324 research outputs found

    ODoSE: a webserver for genome-wide calculation of adaptive divergence in prokaryotes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Quantifying patterns of adaptive divergence between taxa is a major goal in the comparative and evolutionary study of prokaryote genomes. When applied appropriately, the McDonald-Kreitman (MK) test is a powerful test of selection based on the relative frequency of non-synonymous and synonymous substitutions between species compared to non-synonymous and synonymous polymorphisms within species. The webserver ODoSE (Ortholog Direction of Selection Engine) allows the calculation of a novel extension of the MK test, the Direction of Selection (DoS) statistic, as well as the calculation of a weighted-average Neutrality Index (NI) statistic for the entire core genome, allowing for systematic analysis of the evolutionary forces shaping core genome divergence in prokaryotes. ODoSE is hosted in a Galaxy environment, which makes it easy to use and amenable to customization and is freely available at www.odose.nl.MWJvP is funded by the Netherlands Organization for Scientific Research (NWO) via a VENI grant. TtB and MAvD are funded by the BioAssist/BRS programme of the Netherlands Bioinformatics Centre, which is supported by the Netherlands Genomics Initiative. This work is part of the programme of BiG Grid, the Dutch e-Science Grid, which is financially supported by the NWO. MV is supported by investment from the European Regional Development Fund and the European Social Fund Convergence Programme for Cornwall and the Isles of Scilly to the European Centre for the Environment and Human Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A network medicine approach to quantify distance between hereditary disease modules on the interactome

    Get PDF
    We introduce a MeSH-based method that accurately quantifies similarity between heritable diseases at molecular level. This method effectively brings together the existing information about diseases that is scattered across the vast corpus of biomedical literature. We prove that sets of MeSH terms provide a highly descriptive representation of heritable disease and that the structure of MeSH provides a natural way of combining individual MeSH vocabularies. We show that our measure can be used effectively in the prediction of candidate disease genes. We developed a web application to query more than 28.5 million relationships between 7,574 hereditary diseases (96% of OMIM) based on our similarity measure

    Heterogeneous network embedding enabling accurate disease association predictions.

    Get PDF
    BackgroundIt is significant to identificate complex biological mechanisms of various diseases in biomedical research. Recently, the growing generation of tremendous amount of data in genomics, epigenomics, metagenomics, proteomics, metabolomics, nutriomics, etc., has resulted in the rise of systematic biological means of exploring complex diseases. However, the disparity between the production of the multiple data and our capability of analyzing data has been broaden gradually. Furthermore, we observe that networks can represent many of the above-mentioned data, and founded on the vector representations learned by network embedding methods, entities which are in close proximity but at present do not actually possess direct links are very likely to be related, therefore they are promising candidate subjects for biological investigation.ResultsWe incorporate six public biological databases to construct a heterogeneous biological network containing three categories of entities (i.e., genes, diseases, miRNAs) and multiple types of edges (i.e., the known relationships). To tackle the inherent heterogeneity, we develop a heterogeneous network embedding model for mapping the network into a low dimensional vector space in which the relationships between entities are preserved well. And in order to assess the effectiveness of our method, we conduct gene-disease as well as miRNA-disease associations predictions, results of which show the superiority of our novel method over several state-of-the-arts. Furthermore, many associations predicted by our method are verified in the latest real-world dataset.ConclusionsWe propose a novel heterogeneous network embedding method which can adequately take advantage of the abundant contextual information and structures of heterogeneous network. Moreover, we illustrate the performance of the proposed method on directing studies in biology, which can assist in identifying new hypotheses in biological investigation

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    The power of protein interaction networks for associating genes with diseases

    Get PDF
    Motivation: Understanding the association between genetic diseases and their causal genes is an important problem concerning human health. With the recent influx of high-throughput data describing interactions between gene products, scientists have been provided a new avenue through which these associations can be inferred. Despite the recent interest in this problem, however, there is little understanding of the relative benefits and drawbacks underlying the proposed techniques

    Secular Evolution and the Formation of Pseudobulges in Disk Galaxies

    Full text link
    We review internal processes of secular evolution in galaxy disks, concentrating on the buildup of dense central features that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. As an existence proof, we review how bars rearrange disk gas into outer rings, inner rings, and gas dumped into the center. In simulations, this gas reaches high densities that plausibly feed star formation. In the observations, many SB and oval galaxies show central concentrations of gas and star formation. Star formation rates imply plausible pseudobulge growth times of a few billion years. If secular processes built dense central components that masquerade as bulges, can we distinguish them from merger-built bulges? Observations show that pseudobulges retain a memory of their disky origin. They have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) large ratios of ordered to random velocities indicative of disk dynamics, (3) small velocity dispersions, (4) spiral structure or nuclear bars in the bulge part of the light profile, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be rapid. So the cleanest examples of pseudobulges are recognizable. Thus a large variety of observational and theoretical results contribute to a new picture of galaxy evolution that complements hierarchical clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    CSI-OMIM - Clinical Synopsis Search in OMIM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The OMIM database is a tool used daily by geneticists. Syndrome pages include a Clinical Synopsis section containing a list of known phenotypes comprising a clinical syndrome. The phenotypes are in free text and different phrases are often used to describe the same phenotype, the differences originating in spelling variations or typing errors, varying sentence structures and terminological variants.</p> <p>These variations hinder searching for syndromes or using the large amount of phenotypic information for research purposes. In addition, negation forms also create false positives when searching the textual description of phenotypes and induce noise in text mining applications.</p> <p>Description</p> <p>Our method allows efficient and complete search of OMIM phenotypes as well as improved data-mining of the OMIM phenome. Applying natural language processing, each phrase is tagged with additional semantic information using UMLS and MESH. Using a grammar based method, annotated phrases are clustered into groups denoting similar phenotypes. These groups of synonymous expressions enable precise search, as query terms can be matched with the many variations that appear in OMIM, while avoiding over-matching expressions that include the query term in a negative context. On the basis of these clusters, we computed pair-wise similarity among syndromes in OMIM. Using this new similarity measure, we identified 79,770 new connections between syndromes, an average of 16 new connections per syndrome. Our project is Web-based and available at <url>http://fohs.bgu.ac.il/s2g/csiomim</url></p> <p>Conclusions</p> <p>The resulting enhanced search functionality provides clinicians with an efficient tool for diagnosis. This search application is also used for finding similar syndromes for the candidate gene prioritization tool S2G.</p> <p>The enhanced OMIM database we produced can be further used for bioinformatics purposes such as linking phenotypes and genes based on syndrome similarities and the known genes in Morbidmap.</p

    Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data

    Get PDF
    Background: High-throughput gene expression data can predict gene function through the ‘‘guilt by association’ ’ principle: coexpressed genes are likely to be functionally associated. Methodology/Principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. Conclusions/Significance: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several geneti
    corecore