429 research outputs found

    The effect of klapskate hinge position on push-off performance: a simulation study

    Get PDF
    klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. Method: For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body’s center of mass at take off (Weff). Results: Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25 % at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Conclusion: Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice. Key Words: SPEED SKATING, SPORTS EQUIPMENT, LOCOMOTION, MUSCULO-SKELETAL MODEL, BIOMECHANICS Klapskates have become the custom equipment inspeed skating. In contrast to the conventionalskates, in which the shoe is rigidly fixed to th

    The Science of Racing against Opponents: Affordance Competition and the Regulation of Exercise Intensity in Head-to-Head Competition

    Get PDF
    Athlete–environment interactions are crucial factors in understanding the regulation of exercise intensity in head-to-head competitions. Previously, we have proposed a framework based on the interdependence of perception and action, which allows us to explore athletic behavior in the more complex pacing situations occurring when athletes need to respond to actions of their opponents. In the present perspective we will further explore whether opponents, crucial external factors in competitive sports, could indeed be perceived as social invitations for action. Decisions regarding how to expend energy over the race are based on internal factors such as the physiological/biomechanical capacity of the athlete in relation to external factors such as those presented by opponents. For example: Is the athlete able to overtake competitors, or not? We present several experimental studies that demonstrate that athletes regulate their exercise intensity differently in head-to-head competition compared to time-trial exercises: Relational athlete-environment aspects seem to outweigh benefits of the individual optimal energy distribution. Also, the behavior of the opponents has been shown to influence pacing strategies of competing athletes, again demonstrating the importance of relational athlete–environment aspects in addition to strictly internal factors. An ecological perspective is presented in which opponents are proposed to present social affordances, and decision-making is conceptualized as a resultant of affordance-competition. This approach will provide novel insights in tactical decision-making and pacing behavior in head-to-head competitions. Future research should not only focus on the athlete's internal state, but also try to understand opponents in the context of the social affordances they provide

    我爸爸,中国的朋友 / My Father, a Friend to China

    Get PDF
    This short talk introduces the life of Daniel F. Myers (1889-1973) and his experience in China from 1929 to 1944. Myers was an American automotive engineer selected initially by a representative authorized by Marshal Zhang Xueliang to set up and engineer a truck manufacturing factory in Mukden (Shenyang), Manchuria (Dongbei, North-East China). Although Shenyang fell to the Japanese in 1931, Myers stayed until 1933. Throughout the 1930s, Myers continued to work for the Chinese, first as technical advisor and service manager of Cathay Motors, then as Technical Advisor, regarding the development of automotive and other industries, to the Trust Department of the Central Bank of China, under Minister of Finance, Dr. H. H. Kung. By 1941, he was in Washington, D.C., under the auspices of the China Defense Supplies Corporation, helping the Chinese appeal to the Lend-Lease Administration for road-building equipment and trucks needed to maintain the Burma Road. He continued his work for China Defense Supplies, Inc., until June 30, 1944, when it became clear that the Burma Road was closed and CDS transitioned into the China Supplies Commission

    Changes in gait during constant pace treadmill running.

    Get PDF
    Treadmills are often used by runners when weather conditions are adverse or a specific training effect is desired. Athletes might respond to fatigue differently when running on a treadmill compared with overground conditions, where pace is typically more variable. The purpose of this study was to measure changes in gait parameters over the course of a 10-km treadmill run. Fifteen male competitive runners ran at a constant pace for 10 km at 103% of season's best time on an instrumented treadmill with in-dwelling force plates, and data were analyzed at 5 distances. Kinematic data were derived from high-speed videography and results compared between the early and late stages. Before halfway, step length increased and cadence decreased, whereas during the latter stages, there were significant decreases in impulse and maximum force. Contact time decreased and flight time increased continually, but otherwise most gait variables did not change. The changes in contact and flight times suggested that athletes altered their gait so that more time was spent airborne to allow the treadmill to pass under them. In general, however, the runners maintained their techniques throughout the run. Constant pace treadmill running might therefore be useful with the aim of running for a particular distance and speed with a consistent technique unaffected by factors such as gradient or fatigue. However, the increase in flight time might have aided the runners because of the nature of treadmill running, and athletes and coaches should note that this training effect is impractical during overground running
    • …
    corecore