7 research outputs found

    Environmental Sources of Bacteria Differentially Influence Host-Associated Microbial Dynamics.

    Get PDF
    Host-associated microbial dynamics are influenced by dietary and immune factors, but how exogenous microbial exposure shapes host-microbe dynamics remains poorly characterized. To investigate this phenomenon, we characterized the skin, rectum, and respiratory tract-associated microbiota in four aquarium-housed dolphins daily over a period of 6 weeks, including administration of a probiotic during weeks 4 to 6. The environmental bacterial sources were also characterized, including the animals' human handlers, the aquarium air and water, and the dolphins' food supply. Continuous microbial exposure occurred between all sites, yet each environment maintained a characteristic microbiota, suggesting that the majority of exposure events do not result in colonization. Small changes in water physicochemistry had a significant but weak correlation with change in dolphin-associated bacterial richness but had no influence on phylogenetic diversity. Food and air microbiota were the richest and had the largest conditional influence on other microbiota in the absence of probiotics, but during probiotic administration, food alone had the largest influence on the stability of the dolphin microbiota. Our results suggest that respiratory tract and gastrointestinal epithelium interactions with air- and food-associated microbes had the biggest influence on host-microbiota dynamics, while other interactions, such as skin transmission, played only a minor role. Finally, direct oral stimulation with a foreign exogenous microbial source can have a profound effect on microbial stability. IMPORTANCE These results provide valuable insights into the ecological influence of exogenous microbial exposure, as well as laying the foundation for improving aquarium management practices. By comparing data for dolphins from aquaria that use natural versus artificial seawater, we demonstrate the potential influence of aquarium water disinfection procedures on dolphin microbial dynamics

    Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins.

    No full text
    The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples

    How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits

    No full text
    Dispersal is a process that determines many aspects in the life-history of plants. Up to now, however, it is difficult to quantify. Many studies rather assess it as a categorical trait, i.e. assuming a species is dispersed by a certain vector or not. Gradual differences in the dispersal potential between species are rarely considered. In this paper we focus on the key process of epizoochory: the attachment potential of species to animal coats. We present two simple models (GLMs) how to quantify and to predict attachment potentials to sheep wool and to cattle hair from easily measurable seed traits. To calibrate the models, we investigated the attachment potential of seeds of 130 plant species on mechanically shaken coats of sheep and cattle and measured traits describing the seeds. We found that seed mass and seed morphology were correlated with attachment potentials. For sheep wool, the combination of the logarithm of seed mass and a constant for the different seed morphology types explained 85% of the variation of attachment potentials. For cattle hair, 71% were explained. To validate the models, they were applied to 36 additional species. Predicted and experimentally measured attachment potentials were correlated with r=0.84 for sheep wool and r=0.61 for cattle wool. Thus, the attachment potential of seeds to sheep or cattle coat can be assessed for a large set of species using the described models if seed mass and seed morphology are known

    Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported

    No full text
    Item does not contain fulltext1 Restored floodplains and backwaters lacking a viable propagule bank, may need flood pulses to facilitate inward dispersal of diaspores. Temporal patterns of hydrochorous plant dispersal are, however, not well known. 2 Diversity and abundance of diaspores dispersed in a water body over 12 months were quantified using a 200 mum net in order to: (i) test for a relationship between discharge and the number of species and diaspores dispersed; (ii) examine the effect of seed buoyancy and seed release period on the length of the dispersal period; and (iii) test whether diaspores of species that disperse during a similar period of the year are characterized by similar dispersal and dormancy traits. 3 A total 359 188 individuals of 174 vascular species developed from 144 samples, with most (90%) from vegetative diaspores and only 10% from seeds. Mean number of species and diaspores varied between months in parallel with discharge levels. Stepwise multiple regression analysis showed that both seed buoyancy and seed release influenced dispersal periods. 4 In general, species that dispersed most diaspores in spring and summer had non-dormant seeds, a shorter seed release period and a shorter seed dispersal period than species whose dormant seeds dispersed in autumn and winter. Vegetative diaspores were dispersed on average over 8 months, indicating their importance to long-distance dispersal. Several species dispersed both generative and vegetative diaspores, often in different seasons. 5 Our results may assist the planning of regenerative processes in riverine wetlands at landscape scales, as dispersal phenology, and discharge rates must be taken into consideration. Vegetative diaspores may be more important than seeds, although the latter may extend the species dispersal period into other seasons. Temporal heterogeneity in diaspore dispersal influences the identity of diaspores reaching restored habitats

    DNA methylation networks underlying mammalian traits

    Get PDF
    Using DNA methylation profiles ( n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species

    DNA methylation networks underlying mammalian traits

    No full text
    Using DNA methylation profiles ( = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species

    Single Cell Optical Imaging and Spectroscopy

    No full text
    corecore