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Abstract: Using DNA methylation profiles (n=15,456) from 348 mammalian species, we report 
the construction of phyloepigenetic trees that bear remarkable similarities to traditional 
phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct 
cytosine modules, of which 30 are related to traits such as maximum lifespan, adult weight, age, 
sex, and human mortality risk. Maximum lifespan is found to be associated with methylation levels 
in HOX genes, with developmental processes, and potential regulation by pluripotency 
transcription factors. The methylation state of some modules responds to perturbations such as 
caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and 
expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and 
epigenome that mediates the biological characteristics and traits of different mammalian species.  
 
One-Sentence Summary: Phyloepigenetic trees, derived from DNA methylation profiles, mirror 
mammalian evolution and are related to mammalian lifespan and other species characteristics. 

     Main Text:  
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Comparative epigenomics is a burgeoning field that integrates epigenetic signatures with 
phylogenetic relationships to decipher gene-to-trait functions (1-3). Prior research has investigated 
the capacity of DNA methylation patterns in regulatory sequences to reflect evolutionary 
relationships among species (3, 4). A recent study compared methylation data across multiple 
animal species at orthologous gene promoters using a sequencing-based assay that did not 
specifically target conserved CpGs (4). Previous investigations faced limitations regarding the 
measurement platform, particularly the low sequencing depth at conserved CpGs and the sample 
size per species. 
Our study overcomes these constraints in several ways. First, we utilized a measurement platform 
ensuring high sequencing depth at conserved CpGs, allowing for a more precise analysis of DNA 
methylation patterns in highly conserved DNA regions. Second, we significantly increased the 
sample size per species, aiming for around 30 samples. We profiled 348 species from 25 of the 26 
mammalian taxonomic orders. This comprehensive dataset enables a rigorous examination of 
phylogenetic relationships, co-methylation relationships between cytosines, and their associations 
with maximum lifespan and other species characteristics. 
We profiled 15,456 samples (Fig. 1A; table S1) using a methylation array platform that provides 
extremely effective sequencing depth at highly conserved CpGs across mammalian species (5). 
This vast dataset is the product of the multi-national Mammalian Methylation Consortium, which 
consists of 191 collaborators from diverse areas of scientific expertise. In previous studies, we 
applied supervised machine learning methods to generate DNA methylation-based predictors of 
age, called epigenetic clocks, for numerous species (6-31).  
Here, we perform a large-scale cross-species unsupervised analysis of the entire dataset to reveal 
the relationship of DNA methylation (DNAm) with mammalian phylogeny. We show that we can 
construct phyloepigenetic trees that parallel traditional phylogenetic ones. We then proceed to 
interrogate the extent to which DNA methylation underpins specific biological traits by employing 
unsupervised weighted correlation network analysis (WGCNA) to minimize the influence of bias 
on our observations. This approach readily identifies clusters of co-methylated CpGs (co-
methylation modules) that are associated with species characteristics, including taxonomy, tissue 
type, sex, lifespan, and aging.  
 

Results: 

Evolution and DNA methylation 
We generated a dataset consisting of DNA methylation profiles of 15,456 DNA samples derived 
from 70 tissue types, from 348 mammalian species using the mammalian methylation array (5). 
We evaluated whether methylation levels of cytosines (CpGs) in DNA sequences that are 
conserved across species would allow us to construct what could be termed a phyloepigenetic tree. 
To avoid potential confounding by different tissue types, we generated tissue-specific 
phyloepigenetic trees (Fig. 1B; fig. S2; fig. S3). We defined the ‘Congruence’ between traditional 
phylogenetic trees and phyloepigenetic trees as the Pearson correlation coefficient between 
distances (branch length) based on phyloepigenetic trees and evolutionary distances in traditional 
phylogenetic trees. We observe high congruence (Congruence=0.93, Fig. 1C; fig. S2) for the 
blood-based phyloepigenetic tree (124 species), and lower congruence values for non-blood tissues 
(Congruence=0.58 for liver and Congruence=0.72 for skin, fig. S2). The lower congruence in liver 
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(158 species) and skin (133 species) may be due to potential variability in sampling between 
species. The varying congruence across tissue types shows that the CpG probes do not serve as 
genotyping proxies. The tissue dependence of congruence indicates that phyloepigenetic trees are 
derived based on differences in methylation levels and not sequence conservation. This point is 
also corroborated by three sensitivity analyses, which confirmed that the high congruence was 
indeed due to differences in methylation levels (supplementary text). In particular, the 
phyloepigenetic trees based on the 180 CpGs with the most significant detection p values across 
all 348 species still are congruent with traditional trees (fig. S2F-G).  
In order to identify CpGs that exhibit a pronounced phylogenetic signal in relation to methylation 
and phylogenetic trees, we utilized the K statistic method described by Blomberg et al. (2003) 
(32). Among the top 500 CpGs showing significant phylogenetic signals (nominal Blomberg p < 
0.001, additionally selected by variance z-score), we observed an enrichment in upstream 
intergenic regions (odds ratio OR = 1.4, Fisher exact p < 0.05, fig. S4B). To further investigate 
regions with the strongest phylogenetic signal, we divided the data into groups of 10 CpGs relative 
to the transcriptional start site (TSS). This analysis also confirmed that intergenic regions exhibit 
robust phylogenetic signals (OR > 3, Fisher exact p < 0.05), while the promoter regions did not 
show such signals (Fig. 1D). 
DNA methylation networks relate to individual and species traits 

We used signed weighted correlation network analysis (WGCNA, an unsupervised analysis) (33) 
to cluster CpGs with similar methylation dynamics across samples into co-methylation modules. 
We then summarized their methylation profiles as "module eigengenes". The respective 
eigengenes of these modules were used to identify their potential correlations with various traits 
within and across mammalian species.  
Our data analysis proceeded in two sequential phases. First, we developed several co-methylation 
networks using data from 11,099 DNA samples from 174 species (discovery dataset, finalized 
March 2021). A eutherian network (Net1) was formed from 14,705 conserved CpGs using this 
dataset (Fig. 2A). Later (March 2022), we generated a second data set of 4,357 samples from 30 
tissues of 240 mammalian species (174 new species, and 66 that are represented in the discovery 
set), which were not used to define modules and were used as an independent validation set. All 
of the eutherian modules were present in the independent validation dataset according to module 
preservation statistics (corKME) (34); validating the presence of these modules (corKME>0.43, 
p<10-22; median corKME=0.84) (fig. S5). These modules were designated with colors according 
to the WGCNA convention (Fig. 2A). The smallest module (lavenderblush3) consisted of 33 
CpGs, while the largest (turquoise) had 1,864 CpGs.  

To characterize the 55 modules with respect to species characteristics (e.g., maximum lifespan and 
average adult weight), module eigengenes were calculated in all samples (discovery and 
replication set combined, 331 eutherian species). As information on taxonomic order, tissues, 
maximum lifespan, age, sex and adult weight of each species were available, we were able to 
assess whether any of the module eigengenes correlated with these traits. Of the 55 modules, 30 
were found to be correlated with at least one trait (Fig. 2B; fig. S7; table S3). Specifically, 15 
modules were related to taxonomic orders such as primates, rodents, or carnivores (Fig. 2B; see 
also fig. S11). Ten modules related to tissue type (fig. S11), while two were related to sex (fig. 
S11), one to age, seven modules to maximum lifespan, and four to average adult species weight. 
Some modules were related to multiple characteristics. In the following sections, we mainly focus 
on the modules that relate to mammalian maximum lifespan, adult weight, and age. Other modules 
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(related to taxonomic order, tissue type, or sex) are described in the supplement (fig. S11). We 
performed two analyses to ascertain whether these eutherian modules are also applicable to 
marsupials and monotremes. First, we trained a network (Net2) in both eutherians and marsupials 
based on only 7,956 probes that are mappable to both. The color bands underneath the hierarchical 
tree reveal that all the Net1 modules were also preserved in Net2 (Fig. 2A). Second, we selected 
CpGs in Net1 modules that are also mapped to marsupials or monotremes and confirmed that their 
eigengene relationships to primary traits were retained in these mammalian clades (table S3). For 
example, the magenta module, which is  related to blood in eutherians, was also found to be so in 
monotremes (table S3), which confirms that the Net1 modules can indeed be applied to other 
mammalian clades, by selecting probes that are also mapped to those clades.   

Relationship with protein-protein interactions 
A functional enrichment study, which adjusted for the methylation array background, showed that 
the 500 most connected CpGs per module were adjacent to genes associated with a wide range of 
biological processes including development, immune function, metabolism, reproduction, stem 
cell biology, stress responses, aging, and several signaling pathways (Fig. 2C, fig. S9).  
We examined whether the proteins encoded by cognate genes (closest to respective CpGs) within 
modules are known to mutually interact or predicted to do so by STRING protein-protein 
interaction networks, which integrate known and predicted protein associations from over 14,000 
organisms (35). A permutation test analysis evaluating the global cluster coefficient (36) of each 
module showed that 14 modules are significantly (p<0.001) enriched for genes encoding mutually-
interacting proteins (Fig 2D). Overall, these results suggest that co-methylation relationships can 
be reflected at the protein level for a subset of modules. 

Modules related to maximum lifespan 
To adjust for potential confounders, we used four regression modeling approaches to identify  
modules that are associated with log transformed maximum lifespan (dependent variable): 1) a 
univariate regression model whose covariate was the module eigengene (averaged per species), 2) 
a phylogenetic regression model whose covariate was again the module eigengene (averaged per 
species), 3) a multivariate linear regression model that included the module eigengene, sex, tissue, 
and relative age as covariates, 4) model approach 1 applied to specific tissue types.  
The marginal analysis identified four modules (magenta, black, midnightblue, and tan) that related 
significantly to maximum lifespan (the absolute value of the Pearson correlation exceeded r=0.6, 
Student T test p<1×10-33). The CpGs underlying the implicated modules exhibit the sample 
patterns as can be seen from corresponding heatmaps (fig. S14C). Phylogenetic regression also 
identified associations of the same modules (table S3). Our fourth modeling approach, i.e. the 
tissue-stratified marginal analysis, indicates that the relationship of modules to maximum lifespan 
is often tissue-specific. For example, the magenta and midnightblue modules relate to maximum 
lifespan in lung and liver (fig. S14A). In contrast, the black module relates to maximum lifespan 
only in skin, while the tan module exhibited a weak relationship to lifespan in the tissue-specific 
analysis. 
For ease of comprehension, modules were labeled with the trait and direction of relationship by 
superscript +/- signs (e.g. magenta = Lifespan(+)Weight(+)Blood(+) module). The two modules 
(magenta with 480 CpGs, and midnightblue with 249 CpGs) that correlated with lifespan in lung 
and liver also correlated significantly with average adult weight across all eutherian species 
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(r=0.47 to 0.55, p<1x10-18, Fig. 3).  The magenta module (Lifespan(+)Weight(+)Blood(+) ) is 
enriched with developmental genes such as HOXA5 and VEGFA, SOX2, and WNT11 (table S4). 
The midnightblue (Lifespan(+)Weight(+)) module implicates genes involved in tRNA metabolism 
(p=2x10-6, e.g. URM1), lipopolysaccharides (p=5x10-6, e.g. CERCAM), development (p=10-4, 
HOXL gene family), and fatty acids (p=2x10-3, e.g. ACADVL). The magenta module also relates 
to lifespan and average weight of dog breeds(Fig. 3C, r= -0.30, p=0.003). Furthermore, it is related 
to the hazard of human death (hazard ratio HR= 0.91, MetaP=0.0016, Fig. 3D) in epidemiological 
cohort studies.  

After adjustment for phylogeny, the cyan module relates to mammalian lifespan phylogenetic 
contrast (r=0.42, p=4x10-14, fig. S13I). The Lifespan(+)Liver(-) (cyan) module consists of genes that 
play a role in adaptive immunity (p=2x10-6), histone and protein demethylation (p=0.0001), and 
metabolism (p=0.0004) (table S4).  

The multivariate model analysis included sex, tissue type, and relative age as covariates to reveal 
the modules that relate to lifespan in different tissues. The regression analysis found two modules 
with opposing correlations with maximum lifespan: green module (lifespan r=0.42, average weight 
r=0.38, p<10-300) and the greenyellow module (lifespan r= -0.44, average weight r= -0.35, p<10-

300, fig. S13J). The CpGs of the Lifespan(-)Weight(-)Rodentia(+) (greenyellow) are located near 
genes that play a role in development (p=5x10-13, table S4) and in RNA metabolism (p=6x10-12).  

Age-related consensus module in mammals  
The purple module (denoted subsequently as RelativeAge(+) module) exhibited the strongest 
positive correlation with relative age (Relative age r=0.35, p<10-300, Fig. 3E; fig. S13).  
To remove the confounding effects of species and/or tissue type, we also constructed seven 
consensus networks (denoted cNet3,...,cNet9, Description in supplement and methods). The purple 
module was preserved in 3 different consensus networks (cNet3, cNet4, and cNet6, Fig. 2A), 
suggesting conservation in different species and tissues (scatter plot in fig. S11H). The 
RelativeAge(+) module is positively enriched for CpGs in regulatory regions (e.g. promoters and 
5’UTR) and depleted in intron regions (fig. S15). Functional enrichment of this module highlighted 
embryonic stem cell regulation, axonal fasciculation, angiogenesis, and diabetes-related pathways 
(table S3). The CpGs in this module are adjacent to Polycomb repressor complex 2 (PRC2, EED) 
targets which are marked by H3K27me3 (table S3).  

Ingenuity pathway analysis implicates POU5F1 (alias OCT4), SHH, ASCL1, SOX2, and 
NEUROG2 proteins as putative upstream regulators of the RelativeAge(+) module. We used GTEx 
data to examine if the mRNA levels of any of these upstream regulators are altered with age in 
human tissues. OCT4 (repeated measures correlation, rmCor=0.07, p=2x10-14), which is among 
the four known Yamanaka factors for cellular dedifferentiation, showed a positive increase with 
age in several but not all human tissues (fig. S11F). Nine other genes (e.g. HOXD10, rmCor=0.16, 
p=4x10-50; SRXN1, rmCor=-0.14, p=4x10-52) from the RelativeAge(+) module also had a nominally 
significant rmCorr (p<0.005) in GTEx data (Fig. 3F; fig. S11G), although opposite aging patterns 
could be found in select tissues. These observations highlight the relevance of genes in the 
RelativeAge(+) module to stem cell biology and aging in human tissues. 

Interventional studies in mice 
We related our methylation modules to interventions that are known to modulate the lifespan of 
mice (Fig. 4A–C). This included growth hormone receptor knockout (i.e. dwarf mice) (37) and 
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caloric restriction (38), which extended life, and high-fat diet, which elicited the opposite effect 
(12). Six modules, including the purple module (RelativeAge(+)) showed a significant (p<0.05) 
decrease of the module eigengene in dwarf mice and after caloric restriction, and conversely a 
modest increase after a high-fat diet. Although magenta, black, midnightblue, tan, and greenyellow 
modules are related to maximum lifespan, these modules were not significantly (p>0.05) 
associated with interventions that affect murine lifespan (GHRKO, CR and HF diet). Instead the 
purple, ivory, lavenderblush3, royalblue, salmon4 and skyblue modules, none of which are related 
to maximum lifespan, were the ones that are significantly associated with these interventions. In 
other words, the lifespan modules and lifespan-affecting interventions modules are mutually 
exclusive. 

Transient expression of Yamanaka factors 
We examined if a transient expression of the Yamanaka factors in the 4-factor (4F) mouse affects 
the module eigengenes. The experimental design is shown in Fig. 4D, with additional details 
reported in the original article (39). Five out of six of the above mentioned murine intervention 
modules showed a nominally significant dose-dependent rejuvenation in murine skin (p<0.06) and 
2 modules showed the same in kidney (dose refers to the duration of 4F treatment: 0-, 1-, 7-, and 
10-months intermittent expression of 4F factors) (Fig. 4E–F). The purple, ivory, and 
lavenderblush3 modules were particularly sensitive to the 4F treatment (Pearson correlation ⩽-
0.72 in skin). In addition, the purple RelativeAge(+) module’s response to the 4F treatment is 
consistent with bioinformatic findings that OCT4 is an upstream regulator of this module. 
Epigenome-wide association analysis of maximum lifespan 

We carried out epigenome-wide association studies (EWAS) to identify individual CpGs with 
methylation levels that correlate with maximum lifespan. To reduce bias resulting from different 
levels of sequence conservation, our EWAS of maximum lifespan focused on n = 333 eutherian 
species, excluding marsupial and monotreme species. We restricted the analysis to 28,318 high 
quality probes that are conserved between humans and mice.  
When relating individual CpGs to log-transformed maximum lifespan, we used several modeling 
approaches (detailed in the Supplementary text). Briefly, our first approach, generic modeling, 
applied regression analysis ignoring tissue type and age. Second, we repeated the regression 
analysis after focusing on a given tissue type. Third, we focused on specific non-overlapping age 
groups: young animals (defined as age younger than 1.5 times the age at sexual maturity), middle-
aged, and old (defined as Age>3.5 times the age at sexual maturity), see fig S19. Some of these 
regression models were further adjusted for average species weight (denoted lifespanAdjWeight). 
For brevity, we will focus on linear regression models since phylogenetic regression models led to 
qualitatively similar conclusions (tables S13–S14). The most significant lifespan-related CpGs are 
located in the distal intergenic region neighboring TLE4 (Pearson r = 0.68, p = 5.8x10-46, Fig. 5A, 
table S11) and two CpGs near the promoter region of HOXA4 (R = 0.66, p = 7.5x10-45, midnight 
blue module, Fig. 5A), and negatively-correlated with a CpG in an intron of GATA3 (R = -0.65, p 
= 8.8x10-42, Fig. 5A). Many of these significant CpGs remain so after phylogenetic adjustment, 
such as the CpGs neighboring TLE4, HOXA4 (p = 4.2x10-5, p = 4.8x10-3 respectively, fig. S17 and 
table S11-S12). The top 1,000 lifespan-related CpGs (comprising 500 positively and 500 
negatively lifespan related CpGs) significantly overlapped (Fisher exact p = 5.5x10-134) with those 
found in our weight-adjusted analysis (lifespanAdjWeight).  
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In general, methylation of lifespan-related CpGs does not change with age in mammalian tissues 
(Fig. 5B, fig. S20). The same can be seen from EWAS of lifespan restricted to animals of a given 
age group (e.g., only very young animals, fig. S20D). The EWAS of lifespan in all animals 
(irrespective of age) is highly correlated (r>0.7) with the analogous EWAS restricted to animals 
that are young, middle-aged, or old, animals respectively.  
EWAS of lifespan showed good consistency with the eigengene-based analysis in the mammalian 
co-methylation network. As expected, the previously discussed lifespan-related modules were 
enriched with CpGs implicated by our EWAS of lifespan: midnightblue (hypergeometric test P = 
2.2x10-47; 67/249 overlapped CpGs), greenyellow (hypergeometric P = 2.1x10-36; 70/398 
overlapped CpGs), tan (hypergeometric P = 6.7x10-23; 52/365 overlapped CpGs), and green 
(hypergeometric P = 5.0x10-18; 104/1542 overlapped CpGs) module.  
In total, 1006 genes had a differential methylation association with lifespan (union of cognate 
genes resulting from the marginal model analysis for lifespan and lifespanAdjWeight). The gene 
expression levels of 17 of these genes exhibited a highly significant repeated measures correlation 
with chronological age (repeated measures Cor p value < 10-50) in different human tissues (Fig. 
5C). Two of these genes, PTCHD4 and ZBTB7B, were also implicated by EWAS of weight-
adjusted lifespan (lifespanAdjWeight).  The cognate genes next to the top 500 positively lifespan-
related CpGs play a critical role in animal organ morphogenesis (marginal model lifespan GREAT 
enrichment false discovery rate, FDR = 3x10-4 and LifespanAdjWeight FDR=3.3x10-7, Fig. 5D), 
increased rib number in mice (FDR=1x10-21, Fig. 5D), and implicates the HOXL gene group (FDR 
= 0.004 and weight adjusted LifespanAdjWeight FDR=1.3x10-15), and abnormal survival in mice 
(FDR <4x10-4). 

Upstream regulators of maximum lifespan 
We employed Ingenuity Pathway analysis (40) to identify potential upstream regulators of the 
genes cognate to the top 500 positively and top 500 negatively lifespan-related CpGs. The top-
ranked candidate regulators of both gene lists included SOX2-OCT4-NANOG pluripotency 
factors (FDR = 5.7x10-4 lifespan negative, FDR = 5.7x10-4 lifespan positive), which play critical 
roles in cellular reprogramming. We performed a control analysis that ruled out potential 
confounding by sequence conservation (fig. S25). Upstream regulators also included several 
candidates related to development: sonic hedgehog (SHH), lifespan negative FDR = 1.3x10-4; 
POU4F2, lifespan negative FDR = 3.3x10-7 and ASCL1, lifespan negative FDR = 1.6x10-3 (Fig. 
5E). These findings suggest that expression of lifespan-related genes might be regulated to some 
extent by pluripotency factors. This prompted us to investigate whether expression of any of the 
lifespan-related genes identified above are altered by transient expression of pluripotency inducing 
factors (Yamanaka factors OSKM) in a mouse model (39). Indeed, this analysis revealed that 
transient expression of OSKM altered the expression of 195 out of 646 lifespan-related genes in 
skin and 166 lifespan-related genes in the kidney (nominal Fisher exact p=3.9x10-52 for skin and 
lifespan; p=1.4x10-42 for kidney and lifespan, Fig. 5F, fig. S32). Genomic positions that are known 
to be bound by pluripotency factors (in at least one human/murine cell type according to ChIP-seq 
data from Encode) are located near CpGs that are associated with maximum species lifespans: 
NANOG binding sites are enriched for CpGs that are positively correlated with lifespan 
(FDR=0.002) and to CpGs underlying the midnightblue module (FDR=0.0006), which has high 
methylation levels in long-lived species (Fig. 5G). OCT4 (POU5F1) (FDR=0.02) and cMYC 
(FDR=0.003) binding sites are enriched with CpGs in the greenyellow module, which has low 
methylation levels in long-lived species (Fig. 5G). The ChIP-seq binding location analysis also 
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implicates other noteworthy factors such as POLII, CTCF, RAD21, YY1, and TAF1, which show 
the strongest enrichment for negatively lifespan-related CpGs (Fig. 5G).  

Given the role of CTCF in regulating the 3D organization of the genome, we conducted an 
enrichment analysis of Topologically Associating Domain (TAD) boundaries and loop boundaries 
identified in both human and mouse cell lines (fig. S26). We found that both TAD and loop 
boundaries demonstrated significant enrichment of negatively lifespan-related CpGs (FDR=3x10-

4 for TAD boundaries and FDR=6.7x10-4 for loop boundaries in various cell lines, such as olfactory 
receptor cells, as well as human fibroblasts IMR90 and HFFc6; fig. S26). This finding aligns with 
the significant enrichment observed for CTCF (FDR=10-7). 
CpGs Linked to Lifespan in Various Taxonomic Orders and Tissues 

To pinpoint CpGs associated with log maximum lifespan independent of phylogenetic order or 
tissue type, we conducted a meta-analysis of EWAS findings from 25 distinct strata, comprising 
phylogenetic order and tissue type. Using a non-parametric meta-analysis approach (rankPvalue), 
we assessed the EWAS of lifespan (meta lifespan) in these strata to identify CpGs unconfounded 
by tissue type or phylogenetic order (table S24). Our meta.lifespan results demonstrated significant 
overlap with the previously mentioned EWAS of lifespan in all eutherian species (hypergeometric 
P = 1x10-175, Fig. 6A). In contrast, none of the meta.lifespan CpGs overlapped with EWAS of age, 
which further support the statement that methylation of lifespan-related CpGs does not change 
with age in mammalian tissues. The top 4 CpGs from the meta.lifespan analysis are depicted in 
Fig. 6B, showing significant positive correlations for CpGs near LOXL1 and ZSCAN29 (exons), 
and negative correlations for those near RAB29 (exon) and GATA3 (downstream) with log 
maximum lifespan across various taxonomic orders and tissue types. Similar to our above 
mentioned results, CpGs implicated by our meta lifespan analysis (FDR<0.05) overlap 
significantly (FDR<0.01) with genes involved in organ morphogenesis,  RNA biosynthesis, 
increased rib number in mice, Wnt signaling (Fig. 6C), and genes altered by transient expression 
of pluripotency-inducing factors in mouse models (nominal Fisher exact p<10-5 for skin and 
lifespan meta; p<10-11 for kidney and lifespan meta, Fig. 6D). 
 

Chromatin state analysis 
Our large-scale mammalian DNAm data confirms that CpGs located in promoter regions (-2000 
to 2000 bp of TSS regions) have low methylation levels (Fig. 7A, mean=15%). In contrast, those 
in gene bodies and distal regions are highly methylated (Fig. 7A, mean value ~70%). CpGs having 
a high/low mean methylation level tend to have positive/negative Z statistics for lifespan, 
respectively (Fig. 7B-C). We find that CpGs with low methylation levels in long-lived species are 
located close to the transcriptional start site of genes and near binding sites of polycomb repressive 
complex 1 (PRC1, p=6.4x10-11, Fig. 7D) and polycomb repressive complex 2 (PRC2, p=2x10-6). 
To test the hypothesis that long-lived species exhibit high/low methylation levels in chromosomal 
regions that are expected to have high/low methylation patterns, we used chromatin states that 
were identified and annotated based on over 1000 epigenetic data sets encompassing a diverse 
range of human cell and tissue types (41). 

The lifespan related CpGs are enriched with transcriptional start site chromatin state  (TSS1, 
p=2.5x10-12), and flanking promoter states (PromF4, p=5.6x10-10; PromF5, p=2.0x10-9; PromF2, 
p=3.0x10-4, Fig. 7D).  
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The CpGs with high methylation levels in blood samples of long-lived species are enriched in gene 
body associated states (notably transcribed state TxEx1, p=7.5x10-8 and highly transcribed state 
TxEx4 p=1.7x10-6, Fig. 7E). Detailed description of the chromatin state enrichment for EWAS of 
maximum lifespan is in the supplementary text. 

A bi-clustering analysis between chromatin states and co-methylation modules based on fold 
enrichments (Fig. 8; table S21; table S22) revealed that the 55 mammalian co-methylation 
modules fall into three large groupings  (referred to as meta modules).  The bar plot to the left of 
Fig. 8 shows different mean methylation levels of the CpGs underlying the 3 meta modules: mean 
methylation=0.23, 0.66, and 0.77 for meta modules 1, 2, and 3, respectively. 
Meta module 1 contains several chromatin states that are associated with polycomb repression, 
including bivalent regulatory regions (BivProm1, 2) and  ReprPC1. Further, meta module 1 
contains chromatin states related to transcriptional start sites (TSS1, TSS2), and several flanking 
promoters (PromF2,3,4,5). TSS1, PromF2, and PromF4-5 (associated with negatively lifespan-
related CpGs) were previously associated as the universal chromatin states with the strongest 
enrichments for CpG islands (54-101 fold) (41). The color band underneath Fig. 8 reveals that six 
modules underlying meta-module 1 are sensitive to murine lifespan interventions. Meta module 1 
is enriched with CpGs that have low methylation levels in long lived species (significant overlap 
with EWAS of lifespan, tan/greenyellow modules, Fig. 8).  

Meta-module 2 can be considered as a partially methylated module (mean methylation 0.66) and 
is enriched with several enhancer states, late replicating domains (partially methylated domains, 
common PMD (42)), and solo CpGs (WCGW,(42)). Meta-module 2 also contains the module most 
significantly related with lifespan (midnightblue) and the human mortality risk module (magenta). 
These two modules overlap with the CpGs that are positively related to lifespan. Three out of four 
average weight-related modules are also located in meta-module 2. 

Discussion: 
In this study, we present an analysis of the most extensive cross-species DNA methylation dataset 
to date, obtained from a mammalian array platform. This platform specifically focuses on highly 
conserved regions of DNA, making it a valuable resource for studying methylation patterns across 
mammalian species (5). The successful construction of mammalian phyloepigenetic trees suggests 
that the divergence of DNA methylation profiles is closely aligned with genetic changes 
throughout evolution. Numerous sensitivity assessments reveal that the observed phyloepigenetic 
associations are not due to technical issues associated with our measurement platform. Instead, the 
phyloepigenetic signal may stem from sources like upstream regulators, transcription factors, or 
DNA sequence variations in distant regions. 
The conserved CpGs exhibiting the strongest phylogenetic signals are situated in intergenic 
regions, while promoter regions do not display such signals. Previous studies report a rapid 
evolutionary rate of enhancers as a shared feature among mammalian genomes, while promoters 
demonstrate either full or partial conservation across species (2). 
We found that 30 of the resulting 55 modules identified from an unsupervised machine learning 
method were readily associated with species traits (taxonomic order, maximum lifespan, average 
adult weight) or individual traits (chronological age, tissue, sex). We expect that many of the 
remaining 25 modules will be associated with biological characteristics about which we currently 
have no information. As a case in point, although the yellow module was not associated with any 
of our primary tested traits, it did show association with response to a murine circadian rhythm 
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disruption study (light pollution during the night, fig. S7B). The upstream regulator analysis of the 
EWAS of lifespan identified the pluripotency transcription factors (OCT4, SOX2, and NANOG). 
We show that the transient overexpression of OSKM in murine tissues affects the methylation 
levels of CpGs near genes implicated by our EWAS of maximum lifespan (Fig. 5E). We speculate 
that the enhanced activity of the pluripotency network in long-lived species results in more 
efficient tissue repair and maintenance, ensuring a longer lifespan. 

Both the EWAS and eigengene-based analysis identified methylation signatures of maximum 
lifespan, and most of these were independent of aging, and presumably set at birth, and could be 
stable predictors of lifespan at any point in life. Several CpGs that are more highly methylated in 
long-lived species are located near HOXL genes and other genes that play a role in morphogenesis 
and development. Some of these lifespan-related CpGs are located next to genes that are also 
implicated in our analysis of upstream regulators (e.g., ASCL1 and SMAD6). CpGs with 
methylation levels that are inversely related to lifespan are enriched in transcriptional start site 
(TSS1) and promoter flanking (PromF4, PromF5) associated chromatin states. Genes located in 
chromatin state TSS1 are constitutively active and enriched for nucleic acid metabolic processes 
(41). This suggests that long-living species evolved mechanisms that maintain low methylation 
levels in chromatin states that would favor higher expression levels of selected genes that are 
potentially essential for an organism’s survival.  
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Method summary 
The Mammalian Methylation Consortium generated cytosine methylation data from n=15,456 
DNA samples derived from 70 tissue types of 348 mammalian species (331 eutherians, 15 
marsupials, 2 monotremes) using a custom-designed mammalian methylation array that targets 
CpGs at conserved loci in mammals (5). DNA methylation data were used for phyloepigenetic 
tree development using 1-cor dissimilarity  applied to mean methylation values per species. 
The choice of the correlation-based dissimilarity matrix is justified in Supplementary Methods. 
For unsupervised analysis, we formed WGCNA networks based on two sets of CpG probes in 
our data. The first network was generated from 14,705 conserved CpGs in 10,927 samples of 
167 eutherian species. The preservation of this network was evaluated in an independent 
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dataset comprising 3,692 samples from 29 tissues of 228 mammalian species (164 new species, 
64 overlapped with the training set). The second network was a subset of 7,956 conserved 
CpGs in 11,105 samples from 167 eutherian and nine marsupial species. In addition, we 
developed seven consensus co-methylation networks to remove the confounding effects of 
species and tissue type. Consensus WGCNA can be interpreted as a meta-analysis across 
networks in different species and tissue types (33, 43). 

For the eutherian network (Net1), module eigengenes (MEs) were defined as singular vectors 
(corresponding to the highest singular value) from the singular value decomposition of the 
scaled CpGs that underlie the respective module. The eigengenes in the eutherian network 
(Net1) explained a range of 24–63% (average = 43%) of the variance in the methylation data 
in the training set, replication set, and all data in each module (table S3). For a given module, 
we defined the measure of module membership, kME, as the Pearson correlation between the 
module eigengene and the CpGs. The association of module eigengenes was examined for 
different traits using individual regression models. 

EWAS of lifespan was done in 28,318 CpGs that apply to mice and humans according to 
calibration/titration data (correlation with calibration exceeds 0.8) and mappability information 
as described in (5). Since the distribution of maximum lifespan and other life history traits 
were highly skewed, we imposed a log-transformation on these phenotypes before conducting 
EWAS. Our tissue type specific EWAS was conducted in tissues with enough species (N>25 
species) available. For our various EWAS of log transformed maximum lifespan, we adopted 
a nominal significance threshold of 1.8x10-6 (=0.01/28,318) based on the conservative 
Bonferroni adjustment. We report a false discovery rate in our enrichment studies to adjust for 
multiple comparisons. 

 

Supplementary Materials 
Materials and Methods 

Supplementary Text 
Figs. S1 to S32 

Tables S1 to S24 
Data S1 to S19 

References (1–94) 

Fig. 1. Phyloepigenetic trees parallel the mammalian evolutionary tree. (A) the traditional 
phylogenetic tree from the TimeTree database (44) based on 321 (out of 348) species in our study. 
A full description of the species in our study is reported in table S1. (B) Blood-based 
phyloepigenetic tree created from hierarchical clustering of DNA methylation data in this study 
(additional analysis in fig. S3A,B). We formed the mean value per cytosine across samples for 
each species. The clustering used 1 minus the Pearson correlation (1-cor) as a pairwise 
dissimilarity measure and the average linkage method as intergroup dissimilarity. Phyloepigenetic 
trees for skin and liver can be found in fig. S2. Additional analyses, e.g., involving different choices 
of CpGs or intergroup dissimilarity measures, are reported in the supplement (fig. S2). The colored 
bars reflect the branch height. (C) Scatter plot of the distances in blood phyloepigenetic (1-cor) vs 
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the traditional evolutionary tree. (D) Scatter plots displaying the log-odds ratios of regions 
exhibiting significant phylogenetic signals relative to the Transcription Start Site (TSS) are 
presented. The phylogenetic signal is determined using Blomberg's K statistic (32). In this analysis, 
CpGs were grouped into categories using sliding windows relative to the TSS, ensuring a minimum 
count of 10 CpGs per group. To assess enrichment, the Fisher exact overlap test was employed, 
focusing on the top 500 CpGs displaying phylogenetic signals within each region. The results 
indicate notable enrichment (OR>3) in certain intergenic and genic regions, but not in promoters. 
Additional analysis in fig. S4.  

Fig. 2. DNA methylation network relates to species and individual characteristics in 
mammalian species. (A) the WGCNA network of 14,705 conserved CpGs in eutherian species 
(Network 1). The identified modules related to species, or individual sample characteristics. 
Network 1 modules were compared to eight additional networks (fig. S5). The modules with strong 
associations with species and sample characteristics were labeled below the dendrogram. Grey 
color codes CpGs that are outside of modules. (B) summary of the modules that showed strong 
associations with species and individual sample characteristics. The +/- labels are the direction of 
association with each trait. (C) Top defined functional biological processes related to network 1 
modules (details in fig. S9, table S4). (D) mammalian co-methylation modules form clusters of 
proteins in the STRING protein-protein interaction (PPI) network. For the sake of visualization, 
the analysis was limited to the top 50 CpGs with the highest module membership value per module. 
colors: mammalian network 1. The lollipop plot shows the global cluster coefficient (36) of the 
proteins within a module (up to 500 top CpGs) in a PPI network. Our permutation analysis matched 
the distribution of the original module sizes. We evaluated 1100 random permutations, i.e. 20 for 
each of the 55 modules. The boxplot reports the global clustering coefficient per module (y-axis) 
versus permutation status: module resulting from a random selection of proteins (left) versus 
original module resulting from WGCNA (right). The modules with cluster coefficients larger than 
the maximum permutation cluster coefficient were considered as significant at p=0.001. The 
dashed vertical line corresponds to the maximum global clustering coefficient observed in the 1100 
random permutations. 

Fig. 3. Co-methylation modules related to mammalian maximum lifespan, weight, human 
mortality, and age. Modules associated with log maximum lifespan (p<10-20) (A) or log average 
species weight (p<10-17) (B) in marginal association: correlation test with the mean module 
eigengene of the species. The module eigengene is defined as the 1st principal component of the 
scaled CpGs underlying a module. The species are randomly labeled by their animal number (table 
S1). (C) The top modules associated with median life expectancy, upper limit life expectancy, or 
average adult weight of 93 dog breeds, model:  marginal correlation test of the mean module 
eigengene with target variables (detailed breed characteristics are in table S8). R, Pearson 
correlation coefficient; p, correlation test p-value. (D) Forest plots of the top modules associated 
with mortality risk in the Framingham Heart Study Offspring Cohort (FHS), and Women’s Health 
Initiative (WHI) study, totaling 4651 individuals (1095, 24% death). The right panel indicates the 
number of deaths/total number of individuals in each study. We report the meta-analysis p-value 
in the title of the forest plot. (E) Module that correlates significantly (p<1x10-300) with relative age 
(defined as ratio of age/maximum lifespan) across mammalian species using a multivariate 
regression model. Covariates: tissue, sex, and species differences. Each dot corresponds to a 
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eutherian tissue sample (n=14,542). Dots are colored by taxonomic order. (F) The volcano plot of 
the rmCorrelation of all purple module genes in GTEx data (Additional analysis in fig. S11).   

Fig. 4. The effects of different pro-aging and anti-aging interventions on selected DNAm 
modules. Six DNA methylation modules are sensitive to lifespan-related intervention experiments 
and relate to the life expectancy of the mouse models. (A) Changes in the intervention modules in 
the liver parallel smaller size and longer life expectancy of growth hormone receptor mouse models 
(GHRKO). Sample size: GHRKO, 11 (5 female, 6 male); Wt, 18 (9 male, 9 female). The age 
range: 6–8 months. (B) Caloric restriction (CR) DNA methylation module signature predicts 
longer lifespan in this treated group. Age=18 months; Sex=Male; N=CR, 59; control, 36. (C) High-
fat diet accelerates aging in the age module. N=high-fat diet, 133 (125 females, 8 males); control 
(ad libitum), 212 (202 females, 10 males). Age range: 3–32 months. (D), (E), (F) Examining the 
effects of in vivo partial reprogramming on intervention modules. (D) a schematic view of the 
partial programming experiment in 4F mice (39). A systemic Yamanaka factors expression (Oct4, 
Sox2, Klf4, Myc) was periodically induced by adding doxycycline to drinking water for two days 
per week. The partial programming was done at three different durations. Sample size: control 
(C57BL/6+dox), n=7; 1m 4F, n=3; 7m 4F, n=5; 10m 4F, n=3 (all tissues except skin, n=2 for skin). 
(E), (F) scatter plots of the linear changes of the intervention modules in the skin (E) and kidney 
(F) of mice treated with different durations (dosages) of Yamanaka factors. R, Pearson correlation 
coefficient; p, correlation test p-value. The intervention modules indicate a dose-dependent 
rejuvenation of skin and kidney by this partial programming regimen.  

Fig. 5. Epigenome-wide association study (EWAS) of mammalian log-transformed 
maximum lifespan. (A) The figure represents the CpG-specific association with maximum 
lifespan across n=333 eutherian species. For EWAS, the mean methylation values of each CpG 
(per species) were regressed on log maximum lifespan. The right portion of the panel reports 
EWAS results after adjustment for average adult weight. Genome annotation:  human hg19. Red 
dotted line: Bonferroni corrected two-sided p-value < 1.8x10-6. The point colors indicate  the 
corresponding modules. The bar plot indicates the top enriched (hypergeometric test, eutherian 
probes as background) modules for the top 1000 (500 negative CpGs nominal p<1.1x10-11, 
FDR=1x10-10; 500 negative CpGs positive CpGs nominal p<1.5x10-21, FDR=7.5x10-20) significant 
CpGs for different EWAS. (B) Venn diagram of the overlaps between top hits from EWAS of 
maximum lifespan and meta-analysis of age (meta-analysis results from (7), additional analysis in 
fig. S20).  (C) Venn diagram of the overlaps between the genes adjacent to the EWAS results and 
top age-related mRNA changes in human tissues (p<1e-50). (D) Gene set enrichment analysis of 
the genes proximal to CpGs associated with mammalian maximum lifespan. We only report 
enrichment terms that are significant after adjustment for multiple comparisons (hypergeometric 
FDR <0.01) and contain at least five significant genes. The top three significant terms per column 
(EWAS) and enrichment database are shown in the panel. (E) Ingenuity potential upstream 
regulator analysis (40) of the differentially methylated genes related to mammalian maximum 
lifespan. (F) Venn diagram of 3 gene lists. First, the top 646 genes adjacent to 1000 lifespan related 
CpGs (500 positive and 500 negative). Gene lists 2 and 3 are based on CpGs that are differentially 
methylated (nominal Wald test p<0.005, up to 500 positive and 500 negatively related CpGs) after 
OSKM overexpression in murine kidney (601 genes) and skin (695 genes) (39). We observe 
significant overlap between the gene lists (nominal Fisher exact p=3.9x10-52 for skin and lifespan; 
p=1.4x10-42 for kidney and lifespan) (G) transcriptional factor motif enrichment analysis of 
lifespan modules and lifespan related CpGs. The enrichment results for 
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LifespanAdjWeight.negative were not significant. The overlap is assessed by a hypergeometric 
test for the CpGs within the motifs based on the human hg19 genome.   
 
Fig. 6. CpGs Linked to Lifespan in Various Taxonomic Orders and Tissues. Using the non-
parametric rankPvalue method (33), we combined 25 EWAS of lifespan results from various 
taxonomic order or tissue type strata, calculating the significance of a CpG's consistently high (or 
low) rank based on the 25 EWAS of log maximum lifespan (meta lifespan, underlying EWAS 
results can be found in table S24, Data S19). (A) The overlap of top 1000 (500 per direction) meta-
lifespan CpGs with EWAS of lifespan in all eutherians (nominal Fisher exact p=1x10-175). (B) 
Scatter plots illustrating the top meta-lifespan CpGs categorized into different tissue-phylogenetic 
order strata are presented. Each panel displays only the strata that exhibit significant relationships. 
The first row represents the phylogenetic order strata combining all tissues. (C) Gene set 
enrichment analysis of the genes proximal to CpGs associated with mammalian maximum 
lifespan. We only report enrichment terms that are significant after adjustment for multiple 
comparisons (hypergeometric FDR <0.01) and contain at least five significant genes. The top three 
significant terms per column (EWAS) and enrichment database are shown in the panel. (D) Venn 
diagram of 3 gene lists. First (the bottom circle), the top 407 genes adjacent to 1000 meta-lifespan 
CpGs (500 positive and 500 negative). Gene lists 2 and 3 (the top circles) are based on CpGs that 
are differentially methylated (nominal Wald test p<0.005, up to 500 positive and 500 negatively 
related CpGs) after OSKM overexpression in murine kidney (601 genes) and skin (695 genes) 
(39).  

Fig. 7. Chromatin state analysis and distance to the transcriptional start site for the lifespan-
related CpGs. (A) scatter plot showing, for each CpG (each datapoint), mean methylation across 
species (y-axis) vs. distances to the nearest transcription start site (x-axis). The color and shape of 
each datapoint corresponds to the chromatin state and gene region annotation for each CpG site, 
as in legend below (B). (B) For each CpG, the epigenome-wide association study (EWAS)  Z-
statistics for log maximum lifespan. the distance to the nearest transcriptional start site. (C) scatter 
plots showing, for each CpG (each datapoint), mean methylation in eutherians and EWAS Z 
statistics for log maximum lifespan in different genomic regions (intergenic, promoter, gene body). 
The CpGs are colored based on the overlapping chromatin state in the human genome, and shaped 
based on the annotated gene region, as in legend on right. Additional EWAS results after 
adjustment for phylogenetic relationships can be found in fig. S17-20 and corresponding 
enrichment results can be found in fig. S22-S24. Pearson correlation coefficients and p-values are 
reported in different panels. Chromatin state enrichment analysis of (D) the top 500 negatively 
lifespan related CpGs,  and (E) top 500 positively lifespan related CpGs . The columns in each 
panel correspond to EWAS results for log transformed maximum lifespan across i) all tissues 
combined (Lifespan.All), ii) blood samples only (Lifespan.Blood), iii) skin samples only 
(Lifespan.Skin), meta-lifespan and the corresponding results after adjustment for average adult 
weight, Lifespan(AdjWeight). The last column reports enrichment with respect to the 
relativeAge(+) module (purple). We use the same significance thresholds as in Figure 5. The cells’ 
shadings correspond to fold enrichment between co-methylation modules andeach chromatin state 
. The cells’ numeric values correspond to the p-value of such enrichments based on the  
hypergeometric test, and only cells’ values with significant p-value<0.001 (equivalent to 
FDR<0.02) are shown. The chromatin states are learned based on epigenetic datasets profiling 
chromatin mark signals in different human cell and tissue types, resulting in a genome annotation 
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shared across cell types (41). The common partially methylated domains (commonPMD), solo 
CpGs (WCGW), and highly methylated domain (HMD) annotations are from (42). Polycomb 
repressor complexes (PRC) 1 and PRC 2 binding sites are obtained from the ChIP-seq datasets of 
PCR 1 and 2 from ENCODE (ENCODE Project Consortium, 2012)(45).  

Fig. 8. Mammalian methylation meta modules based on the chromatin states and external 
genome annotations. The heatmap shows the enrichments between (1) mammalian co-
methylation modules and significant lifespan-related EWAS CpG groups (x-axis) EWAS and (2) 
chromatin states or other genomic annotation (y-axis). The cells’ shadings correspond to log 
transformed fold-enrichment values (observed count divided by expected count). Hypergeometric 
tests were used to evaluate the enrichment significance in each cell, and * indicates a nominal p-
value<0.001 (FDR<0.10). Only chromatin states and external genome annotations with at least 
one significant enrichment (FDR<0.10) are shown. The chromatin states are based on a human 
based universal chromatin annotation of human cell and tissue types (41). Other genomic 
annotations include the common partially methylated domains (commonPMD), solo CpGs 
(WCGW), and highly methylated domain (HMD) annotations, which are from (42). In addition, 
Polycomb repressor complexes (PRC) 1 and PRC 2 binding sites are defined from the ChIP-seq 
data of PRC 1 and 2 from ENCODE (ENCODE Project Consortium, 2012)(45). The row and 
column hierarchical clustering trees (average linkage) are based on a dissimilarity (1 minus the 
pairwise Pearson correlation between log transformed fold enrichment values). The left side 
barplot indicates the mean methylation levels of the CpGs in each state for all eutherian samples 
in our data. We used the 14,705 eutherian CpGs as the background for enrichment of the co-
methylation modules. In contrast, 28,318 CpGs (high quality probes in humans and mice) were 
used as a background for enrichment of significant lifespan-related EWAS CpG groups with 
chromatin states and genome annotations. Each EWAS CpG group includes up to 500 most 
significant CpGs per direction (positively/negatively related with lifespan) as detailed in the 
caption of Fig. 5. 
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1. Afghan Hound
2. Airedale Terrier
3. Akita
4. Alaskan Malamute
5. American Hairless Terrier
6. American Staffordshire Terrier
7. Anatolian Shepherd Dog
8. Australian Shepherd Dog
9. Basenji
10. Basset Hound
11. Beagle
12. Belgian Sheepdog
13. Belgian Tervuren
14. Bernese Mountain Dog
15. Bichon Frise
16. Border Collie
17. Boston Terrier
18. Bouvier des Flandres
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20. Briard
21. Bull Terrier
22. Bullmastiff
23. Cairn Terrier
24. Cardigan Welsh Corgi

25. Chesapeake Bay Retriever
26. Chihuahua
27. Chinook
28. Chow Chow
29. Cocker Spaniel (American)
30. Collie
31. Dachshund
32. Dalmatian
33. Dandie Dinmont Terrier
34. Doberman Pinscher
35. English Bulldog
36. English Cocker Spaniel
37. English Setter
38. English Springer Spaniel
39. Flat−Coated Retriever
40. French Bulldog
41. German Shepherd Dog
42. German Shorthaired Pointer
43. Giant Schnauzer
44. Golden Retriever
45. Great Dane
46. Great Pyrenees
47. Greyhound
48. Ibizan Hound

49. Irish Water Spaniel
50. Irish Wolfhound
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52. Jack Russell Terrier
53. Keeshond
54. Labrador Retriever
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58. Mastiff (English)
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64. Norwich Terrier
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89. Toy Poodle
90. Weimaraner
91. West Highland White Terrier
92. Whippet
93. Yorkshire Terrier
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