63 research outputs found

    Symptoms of Infarction in Women: Is There a Real Difference Compared to Men? A Systematic Review of the Literature with Meta-Analysis

    Get PDF
    (1) Context: The management of acute coronary syndrome (ACS) is based on a rapid diagnosis. The aim of this study was to focus on the ACS symptoms differences according to gender, in order to contribute to the improvement of knowledge regarding the clinical presentation in women. (2) Methods: We searched for relevant literature in two electronic databases, and analyzed the symptom presentation for patients with suspected ACS. Fifteen prospective studies were included, with a total sample size of 10,730. (3) Results: During a suspected ACS, women present more dyspnea, arm pain, nausea and vomiting, fatigue, palpitations and pain at the shoulder than men, with RR (95%CI) of 1.13 [1.10; 1.17], 1.30 [1.05; 1.59], 1,40 [1.26; 1.56], 1.08 [1.01; 1.16], 1.67 [1.49; 1.86], 1.78 [1.02; 3.13], respectively. They are older by (95%CI) 4.15 [2.28; 6.03] years compared to men. The results are consistent in the analysis of the ACS confirmed subgroup. (4) Conclusions: We have shown that there is a gender-based symptomatic difference and a female presentation for ACS. The "typical" or "atypical" semiology of ACS symptoms should no longer be used

    C11orf70 Mutations Disrupting the Intraflagellar Transport-Dependent Assembly of Multiple Axonemal Dyneins Cause Primary Ciliary Dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD

    Comparison of Short- and Long-Term Mortality in Patients with or without Cancer Admitted to the ICU for Septic Shock: A Retrospective Observational Study

    No full text
    Introduction: Cancer patients are at high risk of developing septic shock (SSh) and are increasingly admitted to ICU given their improved long-term prognosis. We, therefore, compared the prognosis of cancer and non-cancer patients with SSh. Methods: We conducted a monocentric, retrospective cohort study (2013–2019) on patients admitted to ICU for SSh. We compared the clinical characteristics and management and studied short- and long-term mortality with ICU and in-hospital mortality and 1-year survival according to cancer status. Results: We analyzed 239 ICU stays in 210 patients, 59.5% of whom were men (n = 125), with a median age of 66.5 (IQR 56.3–77.0). Of the 121 cancer patients (57.6% of all patients), 70 had solid tumors (33.3%), and 51 had hematological malignancies (24.3%). When comparing ICU stays of patients with versus without cancer (n = 148 vs. n = 91 stays, respectively), mortality reached 30.4% (n = 45) vs. 30.0% (n = 27) in the ICU (p = 0.95), and 41.6% (n = 59) vs. 35.6% (n = 32) in hospital (p = 0.36), respectively. ICU length of stay (LOS) was 5.0 (2.0–11.3) vs. 6.0 (3.0–15.0) days (p = 0.27), whereas in-hospital LOS was 25.5 (13.8–42.0) vs. 19.5 (10.8–41.0) days (p = 0.33). Upon multivariate analysis, renal replacement therapy (OR = 2.29, CI95%: 1.06–4.93, p = 0.03), disseminated intravascular coagulation (OR = 5.89, CI95%: 2.49–13.92, p < 0.01), and mechanical ventilation (OR = 7.85, CI95%: 2.90–21.20, p < 0.01) were associated with ICU mortality, whereas malignancy, hematological, or solid tumors were not (OR = 1.41, CI95%: 0.65–3.04; p = 0.38). Similarly, overall cancer status was not associated with in-hospital mortality (OR = 1.99, CI95%: 0.98–4.03, p = 0.06); however, solid cancers were associated with increased in-hospital mortality (OR = 2.52, CI95%: 1.12–5.67, p = 0.03). Lastly, mortality was not significantly different at 365-day follow-up between patients with and without cancer. Conclusions: In-hospital and ICU mortality, as well as LOS, were not different in SSh patients with and without cancer, suggesting that malignancies should no longer be considered a barrier to ICU admission

    Study of the CEP90-FOPNL and OFD1 complex in the basal body anchoring process

    No full text
    Les centrioles sont des structures cellulaires très conservées au cours de l’évolution. Ils sont organisés en symétrie 9 de triplets de microtubules. Le centrosome est le principal centre organisateur des microtubules et est nécessaire pour assurer des processus fondamentaux tels que la division et la polarité cellulaire. Lorsque que les conditions le permettent, le centriole père est capable de migrer et de s’ancrer à une membrane cellulaire pour former un cil. Le processus d’ancrage fait intervenir la partie distale du centriole père et notamment les appendices distaux. Au cours de la ciliogenèse, le centriole père subit une maturation et est appelé corps basal. Les appendices distaux forment les fibres de transition et déterminent la partie antérieure de la zone de transition qui joue un rôle de filtre nécessaire pour assurer la spécificité de la composition protéique et lipidique du cil. Au cours de l’évolution, la structure des cils est très conservée malgré l’observation de variations structurales entre différents organismes. Les cils jouent un rôle essentiel dans la signalisation et/ou de motilité. Par conséquence, chez l’homme, les défauts ciliaires sont à l’origine de maladies génétiques rares causant des syndromes poly-malformatifs regroupés sous le nom de ciliopathies. Au cours de ma thèse je me suis intéressé à identifier de nouveaux acteurs de l’ancrage des corps basaux en utilisant deux modèles complémentaires : des cultures de cellules humaines et l’organisme unicellulaire Paramecium Tetraurelia. Les corps basaux de la paramécie sont tous ancrés à la membrane plasmique sans passer par une étape centriolaire. Par conséquence chez cet organisme des défauts d’ancrage se caractérisent par la présence de corps basaux non ancrés dans le cytoplasme et facilement observables. Grâce à ce modèle les membres de l’équipe ont déjà caractérisés l’implication de 4 protéines dans l’ancrage des corps basaux : Cen2, OFD1, FOPNL et Cen3. Chez l’homme FOPNL, OFD1 et MNR forment un complexe nécessaire à la ciliogenèse, MNR et OFD1 étant toutes les deux impliquées dans des ciliopathies. J’ai recherché de nouveaux acteurs de l’ancrage des corps basaux en réalisant une technique d’identification par proximité, la BioID, en utilisant FOPNL comme appât. Nous avons déterminé que la protéine CEP90 est localisée dans l’environnement proche de FOPNL. Dans les cellules humaines, CEP90 partage la même localisation que FOPNL et OFD1 aux centrioles et aux satellites centriolaires et est aussi impliquée dans des ciliopathies. En utilisant une technique d’imagerie super-résolutive appelée microscopie à expansion, nous montrons que CEP90, FOPNL et OFD1 sont organisées en symétrie 9 en partie distale des centrioles et des corps basaux, proche de la protéine des appendices distaux CEP83. Le recrutement aux centrioles et corps basaux de CEP90, FOPNL et OFD1 est interdépendant et l’absence d’une de ces protéines entraine des défauts d’ancrage des corps basaux chez la paramécie. Chez les mammifère, la déplétion de FOPNL ou CEP90 affecte le recrutement de 3 protéines de appendices distaux (CEP83, CEP89 et CEP164) impliquées dans l’ancrage des corps basaux. Dans les cellules de mammifères, nous avons démontré que CEP90 et OFD1 sont recrutées très précocement sur les procentrioles au cours de la duplication et que la co-surexpression de MNR et CEP90 est suffisante pour recruter OFD1 et CEP83 le long du réseau de microtubules. La surexpression de CEP90 seule forme des agrégats capables de recruter OFD1 et CEP83. L’ensemble de ces résultats apporte un éclairage nouveau sur le processus d’ancrage des corps basaux. Le recrutement précoce du complexe CEP90, FOPNL et OFD1 nous a conduit à proposer que ce complexe permettait de spécifier la future localisation des appendices distaux. Enfin, dans cette thèse nous montrons que le complexe CEP90, FOPNL et OFD1 est fonctionnellement conservé chez la paramécie et les cellules de mammifères.Centrioles are highly conserved structures throughout evolution. They are organized in a 9-fold symmetry of microtubule triplets. In animals, centrioles are building blocks of the centrosome. The centrosome is the main organizing center of microtubules and is necessary for fundamental processes such as cell division and polarity. Under specific conditions, the mother centriole is able to migrate and anchor to a cell membrane to build a cilium. The anchoring process involves the distal extremity of the mother centriole and in particular the distal appendages. During ciliogenesis, the mother centriole matures and is called the basal body. The distal appendages mature in transition fibers and determine the proximal extremity of the transition zone, which acts as a filter to ensure the specificity of the protein and lipid composition of the cilium. During evolution, the structure of cilia is highly conserved, despite variations between organisms have been observed. Cilia play an essential role in signaling and / or motility. Consequently, in humans, rare genetic diseases originate from ciliary defects causing poly-malformation syndromes called ciliopathies. During my thesis, I was interested in identifying new actors of basal bodies anchoring using two complementary models: human cell cultures and Paramecium Tetraurelia. The basal bodies in Paramecium are all anchored to the plasma membrane and did not display any centriolar stages. Consequently, in this organism, anchoring defects are characterized by the presence of easily observable non-anchored basal bodies. Using this model, members of the team have already characterized the involvement of 4 proteins in the basal bodies anchoring: Cen2, OFD1, FOPNL and Cen3. In human, FOPNL, OFD1 and MNR form a complex involved in ciliogenesis, MNR and OFD1 both being involved in ciliopathies. To The search of novel actors involved in the basal body anchoring process has been achieved using BioID, a proximity identification technic, using FOPNL as a bait. We determined that the CEP90 protein is localized in the close environment of FOPNL. In human cells, CEP90 shares the same localization as FOPNL and OFD1 at centrioles and centriolar satellites and is also involved in ciliopathy. Using a super-resolution imaging technique called expansion microscopy, we show that CEP90, FOPNL, and OFD1 are organized in 9-fold symmetry at the distal part of the centrioles and basal bodies, close to the distal appendage protein CEP83. The recruitment of CEP90, FOPNL and OFD1 at basal bodies is interdependent and the absence of one of these proteins leads to basal body anchoring defects in Paramecium. In mammals, the depletion of FOPNL or CEP90 affects the recruitment of 3 distal appendage proteins (CEP83, CEP89 and CEP164). In mammalian cells, we demonstrated that CEP90 and OFD1 are recruited during duplication on early born procentrioles and that the co-overexpression of MNR and CEP90 is sufficient to recruit OFD1 and CEP83 along the microtubule network. Altogether these results shed new light on the basal body anchoring process. In addition, the early recruitment of CEP90, FOPNL and OFD1 complex on newly born procentrioles led us to propose that the localization of the complex specify the future location of the distal appendages. Finally, in this thesis, we show that CEP90, FOPNL and OFD1 is functionally conserved from Paramecium to mammalian cells despite it is absent in some phyla such as Drosophila and C.elegans

    Etude du complexe CEP90-FOPNL et OFD1 dans le processus d’ancrage des corps basaux

    No full text
    Centrioles are highly conserved structures throughout evolution. They are organized in a 9-fold symmetry of microtubule triplets. In animals, centrioles are building blocks of the centrosome. The centrosome is the main organizing center of microtubules and is necessary for fundamental processes such as cell division and polarity. Under specific conditions, the mother centriole is able to migrate and anchor to a cell membrane to build a cilium. The anchoring process involves the distal extremity of the mother centriole and in particular the distal appendages. During ciliogenesis, the mother centriole matures and is called the basal body. The distal appendages mature in transition fibers and determine the proximal extremity of the transition zone, which acts as a filter to ensure the specificity of the protein and lipid composition of the cilium. During evolution, the structure of cilia is highly conserved, despite variations between organisms have been observed. Cilia play an essential role in signaling and / or motility. Consequently, in humans, rare genetic diseases originate from ciliary defects causing poly-malformation syndromes called ciliopathies. During my thesis, I was interested in identifying new actors of basal bodies anchoring using two complementary models: human cell cultures and Paramecium Tetraurelia. The basal bodies in Paramecium are all anchored to the plasma membrane and did not display any centriolar stages. Consequently, in this organism, anchoring defects are characterized by the presence of easily observable non-anchored basal bodies. Using this model, members of the team have already characterized the involvement of 4 proteins in the basal bodies anchoring: Cen2, OFD1, FOPNL and Cen3. In human, FOPNL, OFD1 and MNR form a complex involved in ciliogenesis, MNR and OFD1 both being involved in ciliopathies. To The search of novel actors involved in the basal body anchoring process has been achieved using BioID, a proximity identification technic, using FOPNL as a bait. We determined that the CEP90 protein is localized in the close environment of FOPNL. In human cells, CEP90 shares the same localization as FOPNL and OFD1 at centrioles and centriolar satellites and is also involved in ciliopathy. Using a super-resolution imaging technique called expansion microscopy, we show that CEP90, FOPNL, and OFD1 are organized in 9-fold symmetry at the distal part of the centrioles and basal bodies, close to the distal appendage protein CEP83. The recruitment of CEP90, FOPNL and OFD1 at basal bodies is interdependent and the absence of one of these proteins leads to basal body anchoring defects in Paramecium. In mammals, the depletion of FOPNL or CEP90 affects the recruitment of 3 distal appendage proteins (CEP83, CEP89 and CEP164). In mammalian cells, we demonstrated that CEP90 and OFD1 are recruited during duplication on early born procentrioles and that the co-overexpression of MNR and CEP90 is sufficient to recruit OFD1 and CEP83 along the microtubule network. Altogether these results shed new light on the basal body anchoring process. In addition, the early recruitment of CEP90, FOPNL and OFD1 complex on newly born procentrioles led us to propose that the localization of the complex specify the future location of the distal appendages. Finally, in this thesis, we show that CEP90, FOPNL and OFD1 is functionally conserved from Paramecium to mammalian cells despite it is absent in some phyla such as Drosophila and C.elegans.Les centrioles sont des structures cellulaires très conservées au cours de l’évolution. Ils sont organisés en symétrie 9 de triplets de microtubules. Le centrosome est le principal centre organisateur des microtubules et est nécessaire pour assurer des processus fondamentaux tels que la division et la polarité cellulaire. Lorsque que les conditions le permettent, le centriole père est capable de migrer et de s’ancrer à une membrane cellulaire pour former un cil. Le processus d’ancrage fait intervenir la partie distale du centriole père et notamment les appendices distaux. Au cours de la ciliogenèse, le centriole père subit une maturation et est appelé corps basal. Les appendices distaux forment les fibres de transition et déterminent la partie antérieure de la zone de transition qui joue un rôle de filtre nécessaire pour assurer la spécificité de la composition protéique et lipidique du cil. Au cours de l’évolution, la structure des cils est très conservée malgré l’observation de variations structurales entre différents organismes. Les cils jouent un rôle essentiel dans la signalisation et/ou de motilité. Par conséquence, chez l’homme, les défauts ciliaires sont à l’origine de maladies génétiques rares causant des syndromes poly-malformatifs regroupés sous le nom de ciliopathies. Au cours de ma thèse je me suis intéressé à identifier de nouveaux acteurs de l’ancrage des corps basaux en utilisant deux modèles complémentaires : des cultures de cellules humaines et l’organisme unicellulaire Paramecium Tetraurelia. Les corps basaux de la paramécie sont tous ancrés à la membrane plasmique sans passer par une étape centriolaire. Par conséquence chez cet organisme des défauts d’ancrage se caractérisent par la présence de corps basaux non ancrés dans le cytoplasme et facilement observables. Grâce à ce modèle les membres de l’équipe ont déjà caractérisés l’implication de 4 protéines dans l’ancrage des corps basaux : Cen2, OFD1, FOPNL et Cen3. Chez l’homme FOPNL, OFD1 et MNR forment un complexe nécessaire à la ciliogenèse, MNR et OFD1 étant toutes les deux impliquées dans des ciliopathies. J’ai recherché de nouveaux acteurs de l’ancrage des corps basaux en réalisant une technique d’identification par proximité, la BioID, en utilisant FOPNL comme appât. Nous avons déterminé que la protéine CEP90 est localisée dans l’environnement proche de FOPNL. Dans les cellules humaines, CEP90 partage la même localisation que FOPNL et OFD1 aux centrioles et aux satellites centriolaires et est aussi impliquée dans des ciliopathies. En utilisant une technique d’imagerie super-résolutive appelée microscopie à expansion, nous montrons que CEP90, FOPNL et OFD1 sont organisées en symétrie 9 en partie distale des centrioles et des corps basaux, proche de la protéine des appendices distaux CEP83. Le recrutement aux centrioles et corps basaux de CEP90, FOPNL et OFD1 est interdépendant et l’absence d’une de ces protéines entraine des défauts d’ancrage des corps basaux chez la paramécie. Chez les mammifère, la déplétion de FOPNL ou CEP90 affecte le recrutement de 3 protéines de appendices distaux (CEP83, CEP89 et CEP164) impliquées dans l’ancrage des corps basaux. Dans les cellules de mammifères, nous avons démontré que CEP90 et OFD1 sont recrutées très précocement sur les procentrioles au cours de la duplication et que la co-surexpression de MNR et CEP90 est suffisante pour recruter OFD1 et CEP83 le long du réseau de microtubules. La surexpression de CEP90 seule forme des agrégats capables de recruter OFD1 et CEP83. L’ensemble de ces résultats apporte un éclairage nouveau sur le processus d’ancrage des corps basaux. Le recrutement précoce du complexe CEP90, FOPNL et OFD1 nous a conduit à proposer que ce complexe permettait de spécifier la future localisation des appendices distaux. Enfin, dans cette thèse nous montrons que le complexe CEP90, FOPNL et OFD1 est fonctionnellement conservé chez la paramécie et les cellules de mammifères

    Etude du complexe CEP90-FOPNL et OFD1 dans le processus d’ancrage des corps basaux

    No full text
    Centrioles are highly conserved structures throughout evolution. They are organized in a 9-fold symmetry of microtubule triplets. In animals, centrioles are building blocks of the centrosome. The centrosome is the main organizing center of microtubules and is necessary for fundamental processes such as cell division and polarity. Under specific conditions, the mother centriole is able to migrate and anchor to a cell membrane to build a cilium. The anchoring process involves the distal extremity of the mother centriole and in particular the distal appendages. During ciliogenesis, the mother centriole matures and is called the basal body. The distal appendages mature in transition fibers and determine the proximal extremity of the transition zone, which acts as a filter to ensure the specificity of the protein and lipid composition of the cilium. During evolution, the structure of cilia is highly conserved, despite variations between organisms have been observed. Cilia play an essential role in signaling and / or motility. Consequently, in humans, rare genetic diseases originate from ciliary defects causing poly-malformation syndromes called ciliopathies. During my thesis, I was interested in identifying new actors of basal bodies anchoring using two complementary models: human cell cultures and Paramecium Tetraurelia. The basal bodies in Paramecium are all anchored to the plasma membrane and did not display any centriolar stages. Consequently, in this organism, anchoring defects are characterized by the presence of easily observable non-anchored basal bodies. Using this model, members of the team have already characterized the involvement of 4 proteins in the basal bodies anchoring: Cen2, OFD1, FOPNL and Cen3. In human, FOPNL, OFD1 and MNR form a complex involved in ciliogenesis, MNR and OFD1 both being involved in ciliopathies. To The search of novel actors involved in the basal body anchoring process has been achieved using BioID, a proximity identification technic, using FOPNL as a bait. We determined that the CEP90 protein is localized in the close environment of FOPNL. In human cells, CEP90 shares the same localization as FOPNL and OFD1 at centrioles and centriolar satellites and is also involved in ciliopathy. Using a super-resolution imaging technique called expansion microscopy, we show that CEP90, FOPNL, and OFD1 are organized in 9-fold symmetry at the distal part of the centrioles and basal bodies, close to the distal appendage protein CEP83. The recruitment of CEP90, FOPNL and OFD1 at basal bodies is interdependent and the absence of one of these proteins leads to basal body anchoring defects in Paramecium. In mammals, the depletion of FOPNL or CEP90 affects the recruitment of 3 distal appendage proteins (CEP83, CEP89 and CEP164). In mammalian cells, we demonstrated that CEP90 and OFD1 are recruited during duplication on early born procentrioles and that the co-overexpression of MNR and CEP90 is sufficient to recruit OFD1 and CEP83 along the microtubule network. Altogether these results shed new light on the basal body anchoring process. In addition, the early recruitment of CEP90, FOPNL and OFD1 complex on newly born procentrioles led us to propose that the localization of the complex specify the future location of the distal appendages. Finally, in this thesis, we show that CEP90, FOPNL and OFD1 is functionally conserved from Paramecium to mammalian cells despite it is absent in some phyla such as Drosophila and C.elegans.Les centrioles sont des structures cellulaires très conservées au cours de l’évolution. Ils sont organisés en symétrie 9 de triplets de microtubules. Le centrosome est le principal centre organisateur des microtubules et est nécessaire pour assurer des processus fondamentaux tels que la division et la polarité cellulaire. Lorsque que les conditions le permettent, le centriole père est capable de migrer et de s’ancrer à une membrane cellulaire pour former un cil. Le processus d’ancrage fait intervenir la partie distale du centriole père et notamment les appendices distaux. Au cours de la ciliogenèse, le centriole père subit une maturation et est appelé corps basal. Les appendices distaux forment les fibres de transition et déterminent la partie antérieure de la zone de transition qui joue un rôle de filtre nécessaire pour assurer la spécificité de la composition protéique et lipidique du cil. Au cours de l’évolution, la structure des cils est très conservée malgré l’observation de variations structurales entre différents organismes. Les cils jouent un rôle essentiel dans la signalisation et/ou de motilité. Par conséquence, chez l’homme, les défauts ciliaires sont à l’origine de maladies génétiques rares causant des syndromes poly-malformatifs regroupés sous le nom de ciliopathies. Au cours de ma thèse je me suis intéressé à identifier de nouveaux acteurs de l’ancrage des corps basaux en utilisant deux modèles complémentaires : des cultures de cellules humaines et l’organisme unicellulaire Paramecium Tetraurelia. Les corps basaux de la paramécie sont tous ancrés à la membrane plasmique sans passer par une étape centriolaire. Par conséquence chez cet organisme des défauts d’ancrage se caractérisent par la présence de corps basaux non ancrés dans le cytoplasme et facilement observables. Grâce à ce modèle les membres de l’équipe ont déjà caractérisés l’implication de 4 protéines dans l’ancrage des corps basaux : Cen2, OFD1, FOPNL et Cen3. Chez l’homme FOPNL, OFD1 et MNR forment un complexe nécessaire à la ciliogenèse, MNR et OFD1 étant toutes les deux impliquées dans des ciliopathies. J’ai recherché de nouveaux acteurs de l’ancrage des corps basaux en réalisant une technique d’identification par proximité, la BioID, en utilisant FOPNL comme appât. Nous avons déterminé que la protéine CEP90 est localisée dans l’environnement proche de FOPNL. Dans les cellules humaines, CEP90 partage la même localisation que FOPNL et OFD1 aux centrioles et aux satellites centriolaires et est aussi impliquée dans des ciliopathies. En utilisant une technique d’imagerie super-résolutive appelée microscopie à expansion, nous montrons que CEP90, FOPNL et OFD1 sont organisées en symétrie 9 en partie distale des centrioles et des corps basaux, proche de la protéine des appendices distaux CEP83. Le recrutement aux centrioles et corps basaux de CEP90, FOPNL et OFD1 est interdépendant et l’absence d’une de ces protéines entraine des défauts d’ancrage des corps basaux chez la paramécie. Chez les mammifère, la déplétion de FOPNL ou CEP90 affecte le recrutement de 3 protéines de appendices distaux (CEP83, CEP89 et CEP164) impliquées dans l’ancrage des corps basaux. Dans les cellules de mammifères, nous avons démontré que CEP90 et OFD1 sont recrutées très précocement sur les procentrioles au cours de la duplication et que la co-surexpression de MNR et CEP90 est suffisante pour recruter OFD1 et CEP83 le long du réseau de microtubules. La surexpression de CEP90 seule forme des agrégats capables de recruter OFD1 et CEP83. L’ensemble de ces résultats apporte un éclairage nouveau sur le processus d’ancrage des corps basaux. Le recrutement précoce du complexe CEP90, FOPNL et OFD1 nous a conduit à proposer que ce complexe permettait de spécifier la future localisation des appendices distaux. Enfin, dans cette thèse nous montrons que le complexe CEP90, FOPNL et OFD1 est fonctionnellement conservé chez la paramécie et les cellules de mammifères

    La paramécie, un organisme modèle pour étudier la ciliogenèse et les maladies ciliaires

    No full text
    International audienceLe cil est une extension présente à la surface de la quasi-totalité des cellules eucaryotes. Conservé au cours de l’évolution, il assure des fonctions sensorielles et/ou motiles. Chez l’homme, le dysfonctionnement ciliaire est à l’origine de différentes maladies regroupées sous le nom de ciliopathies. Grâce à sa ciliature complexe, la paramécie constitue un modèle de choix pour étudier non seulement la structure, l’assemblage et les fonctions des cils, mais aussi pour valider les mutations de gènes associées à ces ciliopathies

    Acute appendicitis as an unexpected cause of inverted takotsubo cardiomyopathy

    No full text
    Takotsubo cardiomyopathy (TTC), also known as transient left ventricular ballooning syndrome, is a stress-induced-cardiomyopathy. It is precipitated by emotional or physical stress and is characterized by normal coronary arteries and transient regional wall motion abnormalities. Variants of TTC include apical ballooning syndrome and, less commonly, mid, basal, and local variants. New onset heart failure or acute coronary syndromes are a common presentation of TTC. Arrhythmias such as VT, VF, and torsade de pointes have also been reported. We present here a 42-year-old man with an inverted Takotsubo variant with pulmonary edema and transient accelerated idioventricular rhythm. He was initially admitted in the Emergency Department for acute and non-complicated appendicitis. Coronary angiogram showed normal coronary arteries and left ventriculography revealed a reverse variant of TTC. The patient had completely recovered. Myocarditis was ruled out by cardiac magnetic resonance imaging

    Le guidon dans le bidon

    No full text
    • …
    corecore