore, the complete spectroscopic characterization of bowdensine (3) is reported for the first time. Compounds 1–6 were evaluated against the Orlando reference strain of Aedes aegypti. None of compounds showed mortality against 1st instar Ae. aegypti larvae at the concentrations tested. In adult topical bioassays, only 1 displayed adulticidal activity with an LD50 = 2.29 ± 0.049 μg/mosquito. As regards the structure-activity relationship, the pretazettine and crinine scaffold in 2 and 4 and in 1 and 3 respectively, proved to be important for their activity, while the pyrrole[de]phenanthridine scaffold present in 5 and 6 was important for their reactivity. Among the pretazettine group compounds, opening of the B ring or the presence of a B ring lactone as well as the trans-stereochemistry of the A/B ring junction, appears to be important for activity, while in crinine-type alkaloids, the substituent at C-2 seems to play a role in their activity

    Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs

    No full text
    Chronic infection with the hepatitis B virus (HBV) occurs in approximately 6% of the world's population and carriers of the virus are at risk for complicating hepatocellular carcinoma. Current treatment options have limited efficacy and chronic HBV infection is likely to remain a significant global medical problem for many years to come. Silencing HBV gene expression by harnessing RNA interference (RNAi) presents an attractive option for development of novel and effective anti HBV agents. However, despite significant and rapid progress, further refinement of existing technologies is necessary before clinical application of RNAi-based HBV therapies is realized. Limiting off target effects, improvement of delivery efficiency, dose regulation and preventing reactivation of viral replication are some of the hurdles that need to be overcome. To address this, we assessed the usefulness of the recently described class of altritol-containing synthetic siRNAs (ANA siRNAs), which were administered as lipoplexes and tested in vivo in a stringent HBV transgenic mouse model. Our observations show that ANA siRNAs are capable of silencing of HBV replication in vivo. Importantly, non specific immunostimulation was observed with unmodified siRNAs and this undesirable effect was significantly attenuated by ANA modification. Inhibition of HBV replication of approximately 50% was achieved without evidence for induction of toxicity. These results augur well for future application of ANA siRNA therapeutic lipoplexes

    Bioactivity-guided mapping and navigation of chemical space

    No full text
    The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification during tree construction allow efficient and intuitive mapping, visualization and navigation of the chemical space defined by a given library, which in turn allows correlation of this chemical space with the investigated bioactivity and further compound design. Brachiation along the branches of such trees from structurally complex to simple scaffolds with retained yet varying bioactivity is feasible at high frequency for the five major pharmaceutically relevant target classes and allows for the identification of new inhibitor types for a given target. We provide proof of principle by identifying new active scaffolds for 5-lipoxygenase and the estrogen receptor ERa

    Have lichenized fungi delivered promising anticancer small molecules?

    No full text
    This review, covering the literature from 1844 to present (end 2017), probes questions concerning small molecule metabolites derived from lichens (lichenized fungi) and their impact in terms of providing compounds with significant promise in oncology. The review gives an overview of lichenized fungi and summarizes the classes of compounds obtained as metabolites from these organisms. A definition of what characteristics an actual “promising” anticancer compound should possess is also delineated. The review reports a brief overview on human cancer and then goes into depth in listing compounds with so-called “anticancer properties” that have been isolated from lichenized fungi, according to their small molecule structural classes. Five “most promising” compounds are discussed in-depth, also considering the possibility of obtaining sufficient amounts for further investigations

    Have lichenized fungi delivered promising anticancer small molecules?

    No full text
    corecore