47 research outputs found

    A novel single amino acid deletion impairs fibronectin function and causes familial glomerulopathy with fibronectin deposits: case report of a family

    Full text link
    Abstract Background Glomerulopathy with fibronectin deposits is an autosomal dominant disease associated with proteinuria, hematuria, hypertension and renal function decline. Forty percent of the cases are caused by mutations in FN1, the gene that encodes fibronectin. Case presentation This report describes two cases of Glomerulopathy with fibronectin deposits, involving a 47-year-old father and a 14-year-old son. The renal biopsies showed glomeruli with endocapillary hypercellularity and large amounts of mesangial and subendothelial eosinophilic deposits. Immunohistochemistry for fibronectin was markedly positive. Whole exome sequencing identified a novel FN1 mutation that leads to an amino-acid deletion in both patients (Ile1988del), a variant that required primary amino-acid sequence analysis for assessment of pathogenicity. Our primary sequence analyses revealed that Ile1988 is very highly conserved among relative sequences and is positioned in a C-terminal FN3 domain containing heparin- and fibulin-1-binding sites. This mutation was predicted as deleterious and molecular mechanics simulations support that it can change the tertiary structure and affect the complex folding and its molecular functionality. Conclusion The current report not only documents the occurrence of two GFND cases in an affected family and deeply characterizes its anatomopathological features but also identifies a novel pathogenic mutation in FN1, analyzes its structural and functional implications, and supports its pathogenicity.https://deepblue.lib.umich.edu/bitstream/2027.42/152212/1/12882_2019_Article_1507.pd

    Dilatação dos confins: caminhos, vilas e cidades na formação da Capitania de São Paulo (1532-1822)

    Get PDF
    Este ensaio analisa a formação da rede urbana das capitanias de São Vicente e Santo Amaro, depois unidas na Capitania de São Paulo. Discute o processo de apropriação do sertão, a pulsação e dilatação dos confins ao sabor dos deslocamentos humanos e de interesses políticos. Interpreta o papel de capelas, freguesias, vilas e cidades no controle e produção de territórios metropolitanos em solos ultramarinos.This essay analyzes the development of urban networks in the Captaincies of São Vicente and Santo Amaro, later merged into the Captaincy of São Paulo. It discusses the process of appropriation of the sertão (backcountry), the commotion and expansion beyond the confines to the tune of population movements and political interests. The paper also interprets the role of chapels, parishes, villages and towns in initiatives to create and control metropolitan areas on overseas soil

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Brazilian Consensus on Photoprotection

    Full text link

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics
    corecore