158 research outputs found

    Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1)

    Get PDF
    Three isoforms of a vesicular glutamate transporter (VGLUT1-3) have been identified. Of these, VGLUT1 is the major isoform of the cerebral cortex and hippocampus where it is selectively located on synaptic vesicles of excitatory glutamatergic terminals. Variations in VGLUT1 expression levels have a major impact on the efficacy of glutamate synaptic transmission. Given evidence linking alterations in glutamate neurotransmission to various neuropsychiatric disorders, we investigated the possible influence of a down-regulation of VGLUT1 transporter on anxiety, depressive-like behaviour and learning. The behavioural phenotype of VGLUT1 heterozygous mice (C57BL/6) was compared to WT littermates. Moreover, VGLUT1-3 expression, hippocampal excitatory terminal ultrastructure and neurochemical phenotype were analysed. VGLUT1 heterozygous mice displayed normal spontaneous locomotor activity, increased anxiety in the light-dark exploration test and depressive-like behaviour in the forced swimming test: no differences were shown in the elevated plus-maze model of anxiety. In the novel object recognition test, VGLUT1+/- mice showed normal short-term but impaired long-term memory. Spatial memory in the Morris water maze was unaffected. Western blot analysis confirmed that VGLUT1 heterozygotes expressed half the amount of transporter compared to WT. In addition, a reduction of the reserve pool of synaptic vesicles of hippocampal excitatory terminals and a 35-45 % reduction of GABA in the frontal cortex and the hippocampus were observed in the mutant mice. These observations suggest that a VGLUT1-mediated presynaptic alteration of the glutamatergic synapses, in specific brain regions, leads to a behavioural phenotype resembling certain aspects of psychiatric and cognitive disorders

    Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex

    Get PDF
    Major depression might originate from both environmental and genetic risk factors. The environmental chronic mild stress (CMS) model mimics some environmental factors contributing to human depression and induces anhedonia and helplessness. Mice heterozygous for the synaptic vesicle protein (SVP) vesicular glutamate transporter 1 (VGLUT1) have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, gene expression changes in the frontal cortex, common to stress and impaired glutamate function. Both VGLUT1+/- and CMS mice showed helpless and anhedonic-like behavior. Microarray studies in VGLUT1+/- mice revealed regulation of genes involved in apoptosis, neurogenesis, synaptic transmission, protein metabolic process or learning and memory. In addition, RT-PCR studies confirmed gene expression changes in several glutamate, GABA, dopamine and serotonin neurotransmitter receptors. On the other hand, CMS affected the regulation of 147 transcripts, some of them involved in response to stress and oxidoreductase activity. Interestingly, 52 genes were similarly regulated in both models. Specifically, a dowregulation in genes that promote cell proliferation (Anapc7), cell growth (CsnK1g1), cell survival (Hdac3), inhibition of apoptosis (Dido1) was observed. Genes linked to cytoskeleton (Hspg2, Invs), psychiatric disorders (Grin1, MapK12) or an antioxidant enzyme (Gpx2) were also downregulated. Moreover, genes that inhibit the MAPK pathways (Dusp14), stimulate oxidative metabolism (Eif4a2) and enhance glutamate transmission (Rab8b) were upregulated. We suggest that these genes could form part of the altered “molecular context” underlying depressive-like behaviour in animal models. The clinical relevance of these findings is discussed

    Increased vulnerability to depressive-like behaviour of mice with decreased expression of VGLUT1

    Get PDF
    Background: Many studies have linked depression to an increase in the excitatory-inhibitory ratio in the forebrain. Presynaptic alterations in a shared pathway of the glutamate/GABA cycle may account for this imbalance. Recent evidence suggests that decreased vesicular glutamate transporter 1 (VGLUT1) levels in the forebrain affects the glutamate/GABA cycle and induces helpless behaviour. Here we studied decreased VGLUT1 as a potencial factor enhancing a depressive-like phenotype in an animal model. Methods: Glutamate and GABA synthesis as well as oxidative metabolism were studied in heterozygous mice for the vesicular glutamate transporter 1 (VGLUT1+/-) and WT. Subsequently, the regulation of neurotransmitter levels, proteins involved in the glutamate/GABA cycle and behaviour by both genotype and chronic mild stress (CMS) was studied. Finally, the effect of chronic imipramine on VGLUT1 control and CMS mice was also studied. Results: VGLUT1+/- mice showed increased neuronal synthesis of glutamate, decreased cortical and hippocampal GABA, VGLUT1 and EAAT1, as well as helplessness and anhedonia. CMS induced an increase of glutamate and a decrease of GABA, VGAT and GAD65 in both areas and led to upregulation EAAT1 in the hippocampus. Moreover, CMS induced anhedonia, helplessness, anxiety and impaired recognition memory. VGLUT1+/- CMS mice showed a combined phenotype (genotype plus stress) and specific alterations, such as an upregulation of VGLUT2 and hyperlocomotion. Moreover, an increased vulnerability to anhedonia and helplessness reversible by chronic imipramine was shown. Conclusions: These studies highlight a crucial role for decreased VGLUT1 in the forebrain as a biological mediator of increased vulnerability to chronic mild stress

    Interactions between age, stress and insulin on cognition: implications for Alzheimer's disease

    Get PDF
    There is much interest in understanding the mechanisms responsible for interactions among stress, aging, memory and Alzheimer's disease. Glucocorticoid secretion associated with early life stress may contribute to the variability of the aging process and to the development of neuro- and psychopathologies. Maternal separation (MS), a model of early life stress in which rats experience 3 h of daily separation from the dam during the first 3 weeks of life, was used to study the interactions between stress and aging. Young (3 months) MS rats showed an altered hypothalamic-pituitary-adrenal (HPA) axis reactivity, depressive-like behavior in the Porsolt swimming test and cognitive impairments in the Morris water maze and new object recognition test that persisted in aged (18 months) rats. Levels of insulin receptor, phosphorylated insulin receptor and markers of downstream signaling pathways (pAkt, pGSK3 beta, pTau, and pERK1 levels) were significantly decreased in aged rats. There was a significant decrease in pERK2 and in the plasticity marker ARC in MS aged rats compared with single MS or aged rats. It is interesting to note that there was a significant increase in the C99 : C83 ratio, A beta levels, and BACE1 levels the hippocampus of MS aged rats, suggesting that in aged rats subjected to early life stress, there was an increase in the amyloidogenic processing of amyloid precursor protein (APP). These results are integrated in a tentative mechanism through which aging interplay with stress to influence cognition as the basis of Alzheimer disease (AD). The present results may provide the proof-of-concept for the use of glucocorticoid-/insulin-related drugs in the treatment of AD

    Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1

    Get PDF
    Depression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress (CMS) model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein (SVP) vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, mechanisms of failure in synaptic plasticity, common to stress and impaired glutamate function. First, we show that CMS induced a transient decrease of different plasticity markers (VGLUT1, synapsin 1, sinaptophysin, rab3A and activity regulated cytoskeletal protein Arc) but a long-lasting decrease of the brain derived neurotrophic factor (BDNF) as well as depressive-like behaviour. The immediate early gene (IEG) Arc was also downregulated in VGLUT1+/- heterozygous mice. In contrast, an opposite regulation of synapsin 1 was observed. Finally, both models showed a marked increase of cortical Arc response to novelty. Increased Arc response to novelty could be suggested as a molecular mechanism underlying failure to adapt to environmental changes, common to chronic stress and altered glutamate function. Further studies should investigate whether these changes are associated to depressive-like behaviour both in animal models and in depressed patients

    Development of a synthetic gene network to modulate gene expression by mechanical forces

    Get PDF
    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude

    Cabotegravir for HIV Prevention in Cisgender Men and Transgender Women

    Get PDF
    Background: Safe and effective long-acting injectable agents for preexposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection are needed to increase the options for preventing HIV infection. Methods: We conducted a randomized, double-blind, double-dummy, noninferiority trial to compare long-acting injectable cabotegravir (CAB-LA, an integrase strand-transfer inhibitor [INSTI]) at a dose of 600 mg, given intramuscularly every 8 weeks, with daily oral tenofovir disoproxil fumarate-emtricitabine (TDF-FTC) for the prevention of HIV infection in at-risk cisgender men who have sex with men (MSM) and in at-risk transgender women who have sex with men. Participants were randomly assigned (1:1) to receive one of the two regimens and were followed for 153 weeks. HIV testing and safety evaluations were performed. The primary end point was incident HIV infection. Results: The intention-to-treat population included 4566 participants who underwent randomization; 570 (12.5%) identified as transgender women, and the median age was 26 years (interquartile range, 22 to 32). The trial was stopped early for efficacy on review of the results of the first preplanned interim end-point analysis. Among 1698 participants from the United States, 845 (49.8%) identified as Black. Incident HIV infection occurred in 52 participants: 13 in the cabotegravir group (incidence, 0.41 per 100 person-years) and 39 in the TDF-FTC group (incidence, 1.22 per 100 person-years) (hazard ratio, 0.34; 95% confidence interval, 0.18 to 0.62). The effect was consistent across prespecified subgroups. Injection-site reactions were reported in 81.4% of the participants in the cabotegravir group and in 31.3% of those in the TDF-FTC group. In the participants in whom HIV infection was diagnosed after exposure to CAB-LA, INSTI resistance and delays in the detection of HIV infection were noted. No safety concerns were identified. Conclusions: CAB-LA was superior to daily oral TDF-FTC in preventing HIV infection among MSM and transgender women. Strategies are needed to prevent INSTI resistance in cases of CAB-LA PrEP failure

    The energy spectrum of cosmic rays beyond the turn-down around 10^17 eV as measured with the surface detector of the Pierre Auger Observatory

    Get PDF
    We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays
    corecore