40 research outputs found

    Biallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy

    Full text link
    ObjectiveMonoallelic de novo gain‐of‐function variants in the voltage‐gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss‐of‐function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss‐of‐function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild‐type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A.MethodsWe identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells.ResultsWe identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss‐of‐function, and one allele with altered biophysical properties consistent with partial loss‐of‐function.SignificanceThese studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/1/epi16371_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/2/epi16371.pd

    A Recurrent Mutation in KCNA2 as a Novel Cause of Hereditary Spastic Paraplegia and Ataxia

    Get PDF
    The hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders with over 50 known causative genes. We identified a recurrent mutation in KCNA2 (c.881G>A, p.R294H), encoding the voltage-gated K+-channel, K(V)1.2, in two unrelated families with HSP, intellectual disability (ID), and ataxia. Follow-up analysis of >2,000 patients with various neurological phenotypes identified a de novo p.R294H mutation in a proband with ataxia and ID. Two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing mutant KV1.2 channels showed loss of function with a dominant-negative effect. Our findings highlight the phenotypic spectrum of a recurrent KCNA2 mutation, implicating ion channel dysfunction as a novel HSP disease mechanism.Peer reviewe

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Lernen an Stationen - Chemie: Eigenschaften von NaCl

    No full text

    Hayer et al ALSP NfL Supplementary Table S1

    No full text
    Demographic data of ALSP patients, mutation carriers, MS patients, and controls
    corecore