344 research outputs found

    Electronic noses based on metal oxide nanowires: A review

    Get PDF
    Metal oxides are ideal for the fabrication of gas sensors: they are sensitive to many gases while allowing the device to be simple, tiny, and inexpensive. Nonetheless, their lack of selectivity remains a limitation. In order to achieve good selectivity in applications with many possible interfering gases, the sensors are inserted into an electronic nose that combines the signals from nonselective sensors and analyzes them with multivariate statistical algorithms in order to obtain selectivity. This review analyzes the scientific articles published in the last decade regarding electronic noses based on metal oxide nanowires. After a general introduction, Section 2 discusses the issues related to poor intrinsic selectivity. Section 3 briefly reviews the main algorithms that have hitherto been used and the results they can provide. Section 4 classifies the recent literature into fundamental research, agrifood, health, security. In Section 5, the literature is analyzed regarding the metal oxides, the surface decoration nanoparticles, the features that differentiate the sensors in a given array, the application for which the device was developed, the algorithm used, and the type of information obtained. Section 6 concludes by discussing the present state and points out the requirements for their use in real-world applications

    Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification

    Get PDF
    Classification of different gases is important, and it is possible to use different gas sensors for this purpose. Electronic noses, for example, combine separated gas sensors into an array for detecting different gases. However, the use of separated sensors in an array suffers from being bulky, high-energy consumption and complex fabrication processes. Generally, gas sensing properties, including gas selectivity, of semiconductor gas sensors are strongly dependent on their working temperature. It is therefore feasible to use a single device composed of identical sensors arranged in a temperature gradient for classification of multiple gases. Herein, we introduce a design for simple fabrication of gas sensor array based on bilayer Pt/SnO2 for real-time monitoring and classification of multiple gases. The study includes design simulation of the sensor array to find an effective gradient temperature, fabrication of the sensors and test of their performance. The array, composed of five sensors, was fabricated on a glass substrate without the need of backside etching to reduce heat loss. A SnO2 thin film sensitized with Pt on top deposited by sputtering was used as sensing material. The sensor array was tested against different gases including ethanol, methanol, isopropanol, acetone, ammonia, and hydrogen. Radar plots and principal component analysis were used to visualize the distinction of the tested gases and to enable effective classification

    Precise Modeling of the Exoplanet Host Star and CoRoT Main Target HD 52265

    Full text link
    This paper presents a detailed and precise study of the characteristics of the Exoplanet Host Star and CoRoT main target HD 52265, as derived from asteroseismic studies. The results are compared with previous estimates, with a comprehensive summary and discussion. The basic method is similar to that previously used by the Toulouse group for solar-type stars. Models are computed with various initial chemical compositions and the computed p-mode frequencies are compared with the observed ones. All models include atomic diffusion and the importance of radiative accelerations is discussed. Several tests are used, including the usual frequency combinations and the fits of the \'echelle diagrams. The possible surface effects are introduced and discussed. Automatic codes are also used to find the best model for this star (SEEK, AMP) and their results are compared with that obtained with the detailed method. We find precise results for the mass, radius and age of this star, as well as its effective temperature and luminosity. We also give an estimate of the initial helium abundance. These results are important for the characterization of the star-planet system.Comment: 9 pages, 6 figures, 7 tables, to be published in Astronomy and Astrophysic

    Genome-wide association reveals host-specific genomic traits in Escherichia coli

    Get PDF
    Background Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. Results We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. Conclusions This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli

    Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction

    Get PDF
    To understand the dynamics behind the worldwide spread of the mcr-1 gene, we determined the population structure of Escherichia coli and of mobile genetic elements (MGEs) carrying the mcr-1 gene. After a systematic review of the literature we included 65 E. coli whole genome sequences (WGS), adding 6 recently sequenced travel related isolates, and 312 MLST profiles. We included 219 MGEs described in 7 Enterobacteriaceae species isolated from human, animal and environmental samples. Despite a high overall diversity, 2 lineages were observed in the E. coli population that may function as reservoirs of the mcr-1 gene, the largest of which was linked to ST10, a sequence type known for its ubiquity in human faecal samples and in food samples. No genotypic clustering by geographical origin or isolation source was observed. Amongst a total of 13 plasmid incompatibility types, the IncI2, IncX4 and IncHI2 plasmids accounted for more than 90% of MGEs carrying the mcr-1 gene. We observed significant geographical clustering with regional spread of IncHI2 plasmids in Europe and IncI2 in Asia. These findings point towards promiscuous spread of the mcr-1 gene by efficient horizontal gene transfer dominated by a limited number of plasmid incompatibility types

    Tuberculosis Acquired Outside of Households, Rural Vietnam

    Get PDF
    Using population-based data from rural Vietnam, we assessed tuberculosis (TB) transmission within and outside of households. Eighty-three percent of persons with recent household TB were infected by different strains of Mycobacterium tuberculosis than were their household members. This result argues against the effectiveness of active TB case finding among household members

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    PLAST: parallel local alignment search tool for database comparison

    Get PDF
    Background: Sequence similarity searching is an important and challenging task in molecular biology and next-generation sequencing should further strengthen the need for faster algorithms to process such vast amounts of data. At the same time, the internal architecture of current microprocessors is tending towards more parallelism, leading to the use of chips with two, four and more cores integrated on the same die. The main purpose of this work was to design an effective algorithm to fit with the parallel capabilities of modern microprocessors. Results: A parallel algorithm for comparing large genomic banks and targeting middle-range computers has been developed and implemented in PLAST software. The algorithm exploits two key parallel features of existing and future microprocessors: the SIMD programming model (SSE instruction set) and the multithreading concept (multicore). Compared to multithreaded BLAST software, tests performed on an 8-processor server have shown speedup ranging from 3 to 6 with a similar level of accuracy. Conclusions: A parallel algorithmic approach driven by the knowledge of the internal microprocessor architecture allows significant speedup to be obtained while preserving standard sensitivity for similarity search problems.

    Optimal neighborhood indexing for protein similarity search

    Get PDF
    Background: Similarity inference, one of the main bioinformatics tasks, has to face an exponential growth of the biological data. A classical approach used to cope with this data flow involves heuristics with large seed indexes. In order to speed up this technique, the index can be enhanced by storing additional information to limit the number of random memory accesses. However, this improvement leads to a larger index that may become a bottleneck. In the case of protein similarity search, we propose to decrease the index size by reducing the amino acid alphabet.\ud \ud Results: The paper presents two main contributions. First, we show that an optimal neighborhood indexing combining an alphabet reduction and a longer neighborhood leads to a reduction of 35% of memory involved into the process, without sacrificing the quality of results nor the computational time. Second, our approach led us to develop a new kind of substitution score matrices and their associated e-value parameters. In contrast to usual matrices, these matrices are rectangular since they compare amino acid groups from different alphabets. We describe the method used for computing those matrices and we provide some typical examples that can be used in such comparisons. Supplementary data can be found on the website http://bioinfo.lifl.fr/reblosum.\ud \ud Conclusions: We propose a practical index size reduction of the neighborhood data, that does not negatively affect the performance of large-scale search in protein sequences. Such an index can be used in any study involving large protein data. Moreover, rectangular substitution score matrices and their associated statistical parameters can have applications in any study involving an alphabet reduction
    corecore