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Abstract

The importance of earthworms for heavy metal biomagnification in terrestrial ecosystems is

widely recognised. Differences in earthworm biomass between sites is mostly not accounted

for in ecological risk assessment. These differences may be large depending on soil properties

and pollution status. A survey of earthworm biomass and colonisation rate was carried out on

dredged sediment-derived soils  (DSDS). Results were compared with observations for  the

surrounding alluvial plains. Mainly grain size distribution and time since disposal determined

earthworm  biomass  on  DSDS,  while  soil  pollution  status  of  the  DSDS  was  of  lesser

importance. Highest earthworm biomass was observed on sandy loam DSDS disposed at least

40 years ago.

Keywords: landfills, earthworms, alluvial, risk, colonisation

Capsule: Polluted clayey dredged sediment-derived soils have a relatively low risk for heavy

metal biomagnification due to slow earthworm colonisation.

1. Introduction

Metals  may  enter  the  food  web  via  soil  dwelling  organisms  living  on  dredged

sediment-derived  soils  (DSDS)  and  contaminated  floodplains.  Earthworms  constitute  the

largest terrestrial faunal biomass. In the transfer of pollutants towards other trophic levels,

they occupy a key position (Kreis et al., 1987, Granval and Aliaga, 1988). Earthworms were

found to have a high potential for Cd accumulation in polluted floodplains (Hendriks et al.,

1995). They have been considered useful for assessing heavy metal pollution in soils (Menzie

et al., 1992) because earthworm biomass and abundance were found to be more sensitive to

pollution in comparison with other indicator taxa (Spurgeon et al., 1996). The presence and

abundance of earthworms can be a determining factor for the occurrence of higher organisms.

Presence of Little Owl (Athene noctua) in Flanders could be predicted based on landscape and

soil characteristics. The highest occurrence of Little Owl was on locations with soils optimal

for large earthworm populations (Van Nieuwenhuyse et al., 2001). 

Heavy metal  pollution  can  induce  two  major  effects  on  the  ecosystem  level:  (a)

accumulation  of  e.g.  Cd can  lead  to  risks  of  secondary poisoning,  while  (b)  earthworms

disappear  already at  low levels  of  soil  Cu which  can  cause  food  scarcity for  earthworm

predators (Abdul Rida, 1992; Klok et al., 2000).

A  major  factor  for  both  heavy metal  uptake  and  toxicity  (Ma  et  al.,  1983),  and

earthworm abundance (Muys and Lust,  1992) is  the soil  pH.  The pH of  the soil  material

decreases during gut passage in L. terrestris Linnaeus (Heine and Larink, 1993). Brzóska and

Moniuszko-Jakoniuk (1998) found a strong interaction between Cd and Ca in feed, resulting

in a lower toxicity of Cd at high Ca intakes. Earthworms are very sensitive to Cu (Ma, 1982;

Ma et al., 1983), but Cu accumulation by earthworms is particularly unpredictable (Edwards

et al., 1998). Besides pH, soil characteristics like OM content and CEC are influencing heavy

metal availability and uptake by L. rubellus Hoffmeister (Ma, 1982; Ma et al., 1983). Beyer et

al. (1990) presumed that the acidity (pH 3.0-5.5) of the dredged sediment substrate at four

confined disposal facilities was responsible for the absence of earthworms, as on an older

landfill with a higher pH, earthworms were found.
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Modelling of uptake kinetics and accumulation of heavy metals by earthworms as a

biological reference system and as a key process in trophic transfer for risk assessment on

polluted sites is a current topic (Abdul Rida, 1992; Beyer and Stafford, 1993; Kooistra et al.,

2001). In situ observation of biomass and population dynamics of earthworms can be a means

to  determine  long  term  effects.  The  importance  of  earthworms  for  heavy  metal

biomagnification  in  terrestrial  ecosystems  is  widely recognised.  Knowledge of  earthworm

heavy  metal  tissue  concentrations  is  essential  for  risk  assessment  of  heavy  metal

biomagnification. Large differences in earthworm biomass may be encountered on different

locations  as  a  function  of  soil  properties  and  soil  pollution  status,  or  due  to

colonisation/recolonisation. Despite this,  earthworm biomass is  mostly not incorporated in

site-specific  ecological  risk  assessment  and  homogeneous  earthworm  biomass  is  usually

assumed. 

To  allow  for  risk  assessment  on  DSDS  and  floodplains  affected  by  overbank

sedimentation, we will focus in this paper on earthworm biomass and population dynamics

relative to the surrounding unaffected alluvial plains. The pollution level of the floodplain

soils  and  several  characteristics  of  the  DSDS  (time  since  disposal,  pollution  level,

physicochemical properties) will be included in the analysis. The originality of this study lies

in the fact that the studied DSDS were new soils at the time of disposal and are expected to be

slowly invaded by earthworms. We feel that most research about earthworm populations in

polluted areas focuses on superficially located pollution, concentrated in the upper cm of the

soil profile. This is the case for forests around smelters (Bengtsson and Tranvik, 1989, Martin

and Bullock, 1994), floodplain soils (Hendriks et al., 1995; Ma et al., 1997), areas polluted by

agricultural  activities  (Ma,  1988;  Filser  et  al.,  1995;  Didden,  2001),  or  by use of  timber

preservatives  (Yeates  and Orchard,  1994).  All  these case  studies  have in  common that  a

developed soil  profile has  gradually been polluted from the top layer,  existing earthworm

populations  were  subjected  to  an  increasing  environmental  stress  and  consequently,

earthworm  population  changes  might  be  measured.  In  such  locations,  soil  pollution  is

relatively heterogeneous and organisms can survive through avoidance (Eijsacker, 1987; Ma,

1988; Yeates and Orchard, 1994). 

In the DSDS studied here, the polluted soil profile is established at once over a larger

thickness (> 80 cm at least in this study). The reduced sediment was hydraulically pumped on

the  site  and  caused  the  earthworms  from the  original  soil  to  disappear  (Fig.  1).  During

development of the sediment layer, subsoil is not a cleaner refuge for earthworms. Suter et al.

(2000)  stress  the  importance  of  selecting  adequate  reference  locations  for  soil  biological

surveys since high variation in quantities of soil biota from location to location were regularly

observed. We will make an attempt to link earthworm biomass and density with ecological

and pollution factors and use these data for a general risk assessment.

2. Materials and methods

2.1. Study area

All sampling plots in this paper were located along the Scheldt and Leie river and the

Canal  Ghent-Bruges  (Fig.  2).  The  presented  study was  executed  in  two  steps.  In  a  first

exploratory step, total biomass and density of earthworms, and the relative distribution over

the  ecological  categories  were  compared  for  three  unaffected  alluvial  soils  (ALL),  four

alluvial soils polluted due to overbank sedimentation (overbank sedimentation zones = OSZ)

and  five  soils  affected  by  dredged  sediment  disposal  (dredged  sediment-derived  soils  =

DSDS) (Table 1, Table 2). Plots were selected to allow for pair-wise comparison of sites of a
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different soil type located close to each other. In the second step, the influence of soil physical

conditions, pollution status and general landfill characteristics on the biomass and density of

earthworms on 19 DSDS (Table 3, Table 4) was determined. Five of the 19 sites were already

sampled for the research goal of step 1. All sampled alluvial soils were under pasture, while

the sampled DSDS were used for pasture or forestry, or developed as brushwood.

2.2. Earthworm and soil sampling

The  ecological  categories  of  earthworms  could  be  distinguished  functionally  or

evolutively  (Bouché,  1972;  Muys  and  Lust,  1992).  Functionally,  three  groups  are

distinguished:  epigeic,  endogeic  and  anecic  earthworms.  The  epigeic  earthworms  live  in

compost or in litter, and are adapted through more expressed pigmentation. The litter forms

their food and the function of this group is to fragment and digest the soil organic matter. The

endogeic earthworms burrow horizontal galleries into soils rich in humus. This group consists

of humus feeders which are not involved in the litter decomposition, but it is an important

group for the bioturbation of the upper 30 cm of the soil.  The anecic earthworms burrow

vertical galleries in the soil and take up food at the soil surface, especially at night.

Earthworm sampling was done on all sites with six replicates between September and

November 2001 (13 sites), in April  2002 (2 sites) and between September and November

2002 (11 sites) according to the combined method of Bouché and Aliaga (1986). At the time

of sampling,  soil  moisture content  was at  field  capacity,  and differences in  soil  moisture

conditions between sites can be addressed to soil type and hydrological conditions of the sites.

When selecting the sampled sites for the DSDS, care was taken to stay at least 15 m from the

landfill edge to exclude fast migration of earthworms as a confounding factor influencing the

biomass. As no litter layer was found on any site, sampling of the litter layer was unnecessary.

Sprinkling the two nested subplots (0.5 m² each) with formalin solutions (2 times 10 L of a

0.05% solution and 2 times 10 L of a 0.1% solution at 10 minute intervals) yielded the first

earthworm fraction. The second fraction was obtained after wet washing and sieving 20 dm³

of a soil sample ( 0.1 m²) from every subplot after pretreatment during 48 h in a solution of 10

L water, 100 mL sodium hexametaphosphate and 800 mL formalin.  Both earthworms from

formalin application and wet soil sieving were preserved in a 37% formalin solution. Formalin

extraction and formalin conservation caused irritation and intense movements resulting in a

certain defaecation. Within a week after sampling, total earthworm biomass and density was

determined after drying for 1 min on a filter paper at room temperature. Collected earthworms

from all fractions were identified, counted and weighed. Calculation of the fresh earthworm

biomass in g/m² was done by:

[( mass earthworms soil * 2) + (mass earthworms soil after sieving * 10)] 

Juveniles,  parts  of  earthworms  and  non-identifiable  species  were  pro  rata attributed  to

species.  To  reduce  the  time-consuming  species  identification  step,  we  limited  species

identification to a number of replicates until at least 40 g of field-collected fresh weight (FW)

was determined.  For sites  with less fresh material,  all  subsamples  were used.  Earthworm

biomass per ecological category (Bouché, 1972)  was calculated for a general description of

the data.

After the first sampling on DSDS (step 1), it was concluded that additional soil core

sampling  after  formalin  extraction  did  not  result  in  additional  information  about  species

diversity or ecological categories. Only a low biomass gain ( at most 16%) was obtained by

additional soil core sampling. Furthermore the soil sampling, transportation, dispersion and

sieving is a very time-consuming step with an important impact on the sampled area. For this
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reason,  the  determination  of  the  relation  between  soil  characteristics  and  earthworm

populations on DSDS (step 2) was based on formalin extraction data only. Data for both

formalin extraction and soil sampling were available for APV1 and APV8.

Before  earthworm  sampling  started,  soil  samples  (0-20  cm  horizon)  for  separate

chemical analysis were collected outside the sampling frame, on a distance of 20 cm. The

methods used for chemical soil analysis are described in Vandecasteele et al. (2003). Soil total

contents of Cd, Cr, Cu, Ni, Pb, S, P and Zn are actually pseudo-total aqua regia extractable

contents measured with ICP-AES after microwave digestion. Soil physical properties on the

DSDS were estimated based on measurement of soil bulk density, penetration resistance and

saturated hydraulic conductivity (Ksat) and calculation of the ripening factor. On each DSDS,

four core samples of 100  cm3 were taken at the soil surface and used for determination of

saturated  hydraulic  conductivity  with  an  ICW  permeameter  (Eijkelkamp  Agrisearch

Equipment, Giesbeek, The Netherlands) and bulk density calculation (ISO 11272). At four

points per DSDS, penetration resistance was measured when soil was at field capacity using

an Eijkelkamp penetrometer (Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands),

capable of recording values at intervals of 1 cm to a depth of 80 cm. A 1 cm² base area cone

was used with an angle of 60°. The penetration in the soil occurred at a rate of 20 ± 5 mm/s.

For the measurements of the penetration resistance, the maximum values for the 0-40 cm

(measurements in 1 cm intervals) layer for the four replicates was used as value for the site.

For bulk density and permeability, average resp. median values for the four replicates were

used. For all soil samples on DSDS, the ripening factor as used by de Haan et al. (1998) was

calculated as a measure of the ripening rate.

Ripening factor = [ A – p * (100 – L - H)]/ [L + b * H]    with:

A: water percentage (g/100 g DM)

H: organic matter percentage (g/100 g DM)

L: clay fraction (g/100 g DM)

b: ratio between water absorption capacity of organic matter and absorption capacity of clay

(usually b = 3)

p: moisture bound by non-colloidal material (usually p = 0.2 g/100 g non-colloidal material)

2.3. Data handling and statistics

All earthworm biomass data were expressed on a fresh weight base (g/m² FW). As

individual earthworm weight varied between <0.01 g FW and > 4 g FW for the sampled

species,  earthworm biomass  rather  than  earthworm density was  chosen  to  represent  food

availability for predators. For two replicates on the APV8 site, earthworm biomass was very

low. The reason for this observation was unknown but the site was recently affected by tree

cutting,  which  probably caused soil  compaction.  For  the  RVD1 site,  two replicates  were

situated on soils with deviant soil properties relative to the other four replicates. For these two

sites, deviant replicates were excluded from further analysis.

The three soil categories (ALL, OSZ and DSDS) were compared for soil properties

and earthworm parameters  with oneway ANOVA after  grouped variables  were tested for

normality and homoscedasticity. Variables included in the analysis were earthworm biomass

(expressed as g FW/m²) and density (expressed as N/m²), soil pollution status (Cr, Cu, Cd, Pb

and Zn) and soil properties (gravimetric dry matter content (DM), TOC, pH, total S, total P,
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CaCO3, N, grain size distribution). Data for CaCO3,  Cd, Cr, Zn, Cu were log-transformed

prior to ANOVA. Additionally, the heaviest adult  L. rubellus was recorded as a measure of

the appropriateness of sites for earthworms.

A linear model was built for interpretation of DSDS earthworm biomass as a function

of  soil  properties.  To test  which  factors  have  an impact  and to  assess  their  magnitude a

multivariate regression model was built in two steps. First, a reference model was constructed

with the factors, grain size and time since disposal (TSD), because these two variables were

recognised a priori as dominant during exploratory data analysis. The very question was if on

top of this basic model other additional factors were important. For this second step first the

residuals  of the reference model were checked visually for  patterns against  the other  soil

variables  and pollution status.  Next,  a stepwise regression searched for  the best  subset  of

variables at a significance level of 0.05. For this model only the final result is shown here.

Full details of the model are given in the ‘results’-section. During statistical model building,

both RVD1 and RAE2 sites were observed to be outliers. Data on biomass were square root-

transformed before statistical analysis.

3. Results

3.1. Comparison between DSDS and surrounding alluvial soils

Unaffected alluvial soils (ALL), dredged-sediment derived soils (DSDS) and overbank

sedimentation zones (OSZ) did not significantly differ in grain size distribution (clay, silt,

sand),  EC and soil  organic  matter  content  (SOM) (Table 1,  results  for  silt  and  sand  not

shown). Gravimetric water content was significantly (p < 0.001) higher for OSZ, while values

for DSDS and ALL were comparable. P concentrations in DSDS were higher than in OSZ and

ALL (p < 0.001). Pb concentrations were higher in DSDS and OSZ compared with ALL (p <

0.001). For CaCO3 (p < 0.0001), Cd (p = 0.0009), Cu (p < 0.0001), Zn (p < 0.0001), Cr (p =

0.0003) and S (p < 0.0001), concentrations in DSDS were significantly higher than for OSZ,

which in turn were significantly higher than for ALL (Table 2). For earthworm density, only a

significant difference was found between ALL and OSZ (p = 0.032). However, for earthworm

biomass, values for ALL were significantly higher (p < 0.0001) than values for both DSDS

and OSZ (Table 1). In conclusion, general soil characteristics between the three soil types are

similar, but chemical properties of both DSDS and OSZ deviate from the ALL characteristics.

Biomass of earthworms for the selected pairs of sites is shown in Fig. 3a. Biomass is

highest  for unaffected alluvial  soils,  intermediate for polluted floodplains and low for the

DSDS. Standard deviation (SD) on six replicates is for most sites considerable. When results

on density of earthworms is displayed (Fig. 3b), differences between the sites are less clear,

but most DSDS are characterised by low densities.

Biomass distribution over the ecological categories is shown in Fig. 4a. It is obvious

that on the DSDS endogeic and anecic earthworms are low in biomass or are absent. Relative

to the unpolluted alluvial soils, polluted floodplain soils have a higher endogeic biomass. The

highest weight recorded for an adult  Lumbricus rubellus is displayed in Fig. 4b. For DSDS,

the values tended to be lower than for the ALL or OSZ soils,  but the difference was not

significant (p > 0.05).
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3.2. Influence of time since disposal and DSDS properties on earthworm

populations 

RVD1 and RAE2 were recognised  as  outliers  for  earthworm biomass.  RAE2 is  a

recent DSDS where hardly any earthworms were found, while RVD1 was landfilled 25 years

ago with strongly contaminated dredged sediments, especially with Cu and Zn (Table 4). The

RVD1 site was clearly observed to be an outlier based on the PCA of soil data for the sampled

DSDS (data not shown). Highest earthworm biomass was observed at the slightly polluted

APV8 site and SDD3 site, both with a sandy loam soil, and the APV1 site with a heavy clay

soil (Table 3). For the APV8 and APV1 sites, soil cores also were excavated and hand-sorted

after washing. Total earthworm biomass was 152 g/m² FW for APV8 and 80 g/m² FW for

APV1. Highest biomass recorded at the alluvial soils was 158 g/m² FW.

In  DSDS  a  large  range  in  metal  concentrations  was  observed.  Total  contents  of

different metals were strongly correlated. From the selected soil physical measurements and

calculations,  the ripening factor allowed for the clearest  distinction between sites.  Lowest

values were found for the sandy loam DSDS, while the heavy clay sites were split up in sites

with values lower than 0.7 (‘completely ripened’ according to de Haan et  al. (1998)) and

values between 0.7 and 1.0 (‘nearly ripened’ according to de Haan et al. (1998)). Values for

bulk density and penetration resistance were highest for the sandy loam DSDS. Penetration

resistance increased  with  depth.  Averaged results  per  site  were comparable with data for

sediment-derived  soils  in  Illinois  (Darmody  and  Marlin,  2002).  Measured  penetration

resistance was clearly lower than values measured by Muys (1993) for compacted forest soils

where lower earthworm biomass was observed.  The Ksat  values  for  most  sites were low

compared to data for storm water facilities (Massman and Butchart, 2000) and for dredged

sediment disposal sites (Van Driel and Nijssen, 1988). Only for the heavy clay DSDS LMM2,

BEL1, GTH9 and RAE2 and the sandy loam KDG4 and SDD3 site, Ksat values were normal

to high. For the other sandy loam DSDS, Ksat values were low.

When the relative importance of the ecological categories was displayed as a function

of  the  TSD for  both  grain  size subsets  (Fig.  5),  it  is  concluded  that  epigeic  earthworms

dominate during the first period of 30 (sandy loam soils) or 40 (heavy clay soils) years. For

AKM2, in one replicate one heavy L. terrestris was found, strongly influencing the results

when  L.  terrestris was classified  as  an anecic species.  However,  the species  is  generally

described as an epi-anecic species.

The highest negative correlation was found between the highest weight recorded for an

adult L. rubellus and clay content. Linear regression yielded the equation weight(L. rubellus)

= 2.63 – 0.051 * %clay (R² = 0.568, p = 0.0003).

A linear model was built for interpretation of DSDS earthworm biomass as a function

of soil properties. Based on visual interpretation of scatterplots, both grain size distribution

and TSD were recognised as main determining factors. Three classes were defined based on

the grain size and the ripening factor: average biomass was 13.2, 25.7 and 68.5 g FW/m² for

the completely ripened heavy clay soils, the nearly ripened heavy clay soils and the sandy

loam soils. Since no difference was found between both ‘heavy clay’ soil classes, the dataset

with all DSDS was split up in two subsets based on grain size distribution: sites with more

than 30% sand were grouped as ‘sandy loam’ sites (DMD1, APV8, KDG4, SDD3, OSM4,

RVD1),  the  other  DSDS were  the  sites  with  ‘heavy clay’  soils.  Data  for  the  time since

disposal (TSD) were categorised in 4 classes: DSDS constructed (1) before 1950, (2) between

1950 and 1970, (3) between 1970-1982 and (4) since 1982. Average biomass for these classes

was (1) 68.5, (2) 24.2, (3) 14.5, (4) 23.3 g FW/m². However, during the construction of the

model, results indicated that a clustering of data in two periods (1 vs. 2-3-4) was appropriate.
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The selected linear model for earthworm biomass on DSDS is presented in Table 5.

The  biomass  is  mainly determined  by TSD and grain  size  class  (GSC),  with  earthworm

biomass being lowest for recent heavy clay DSDS and highest for sandy loam DSDS with a

TSD higher than 40 years. The negative influence of Cu pollution on earthworm biomass is

very low relative to  both TSD and grain size and might  be compensated by the positive

influence of high P concentrations as indicated by the linear model. Correlation between Cu

and P is positive and significant (R² = 0.47, p = 0.001). In Fig. 6 the low relevance of adding

the Cu pollution status to the basic model is clearly demonstrated. Neither soil chemical, nor

soil physical variables had an additive significant influence on the model.

4. Discussion

4.1. Comparison between DSDS and surrounding alluvial soils

Compared to  available data  for  Flanders  (Muys and Lust,  1992;  Neirynck  et  al.,

2000), and for alluvial soils in the Netherlands (Faber et al., 2000), normal to high earthworm

biomass was found in the polluted OSZ and the sandy loam DSDS, and rather low biomass

was observed in the heavy clay DSDS. Muys and Lust (1992) reported values in forest soils

between less than 1 and 133 g FW/m². Neirynck et al. (2000) found on a loamy acid brown

forest soil a minimum biomass of < 1 g FW/m² and a maximum of 37 g FW/m². The biomass

was  strongly related  to  dominant  tree  species.  Both  authors  used  the  combined  formalin

extraction and soil core excavation method. Faber et al. (2000) reported values for floodplains

excavated for clay reclamation along the Waal and Rhine river (Netherlands) based on hand

sorting of excavated soil cores. Biomass ranged between 52.7-84.5 g FW/m² for the higher

parts, 2.9-26.1 g FW/m² for the lower parts and 22.2-49.1 g FW/m² for the reference sites.

Didden (2001) observed an average biomass of 80.4 g FW/m² and a density of 384 N/m² on

grassland soils (20 sites) in the Netherlands, based on hand sorting of excavated soil cores.

Data  of  Yeates  and  Orchard  (1994)  suggested  that  earthworms  in  superficially

contaminated areas were also feeding on less polluted soil material from deeper in the profile,

and in the highest polluted sites closest to smelters, only the endogeic species Aporrectodea

caliginosa Savigny survived (Bengtsson and Tranvik, 1989). This behaviour may also explain

the  relatively high  earthworm biomass  found  at  polluted  OSZ.  In  strongly degraded  and

acidified forest  soils  in Flanders,  only epigeic earthworms could survive (Muys and Lust,

1992). Spurgeon et al. (1996) determined earthworm biomass and abundance in a gradient in

the vicinity of a smelter. No earthworms were found on the sites closest to the smelter with

accumulation  of  undecomposed  leaf  litter,  only  Lumbricus species  were  found  in  the

intermediate sites and both Lumbricus species and endogeic species were found farthest away.

Morgan and Morgan (1999) focused on the importance of the vertical distribution of metals

within  the  soil  profile  for  heavy  metal  exposure  and  uptake  by  earthworms  occupying

different ecological niches with specific food preferences. Hence, the high relative proportion

of endogeic earthworms on the polluted OSZ might be a consequence of the concentration of

pollutants in the upper soil horizons. For the slightly polluted floodplains (Cd < 6.8 mg/kg dry

soil, Zn < 739 mg/kg dry soil, Cu < 133 mg/kg dry soil) of the Waal river (Netherlands) the

pollution was found to be of less importance for species composition and diversity of the

functional groups of the invertebrate fauna (Ma et al., 1997).

4.2. Influence of time since disposal and DSDS properties on earthworm

populations 
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Soil  characteristics  on  DSDS are,  apart  from the  pollution status,  optimal  to  very

prosperous  for  earthworms:  high  SOM  content,  mull-type  humus  forms,  high  carbonate

contents and subsequent optimal pH. Earthworm biomass can not be directly linked to heavy

metal  pollution,  as  the  sediment  substrate  is  also  enriched  by  PCBs,  PAHs  and  other

pollutants. However, in accordance with the Flemish Decree on Soil Sanitation (VLAREBO,

1996), heavy metal contamination in DSDS with especially Cd, Cr and Zn was considered

more  severe  than  for  other  pollutants  (Vandecasteele  et  al.,  2000).  Earthworms  are  very

sensitive to Cu pollution (Ma, 1982; Ma et al., 1983). Higher soil Cu concentrations result in a

longer period before subadult stage and adulthood is reached or even in the inability to reach

adulthood (Ma, 1983; Spurgeon and Hopkin, 1996). In areas with topsoils contaminated with

Cu, Cr and As as a result of the use of timber preservatives, lower earthworm biomass was

found  at  higher  Cu  concentrations.  No  higher  tissue  concentrations  were  encountered

excluding food chain effects for Cu (Yeates and Orchard, 1994). In optimal conditions with

abundance of food and absence of predation, populations of juvenile L. rubellus treated with

362 mg Cu/kg dry soil showed negative growth rates as the minimum body weight to reach

adulthood was never reached (Ma, 1984). Klok and De Roos (1996) calculated that the critical

threshold for major danger of extinction on the population level for L. rubellus was 200-300

mg Cu/kg dry soil. Stress due to sublethal toxicant concentrations for earthworms results in a

decreased metal detoxification (Hönsi et al., 2003), a reduced cocoon production (Siekierska

and Urbanska-Jasik, 2002) or a failure to reach adulthood (Ma, 1984). Filser et al. (1995)

concludes from a literature review that higher SOM content reduces Cu toxicity to a great

extent. Our results did not indicate a large influence of soil Cu concentrations on earthworm

biomass, not even for the most polluted site (RVD1, > 600 mg Cu/kg dry soil). Interpretation

of this observation is not straightforward. The DSDS might be characterised by a low Cu

bioavailability. Alternatively, the rate of colonisation and/or soil physicochemical properties

may be the more  important  limiting factors  than pollution status  for  earthworm biomass.

DSDS are quickly colonised by epigeic earthworms,  since even for sites  that  are flooded

during the winter and a large part of the spring (BVP5, GTH2, SEP3) earthworms were found.

In contrast to the initially fast colonisation, it takes a rather long time (at least 40 years) to

reach a biomass higher than 30 g FW/m². 

The soil profile of DSDS deviates from normal soil profiles, as the soil organic matter

content is high throughout the whole soil profile, while it is concentrated in the topsoil for

normal alluvial  soils.  On the DSDS, the earthworm population was dominated by epigeic

species, especially by L. rubellus. The pollution status of the soil did not prevent the cocoons

to become juveniles and juvenile earthworms to reach adulthood. The absence of endogeic

and anecic earthworms on recent DSDS might be a consequence of both the ecological stress

and the colonisation strategy. Both categories are known to have a slow colonisation rate (K-

strategy). Endogeic worms are also known to feed on large amounts of soils and consequently

have a more intense contact (higher exposure) with the soil pollution. Both the pollution and

the lower oxygen availability in the profile can be a reason for their absence. Earthworms play

an important role in SOM decomposition and subsequent incorporation in the mineral soil

(Ma, 1984; Edwards and Fletcher,  1988).  The slow colonisation or the adverse effects of

polluted soils on soil organisms can result in a hampered SOM decomposition (Yeates and

Orchard, 1994).
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4.3. Ecological risk assessment

In risk assessment based on trophic chains of several species inhabiting alluvial plains

and floodplains, earthworms will play an important role as they can form up to 80% of the soil

faunal  biomass.  A  general  trend  is  that  sandy  loam  DSDS  seem  very  prosperous  for

earthworms,  while heavy clay DSDS are less suited.  In  general,  it  can be concluded that

relative to the surrounding environment, earthworm biomass is four times lower at heavy clay

DSDS. However, total biomass might be a biased indicator, as not all ecological categories of

earthworms are evenly susceptible to predation. Epigeic earthworms live on the soil surface,

endogeic earthworms stay in the soil, while anecic earthworms are only on the soil surface at

night.

In general, Cd is the most important pollutant for food chain transfer, while Cu is the

most  important  element  for  earthworm survival.  This  means  that  for  soils  with  low Cu

pollution but with high Cd pollution there is a larger risk as more earthworms with higher Cd

concentrations are available for predation, while in the opposed case less earthworms can

survive. The results of this study point at the colonisation rate of a polluted site as another

factor in the risk assessment of DSDS. Risk assessment models focus on the heavy metal

uptake  and  transfer  by  earthworms.  Knowledge  of  earthworm  heavy  metal  tissue

concentrations is essential for risk assessment of heavy metal biomagnification. Before using

an appropriate model for a selected area, differences in earthworm biomass related to different

soil properties must be considered. If no large differences exist between the reference situation

(in this case ALL) and the polluted site, a model without correction for biomass can be used,

i.e., an equal biomass at all sites is inherently assumed. However, if differences between the

reference and the polluted site are large, the food availability is subject to spatial variability.

Spatial patterns in food availability must be included in risk assessment, as is the case for

spatial  patterns  of  soil  pollution  (Kooistra  et  al.,  2001)  and  for  differences  in  feeding

behaviour of target animals (Heikens et al., 2001). Both earthworm tissue concentrations and

data on earthworm biomass might thus be necessary for a good ecological risk assessment of

biomagnification.

Secondary  poisoning  can  result  in  changes  at  higher  organisation  levels  of  the

biological system. An indirect effect of soil pollution is a possible food shortage for higher

levels in the food chain (Hörnfeldt and Nyholm, 1996; Klok et al., 2000) or a changed, less

optimal diet (Van den Brink et al., 2003). Secondary poisoning is highly dependent on the

configuration of the polluted area and ecology of the target species (Menzie et  al.,  1992).

Sandy soils, waterlogged soils, swamps and lakes, forests and urbanisation were found to have

a negative impact on Little Owl presence. As the preferred soil types are also optimal for

earthworms, food availability was thought to be a major factor for the Little Owl habitat (Van

Nieuwenhuyse et al., 2001).

Conclusions

We focused on earthworm biomass determination as additional information for risk

assessment of heavy metal biomagnification through the foodweb on DSDS relative to the

surrounding alluvial plains. In general it can be concluded that relative to the surrounding

environment,  earthworm biomass is  four  times lower for contaminated dredged sediment-

derived heavy clay soils and comparable to alluvial soils for sandy loam DSDS. Risks for

secondary poisoning at the more polluted heavy clay DSDS are thus partially compensated by

the  lower  earthworm biomass.  However,  not  all  ecological  categories  of  earthworms are
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equally  susceptible  to  predation.  Endogeic  earthworms  stay  in  the  soil,  while  anecic

earthworms are only at night at the soil surface. 

It  was  found  that  recent  sediment  landfills  were  colonised  by epigeic  earthworms

rather fast, but larger earthworm populations were only observed in sites of more than 50

years old. Relative to polluted overbank sedimentation zones,  impact of dredged sediment

disposal on earthworm communities is large as data suggest that it takes more than 40 years

until  all  ecological  categories  have  colonised  the  sites.  A  clear  difference  was  observed

between heavy clay and sandy loam DSDS with a distinct higher earthworm biomass on the

sandy loam DSDS. 

For  L.  rubellus,  a  negative relation  was found between the highest  recorded body

weight and the clay content of the DSDS. The highest recorded adult body weight per species

is thus a potential site quality parameter. Mainly time since disposal and grain size distribution

determined earthworm biomass on DSDS, while considerable levels of soil pollution were

merely found to influence this important population characteristic in view of risk assessment.

High soil Cu concentrations did thus not lower the risk for Cd biomagnification through a

reduced  earthworm  population.  For  future  ecotoxicological  field  research  on  earthworm

populations, inclusion of a broad range of soil physical and chemical variables is worthy of

consideration.
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Table 1. Properties of the sampled unaffected alluvial soils (ALL), the dredged sediment-derived soils (DSDS) and overbank sedimentation

zones (OSZ). Earthworm density and biomass (based on a combination of formalin extraction and soil core excavation) are given in the last

columns. Values in parentheses are standard deviations for six replicates

Site River Soil Land use clay TOC EC pH-H2O CaCO3 DW soil Density Biomass

type % % µS/cm % % N/m² g/m²

BEL1 Leie DSDS willow brushwood 39 (5) 8.1 (1.5) 286 (56) 7.6 (0.2) 10.6 (4) 61.1 (4.2) 165 (70) 20.9 (8.6)

ALL oak plantation 33 (4) 8.5 (1.2) 224 (88) 5.7 (0.2) 1.9 (0.3) 67.2 (3.6) 164 (67) 88.9 (26.7)

BVP1 Upper Scheldt DSDS willow brushwood 28 (5) 3.9 (1.3) 246 (95) 7.5 (0) 10.3 (1.3) 63 (1.9) 166 (41) 20.9 (8.6)

ALL pasture 26 (1) 6.1 (0.6) 197 (21) 6.9 (0.2) 2.2 (0.8) 63.6 (2) 485 (253) 157.5 (141)

SEPM Upper Scheldt DSDS alder plantation 32 (1) 13.8 (0.6) 177 (20) 7.5 (0.1) 5.3 (0.9) 64.5 (2.4) 139 (41) 13.4 (5.5)

OSZ pasture 35 (1) 13 (1.2) 198 (14) 6.7 (0.5) 2.5 (0.4) 57.8 (5.5) 119 (38) 31.1 (10)

DMD1 Leie DSDS pasture 15 (4) 10 (3.5) 132 (28) 7.4 (0.1) 4.3 (0.8) 72.4 (3.8) 35 (13) 8.2 (2.9)

OSZ pasture 25 (2) 10.9 (0.5) 249 (54) 6.5 (0.2) 2.3 (0.4) 53 (3.7) 374 (185) 78.9 (44.8)

GTH9 Leie DSDS elder brushwood 42 (3) 8.7 (1.9) 257 (37) 7.4 (0.1) 11.1 (1) 63.5 (2.7) 45 (45) 9.9 (11.8)

OSZ pasture 19 (5) 1.8 (1) 312 (181) 7.9 (0.3) 4.4 (1.9) NA 215 (95) 47.2 (18.7)

SEP3 Upper Scheldt OSZ pasture 36 (3) 10.7 (1.4) 227 (40) 7.3 (0.2) 4.6 (1.1) 66.4 (3.6) 30 (44) 10.8 (15.2)

ALL pasture 31 (4) 5.1 (2.2) 219 (54) 7.2 (0.2) 2.4 (0.4) 72.1 (5.9) 48 (31) 24.9 (9.4)
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Table 2. Elemental contents in the sampled unaffected alluvial soils (ALL), the dredged

sediment-derived soils (DSDS) and overbank sedimentation zones (OSZ). Cd, Cu Cr, Pb, Zn,

P and S are aqua regia-extracted and are expressed as mg/kg dry soil. Values in parentheses

are standard deviations for six replicates

Site Soil Cd Cr Cu Pb Zn P S

type mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

BEL1 DSDS 9.2 (2.7) 216 (31) 209 (30) 216 (36) 1558 (269) 5279 (988) 1905 (300)

ALL 1.6 (0.3) 88 (13) 47 (8) 122 (22) 276 (39) 1364 (215) 1337 (218)

BVP1 DSDS 6.8 (0.9) 320 (16) 156 (53) 126 (21) 810 (178) 2870 (318) 1780 (382)

ALL 0.9 (0.1) 66 (3) 21 (2) 43 (5) 132 (11) 976 (40) 1092 (106)

SEPM DSDS 11.4 (2) 269 (33) 136 (12) 408 (35) 2053 (197) 2105 (165) 1692 (177)

OSZ 6.2 (0.5) 156 (11) 89 (12) 278 (29) 1112 (198) 1182 (126) 1530 (142)

DMD1 DSDS 5.7 (2.6) 429 (232) 89 (39) 197 (59) 889 (413) 2034 (614) 1611 (405)

OSZ 1.4 (0.2) 83 (7) 120 (14) 518 (74) 352 (18) 1438 (167) 1409 (80)

GTH9 DSDS 23 (2.2) 515 (43) 332 (29) 474 (36) 2742 (163) 5087 (334) 2116 (376)

OSZ 4 (3.4) 118 (82) 65 (53) 104 (83) 524 (433) 1306 (817) 629 (389)

SEP3 OSZ 34.3 (12.2) 816 (309) 106 (21) 341 (103) 2042 (495) 3485 (969) 1603 (88)

ALL 0.7 (0.1) 69 (10) 20 (6) 80 (59) 149 (15) 1974 (789) 844 (228)
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Table 3. Soil physical properties, earthworm density and biomass for the dredged sediment-derived soils (DSDS) where earthworms were

sampled. Earthworm density and biomass are based on formalin extraction only. Highest body weight for an adult L. rubellus is recorded in the

column ‘L. rubellus’. Values in parentheses are standard deviations for six replicates (TSD = time since disposal, P.R. = penetration resistance,

NA = not assessed)

Site River/Canal Land use Sampling Clay DW soil Density Biomass L. rubellus TSD P.R. Bulk density Permeability Ripening

% % N/m² g/m² g (year) MPa kg/m³ cm/day factor

APV8 Sea Scheldt poplar plantation Fall 2001 14 (2) 81.9 (6.5) 244 (26) 128.0 (56.6) 1.800 70 2.44 1016 10 0.21

DMD1 Leie pasture Fall 2001 15 (4) NA 28 (13) 7.6 (3.1) 1.633 30 2.91 1287 5 0.35

SDD3 Canal Ghent-Bruges poplar plantation Spring 2002 20 (3) 80.6 (2.9) 97 (25) 118.5 (56.7) 2.587 60 2.16 1167 213 0.30

KDG4 Sea Scheldt pasture Fall 2002 21 (7) 79.3 (6.9) 55 (29) 32.7 (31.3) 2.268 14 3.09 1296 1529 0.24

OSM4 Upper Scheldt pasture Fall 2002 25 (4) 76 (1.6) 48 (9) 48.1 (8.1) 0.487 40 2.42 1140 24 0.23

APV1 Sea Scheldt poplar plantation Fall 2001 26 (2) 61.1 (10.8) 154 (60) 59 (30) 1.110 70 0.83 1193 36 1.04

BVP1 Upper Scheldt willow brushwood Fall 2001 28 (5) 63 (1.9) 156 (40) 20 (8.3) 1.006 6 0.75 1099 4 0.96

SEPM Upper Scheldt alder plantation Fall 2001 32 (1) 64.5 (2.4) 117 (46) 11.4 (6.1) 0.421 40 1.06 1013 4 0.43

RVD1 Canal Ghent-Bruges willow brushwood Fall 2002 41 (2) 54.5 (2.5) 53 (25) 11.3 (4.5) 0.569 25 2.07 867 4 0.72

AKM2 Leie ash plantation Fall 2002 35 (3) 69.8 (4.7) 148 (51) 19.2 (10.7) 0.716 16 1.56 1058 4 0.50

LMM3 Upper Scheldt ash plantation Fall 2001 37 (1) 53.8 (3.1) 381 (216) 33.5 (9.3) 0.728 40 1.6 899 56 0.84

GTH2 Leie willow brushwood Fall 2002 37 (1) 60.3 (6.8) 110 (46) 8.5 (2.8) 0.461 22 1.12 989 30 0.70

LMM2 Upper Scheldt ash plantation Fall 2001 38 (3) 54.8 (3.9) 145 (39) 9.8 (4.4) 1.062 40 2.46 896 181 0.71

BEL1 Leie willow brushwood Fall 2001 39 (5) NA 125 (52) 15.7 (7.1) 0.586 16 3.5 800 356 0.67

KAMW Sea Scheldt pasture Fall 2002 40 (3) 57.7 (3.2) 89 (34) 33.1 (8.1) 0.614 70 1.12 850 83 0.68

BVP5 Upper Scheldt willow brushwood Fall 2002 41 (2) 66.1 (5.6) 113 (42) 10.8 (5.3) 0.278 6 1.04 995 29 0.55

GTH9 Leie elder brushwood Fall 2001 42 (3) 63.5 (2.7) 32 (22) 7.3 (6.8) 0.963 25 1.14 882 490 0.55

RAE2 Leie willow brushwood Spring 2002 43 (2) 62.7 (2.9) 3 (5) 0.4 (0.7) NA 6 0.87 743 595 0.67

ZWI3 Upper Scheldt abandoned arable land Fall 2002 45 (2) 69 (0.9) 175 (31) 27.2 (6.8) 0.497 20 2.06 962 79 0.43
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Table 4. Properties of the dredged sediment-derived soils (DSDS) selected for earthworm

sampling. Cd, Cu, Cr, Pb, Zn, P and S are aqua regia-extracted and are expressed as mg/kg

dry soil, TOC, CaCO3 and EC are expressed in %. Values in parentheses are standard

deviations for six replicates

Site CaCO3 TOC EC pH-H2O Cd Cr Cu Pb Zn P S

% % µS/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

APV8 2.7 (1.1) 2.8 (0.4) 154 (17) 7.5 (0.2) 1.6 (0.5) 66 (18) 31 (9) 62 (10) 350 (67) 841 (146) 624 (187)

DMD1 4.3 (0.8) 10 (3.5) 132 (28) 7.4 (0.1) 5.7 (2.6) 429 (232) 89 (39) 197 (59) 889 (413) 2034 (614) 1611 (405)

SDD3 6 (1.5) 1.3 (0.6) 1447 (1519) 7.6 (0.2) 3.3 (1.2) 109 (36) 53 (22) 98 (45) 513 (285) 1242 (287) 1545 (2447)

KDG4 4.4 (2) 3.4 (1.6) 170 (73) 7.5 (0.2) 6.3 (5.5) 600 (474) 319 (221) 235 (115) 1321 (936) 4124 (2449) 1373 (904)

OSM4 5 (1.1) 10.7 (1.3) 193 (69) 7.6 (0.2) 4.9 (0.9) 378 (60) 226 (48) 457 (71) 1805 (348) 2592 (518) 1735 (148)

APV1 6.3 (0.7) 5.2 (0.8) 235 (19) 7.5 (0.1) 3.2 (0.2) 157 (28) 96 (7) 161 (5) 661 (30) 1536 (77) 849 (91)

BVP1 10.3 (1.3) 3.9 (1.3) 246 (95) 7.5 (0) 6.8 (0.9) 320 (16) 156 (53) 126 (21) 810 (178) 2870 (318) 1780 (382)

SEPM 5.3 (0.9) 13.8 (0.6) 177 (20) 7.5 (0.1) 11.4 (2) 269 (33) 136 (12) 408 (35) 2053 (197) 2105 (165) 1692 (177)

RVD1 2.7 (0.9) 11.4 (1.1) 1490 (894) 6.7 (0.3) 27.7 (0.7) 1100 (125) 661 (29) 1077 (143) 5686 (170) 7146 (286) 10300 (6492)

AKM2 8.3 (0.4) 5.4 (1.3) 198 (30) 7.2 (0.1) 13.6 (1) 242 (15) 138 (6) 224 (18) 1310 (105) 4328 (1429) 1253 (122)

LMM3 13 (1.8) 10.2 (1.3) 269 (36) 7.4 (0.1) 28.7 (1.7) 1933 (108) 229 (10) 405 (10) 2953 (114) 5724 (343) 2334 (91)

GTH2 9.4 (0.7) 8.2 (1.1) 359 (78) 7.2 (0.1) 12.4 (0.9) 227 (13) 133 (18) 283 (128) 1339 (108) 3849 (1077) 1452 (259)

LMM2 5.3 (0.6) 12.6 (1.1) 277 (23) 7.1 (0.1) 18.2 (3.2) 1121 (240) 159 (19) 347 (29) 2243 (275) 3891 (420) 2017 (129)

BEL1 10.6 (4) 8.1 (1.5) 286 (56) 7.6 (0.2) 9.2 (2.7) 216 (31) 209 (30) 216 (36) 1558 (269) 5279 (988) 1905 (300)

KAMW 4.9 (0.7) 10.3 (0.9) 361 (57) 7.4 (0.1) 4.3 (0.5) 422 (15) 210 (49) 336 (133) 1205 (69) 3145 (842) 1622 (199)

BVP5 11.5 (0.7) 6.6 (1.3) 286 (51) 7.5 (0) 13 (1.2) 498 (79) 129 (19) 138 (22) 1089 (184) 4310 (280) 1877 (188)

GTH9 11.1 (1) 8.7 (1.9) 257 (37) 7.4 (0.1) 23 (2.2) 515 (43) 332 (29) 474 (36) 2742 (163) 5087 (334) 2116 (376)

RAE2 9.2 (0.5) 6.3 (0.8) 1793 (437) 7 (0) 8.5 (0.7) 308 (48) 182 (15) 219 (19) 1641 (126) 4215 (343) 5052 (1434)

ZWI3 10.1 (0.2) 7.3 (0.6) 238 (29) 7.3 (0) 23.5 (0.7) 1487 (96) 119 (4) 576 (172) 2747 (95) 6123 (1300) 2023 (51)
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Table 5. Coefficients and descriptives for the linear model describing the sqrt(earthworm

biomass (g/m² FW)) as a function of DSDS properties. Value for TSD is 0 when time since

disposal < 50 year and 1 when > 50 year. GSC (Grain size class) is 0 when sand content <

30% and 1 when sand content > 30%. Cu and P are expressed as mg/kg dry soil

               Value Std. Error   t-value Pr(>|t|)  

(Intercept)  2.7072  0.6047     4.4767  0.0000 

        GSC  1.8407  0.4933     3.7318  0.0003 

        TSD  3.5382  0.5769     6.1334  0.0000 

    GSC:TSD  2.4179  0.8831     2.7380  0.0074 

         Cu -0.0040  0.0020    -2.0085  0.0475 

          P  0.0004  0.0001     3.2326  0.0017 
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Figure 1. Typical soil profile for an overbank sedimentation zone (OSZ), a dredged sediment-

derived soil (DSDS), and an unaffected alluvial soil (ALL).

Figure 2. The study area with the sampled locations.

Figure 3. (a) Earthworm density (N/m²) and (b) biomass (g/m² FW) for the pairwise sampled

sites (unaffected alluvial soils = ALL, dredged sediment-derived soils = DSDS and overbank

sedimentation zones = OSZ).

Figure 4. (a) Relative distribution of the earthworm biomass over the ecological categories

for the pairwise sampled sites and (b) highest weight recorded for adult L. rubellus

(unaffected alluvial soils = ALL, dredged sediment-derived soils = DSDS and overbank

sedimentation zones = OSZ). Descriptive data for the sites are given in Table 1 and 2. 

Figure 5. Relative distribution of the earthworm biomass over the ecological categories for

(a) sandy loam DSDS and (b) heavy clay DSDS. Descriptive data for the sites are given in

Table 3 and 4. Time since disposal (TSD) is given in the boxes.

Figure 6. Relation between residuals of the basic model: SQRT(earthworm biomass) = TSD

+ GSC + TSD:GSC as dependent, and Cu, P and Zn (mg/kg dry soil) as independent

variables, with TSD = time since disposal and GSC = Grain size class.
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Fig. 1
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Fig. 3
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Fig. 4
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Fig. 5
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