739 research outputs found

    RAPD PCR Confirms Absence of Genetic Variation Between Insecticide Resistant Variants of the Green Peach Aphid, \u3ci\u3eMyzus Persicae\u3c/i\u3e (Homoptera: Aphididae)

    Get PDF
    Previous allozyme analysis has revealed an apparent absence of enzyme variability in the green peach aphid, Myzus persicae (Sulzer). We are interested in determining the genetic relatedness of individual M persicae clones carrying different numbers of esterase 4 (E4) gene copies conferring resistance to insecticides, in order to determine how many times and in what geographic locations resistance via gene duplication may have evolved. We have therefore extended the analysis of genetic variability in M. persicae to the DNA level using random amplification of polymorphic DNA (RAPD) with single 10 mer oligonucleotide primers. Here we report a lack of variability be- tween resistant clones in Wisconsin populations even at the DNA level Further, \u27fast\u27 E4 (FE4) variants appear to be absent from Wisconsin populations, despite FE4 variants of moderate resistance (Rl) being the most common clones in the United Kingdom. These results suggest that resistance in M. persicae may have evolved a very few times and that North American populations may differ from those in Europe by founder effects

    Optical Modelling and Phylogenetic Analysis Provide Clues to the Likely Function of Corneal Nipple Arrays in Butterflies and Moths.

    Get PDF
    This is the final version. Available from MDPI via the DOI in this recordThe lenses in compound eyes of butterflies and moths contain an array of nipple-shaped protuberances, or corneal nipples. Previous work has suggested that these nipples increase light transmittance and reduce the eye glare of moths that are inactive during the day. This work builds on but goes further than earlier analyses suggesting a functional role for these structures including, for the first time, an explanation of why moths are attracted to UV light. Using a phylogenetic approach and 3D optical modelling, we show empirically that these arrays have been independently lost from different groups of moths and butterflies and vary within families. We find differences in the shape of nipples between nocturnal and diurnal species, and that anti-glow reflectance levels are different at different wave-lengths, a result thereby contradicting the currently accepted theory of eye glow for predator avoidance. We find that there is reduced reflectance, and hence greater photon absorption, at UV light, which is probably a reason why moths are attracted to UV. We note that the effective refractive index at the end of the nipples is very close to the refractive index of water, allowing almost all the species with nipples to see without distortion when the eye is partially or completely wet and providing the potential to keep eyes dry. These observations provide a functional explanation for these arrays. Of special interest is the finding that their repeated and independent loss across lepidopteran phylogeny is inconsistent with the explanation that they are being lost in the 'higher', more active butterflies

    Laminin enhances the growth of human neural stem cells in defined culture media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. <it>In vivo</it>, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth.</p> <p>Results</p> <p>To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner.</p> <p>Conclusion</p> <p>The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.</p

    Light pollution is associated with earlier tree budburst across the United Kingdom

    Get PDF
    ArticleThe ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.R.S.-Y. was supported by a GWR-ESF Studentship awarded by the University of Exeter to R.H.f.-C. The study was also founded by a BBSRC grant to R.H.f-C

    What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Nuptial gifts produced by males and transferred to females during copulation are common in insects. Yet, their precise composition and subsequent physiological effects on the female recipient remain unresolved. Male decorated crickets Gryllodes sigillatus transfer a spermatophore to the female during copulation that is composed of an edible gift, the spermatophylax, and the ampulla that contains the ejaculate. After transfer of the spermatophore, the female detaches the spermatophylax and starts to eat it while sperm from the ampulla are evacuated into the female reproductive tract. When the female has finished consuming the spermatophylax, she detaches the ampulla and terminates sperm transfer. Hence, one simple function of the spermatophylax is to ensure complete sperm transfer by distracting the female from prematurely removing the ampulla. However, the majority of orally active components of the spermatophylax itself and their subsequent effects on female behavior have not been identified. Here, we report the first analysis of the proteome of the G. sigillatus spermatophylax and the transcriptome of the male accessory glands that make these proteins. The accessory gland transcriptome was assembled into 17,691 transcripts whilst about 30 proteins were detected within the mature spermatophylax itself. Of these 30 proteins, 18 were encoded by accessory gland encoded messages. Most spermatophylax proteins show no similarity to proteins with known biological functions and are therefore largely novel. A spermatophylax protein shows similarity to protease inhibitors suggesting that it may protect the biologically active components from digestion within the gut of the female recipient. Another protein shares similarity with previously characterized insect polypeptide growth factors suggesting that it may play a role in altering female reproductive physiology concurrent with fertilization. Characterization of the spermatophylax proteome provides the first step in identifying the genes encoding these proteins in males and in understanding their biological functions in the female recipient.Max Planck GesellschaftNational Science FoundationBBSRRoyal Societ

    Molecular evolution of glycoside hydrolase genes in the Western corn rootworm (Diabrotica virgifera virgifera).

    Get PDF
    Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tCellulose is an important nutritional resource for a number of insect herbivores. Digestion of cellulose and other polysaccharides in plant-based diets requires several types of enzymes including a number of glycoside hydrolase (GH) families. In a previous study, we showed that a single GH45 gene is present in the midgut tissue of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). However, the presence of multiple enzymes was also suggested by the lack of a significant biological response when the expression of the gene was silenced by RNA interference. In order to clarify the repertoire of cellulose-degrading enzymes and related GH family proteins in D. v. virgifera, we performed next-generation sequencing and assembled transcriptomes from the tissue of three different developmental stages (eggs, neonates, and third instar larvae). Results of this study revealed the presence of seventy-eight genes that potentially encode GH enzymes belonging to eight families (GH45, GH48, GH28, GH16, GH31, GH27, GH5, and GH1). The numbers of GH45 and GH28 genes identified in D. v. virgifera are among the largest in insects where these genes have been identified. Three GH family genes (GH45, GH48, and GH28) are found almost exclusively in two coleopteran superfamilies (Chrysomeloidea and Curculionoidea) among insects, indicating the possibility of their acquisitions by horizontal gene transfer rather than simple vertical transmission from ancestral lineages of insects. Acquisition of GH genes by horizontal gene transfers and subsequent lineage-specific GH gene expansion appear to have played important roles for phytophagous beetles in specializing on particular groups of host plants and in the case of D. v. virgifera, its close association with maize.Consortium for Plant Biotechnology ResearchPioneer Hi-Bred Internationa

    VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis

    Get PDF
    Several factors are known to enhance adult hippocampal neurogenesis but a factor capable of inducing a long-lasting neurogenic enhancement that attenuates age-related neurogenic decay has not been described. Here, we studied hippocampal neurogenesis following conditional VEGF induction in the adult brain and showed that a short episode of VEGF exposure withdrawn shortly after the generation of durable new vessels (but not under conditions where newly made vessels failed to persist) is sufficient for neurogenesis to proceed at a markedly elevated level for many months later. Continual neurogenic increase over several months was not accompanied by accelerated exhaustion of the neuronal stem cell (NSC) reserve, thereby allowing neurogenesis to proceed at a markedly elevated rate also in old mice. Neurogenic enhancement by VEGF preconditioning was, in part, attributed to rescue of age-related NSC quiescence. Remarkably, VEGF caused extensive NSC remodelling manifested in transition of the enigmatic NSC terminal arbor onto long cytoplasmic processes engaging with and spreading over even remote blood vessels, a configuration reminiscent of early postnatal "juvenile" NSCs. Together, these findings suggest that VEGF preconditioning might be harnessed for long-term neurogenic enhancement despite continued exposure to an "aged" systemic milieu

    Hybrid effects in field populations of the African monarch butterfly, Danaus chrysippus (L.) (Lepidoptera: Nymphalidae)

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordHeterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African Monarch or Queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the east African contact zone of this fascinating butterfly

    Comparative genomics of the mimicry switch in Papilio dardanus

    Get PDF
    The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus

    Fly-Tox: A panel of transgenic flies expressing pest and pollinator cytochrome P450s

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.European Research Council (ERC)European Union's Horizon 2020 research and innovation programmeBiotechnology and Biological Sciences Research Council (BBSRC
    • …
    corecore