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Abstract 

Three isoforms of a vesicular glutamate transporter (VGLUT1-3) have been identified. Of 

these, VGLUT1 is the major isoform of the cerebral cortex and hippocampus where it is 

selectively located on synaptic vesicles of excitatory glutamatergic terminals. Variations in 

VGLUT1 expression levels have a major impact on the efficacy of glutamate synaptic 

transmission. Given evidence linking alterations in glutamate neurotransmission to various 

neuropsychiatric disorders, we investigated the possible influence of a down-regulation of 

VGLUT1 transporter on anxiety, depressive-like behaviour and learning. The behavioural 

phenotype of VGLUT1 heterozygous mice (C57BL/6) was compared to WT littermates. 

Moreover, VGLUT1-3 expression, hippocampal excitatory terminal ultrastructure and 

neurochemical phenotype were analysed. VGLUT1 heterozygous mice displayed normal 

spontaneous locomotor activity, increased anxiety in the light-dark exploration test and 

depressive-like behaviour in the forced swimming test: no differences were shown in the 

elevated plus-maze model of anxiety. In the novel object recognition test, VGLUT1+/- mice 

showed normal short-term but impaired long-term memory. Spatial memory in the Morris 

water maze was unaffected. Western blot analysis confirmed that VGLUT1 heterozygotes 

expressed half the amount of transporter compared to WT. In addition, a reduction of the 

reserve pool of synaptic vesicles of hippocampal excitatory terminals and a 35-45 % 

reduction of GABA in the frontal cortex and the hippocampus were observed in the mutant 

mice. These observations suggest that a VGLUT1-mediated presynaptic alteration of the 

glutamatergic synapses, in specific brain regions, leads to a behavioural phenotype 

resembling certain aspects of psychiatric and cognitive disorders.  



Introduction  

The loading of glutamate into the synaptic vesicles via the vesicular glutamate transporter 

(VGLUT) is an essential step in glutamatergic synaptic transmission. Three vesicular 

glutamate transporters have been identified (VGLUT1, VGLUT2 and VGLUT3). Although 

highly homologous with similar characteristics when loading vesicles with glutamate 

(Fremeau et al., 2001; Herzog et al., 2001; Takamori et al., 2001; Gras et al., 2002; Varoqui 

et al., 2002), they have different CNS distributions. VGLUT1 and VGLUT2 are the 

predominant isoforms, accounting for most of the presumed excitatory glutamatergic 

terminals in the CNS. Interestingly, VGLUT1 and VGLUT2 display complementary 

expression patterns. VGLUT1 predominates in the cerebral and cerebellar cortices and 

hippocampus, whereas VGLUT2 is widely expressed in the diencephalon, brainstem and 

spinal cord (Fremeau et al., 2001; Herzog et al., 2001). However, none of these brain 

regions exclusively expresses one isoform and, although most of glutamatergic neurons 

express either VGLUT1 or VGLUT2, co-expression of both has been reported (Hisano et 

al., 2002; Herzog et al., 2006). Furthermore, there is a developmental switch from 

VGLUT2 to VGLUT1 in the hippocampus and cerebellum (Miyazaki et al., 2003; Fremeau 

et al., 2004). The third isoform, VGLUT3, defines a discrete subpopulation of neurons and 

is co-expressed with cholinergic, serotonergic or GABAergic markers (Schafer et al., 2002; 

Herzog et al., 2004). 

 

Variations in VGLUT1 levels have a major impact on efficacy of glutamate synaptic 

transmission (Wojcik et al., 2004; Fremeau et al., 2004; Wilson et al., 2005). Genetic 

inactivation of VGLUT1 drastically reduces glutamatergic neurotransmission in cortical 

and hippocampal neurons (Wojcik et al., 2004; Fremeau et al., 2004) with a specific 



reduction in quantal size seen in cultured hippocampal neurons from VGLUT1 knock-out 

(VGLUT1-/-) mice (Wojcik et al., 2004). Meanwhile, over-expression of VGLUT1 boosts 

presynaptic quantal size to levels that exceed WT values (Wojcik et al., 2004, Daniels et al., 

2004, Wilson et al., 2005). Interestingly, VGLUT1-/- mice show a progressive neurological 

phenotype including blindness, uncoordination, enhanced startle response and lethality rate 

that starts 2-3 weeks after birth, coincident with the developmental switch from VGLUT2 

to VGLUT1 in the hippocampus (Fremeau et al., 2004; Wojcik et al., 2004).  

 

Clinical and preclinical studies suggest a key role of the glutamatergic system and a 

therapeutic value for glutamatergic targets in psychiatric and cognitive disorders (reviewed 

in Javitt, 2004; Kugaya and Sanacora 2005; Robbins and Murphy, 2006). The segregated 

distribution of VGLUT1 and VGLUT2 provides an opportunity to distinguish between 

cortical and subcortical glutamatergic neurons and to specifically study their 

pathophysiology. Cortical, frontal and hippocampal circuits, in which VGLUT1 positive 

excitatory neurons are central, play a key operational executive role in integrating affective 

imprints and cognitive processes.  

 

Here we investigate how a down-regulation of VGLUT1 transporter might influence 

anxiety, depressive behaviour and learning. The behavioural phenotype of male and female 

VGLUT1+/- mice (C57BL/6) was compared to WT in a battery of tests, including motor 

activity, models for anxiety, depression and learning tasks. Furthermore, we also 

investigated how reduced VGLUT1 levels correlated with biochemical and anatomical 

changes. Specifically, VGLUT1-3 and other synaptic proteins expression levels, excitatory 

terminal ultrastructure and neurochemical phenotype were analysed.  



 

Materials and methods 

 

Animals 

Heterozygous VGLUT1 mice (VGLUT1+/-), (C57BL/6N) were obtained from Dr. S. 

Wojcik (Göttingen, Germany). A colony of wild type (WT) and VGLUT1+/-  mice were 

bred from heterozygous fathers and WT mothers (Harlan, France). Mice were weaned and 

genotyped at the age of 3 weeks. VGLUT1+/-  mice were studied comparatively to their WT 

littermates. Heterozygous mice exhibited no apparent phenotypic abnormalities during 

development and adulthood.  

Animals were maintained in a temperature (21 ± 1  C) and humidity-controlled room (55 ± 

2%) on a 12 h light-dark cycle (lights on 07:00 h) with food and water provided ad libitum.  

Experimental procedures and animal husbandry were conducted according to standard 

ethical guidelines (European Communities Council Directive 86/609/EEC) and approved 

by the Ethical Committee of University of Navarra.  

 

Spontaneous locomotor activity 

Locomotor activity was measured in an open field consisting of 9 black square arenas (43 x 

50 x 45) using a video tracking system (Ethovision 3.0, Noldus Information Technology B. 

V., Wageningen, The Netherlands) in a softly illuminated experimental room. One mouse 

was placed in each box and spontaneous locomotor activity was analyzed in the novel cage. 

Distance traveled (cm) and speed were recorded at 15 min intervals during a 1 hour period.  

 



Dark–light exploration test 

This is an ethological model of anxiety-like behaviour designed for mice (Crawley & 

Goodwin 1980). The apparatus is an open-topped rectangular box (45×27×27 cm high) 

divided into a small (2/5) black area and a large (3/5) white area illuminated at about 500 

lx. The floor of the white compartment was marked into 9-cm squares. Each mouse was 

placed individually in the centre of the white area and behaviour was recorded over a 5 

min-period, recording the percentage of time spent in the white area and the number of line 

crossings. On the first day of testing there was a high variability in the data and this was 

reduced by testing animals in the box for two consecutive days. The time spent and the 

number of line crossings in the white compartment as well as the number of transitions 

between dark and light compartments, were recorded for each mouse.  

 

Elevated plus maze  

Elevated plus maze (EPM) assesses unconditioned anxiety-like behaviour in rats and mice 

(Lister 1987). EPM consisted of two open arms (30 x 5 cm), two enclosed arms (30 x 5 cm) 

and a connecting central platform (5 x 5 cm). The maze was raised to 38.5 cm above the 

floor. The mouse was placed in the center of the maze facing one of the enclosed arms and 

observed for 5 min. The following parameters were recorded by the experimenter: latency 

to the first open arm entry, number of open and closed arm entries and the time spent in 

different parts of the maze (open and closed arms, central platform). An arm entry was 

defined as a mouse having entered an arm of the maze with all four legs. In addition, the 

number of head dipping over the edge of open arms was recorded.  

 

Forced swimming test  



The forced swimming test is the most widely used model of depression in rodents. Mice 

were placed individually for 6 min into glass cylinders (height 24 cm, diameter 13 cm) 

containing 14 cm of water, maintained at 22–23°C. This procedure was repeated for 2 

consecutive days. On the second day, the duration of immobility was recorded during the 

last 4 min of the 6 min testing period. A mouse was considered to be immobile when it 

floated in an upright position, and made only small movements to keep its head above 

water. 

 

Novel object recognition 

Visual recognition memory was assessed using the novel object recognition test. The 

apparatus consisted of a black square arena (43 x 50 x 45 cm). During two consecutive 

days, mice were placed for 15 min in the empty box to habituate them to the apparatus and 

test room. On day 3, two identical objects (A1 and A2; two prisms 7 x 3 x 3 cm) were 

placed symmetrically 11 cm away from the wall and separated 22 cm from each other. The 

mouse was placed in the box at equal distance from both objects and videorecorded for 5 

min (sample phase). Then the mouse was returned to its cage. After a delay of 1 or 24 h the 

mouse was placed back in the box and exposed to the familiar object (A3) and to a novel 

object (B or C for 1 or 24 h retention interval respectively) for a further 5 min (retention 

tests). The novel object B consisted of a ball (3,5 cm diameter) mounted on a cube (3 cm) 

and C was a cylindrical plastic bottle (7 x 3 cm). The positions of the familiar and the new 

object alternated between the 1 h and the 24 h retention test. The box and objects were 

cleaned between mice and trials to stop the build-up of olfactory cues.  

Mice were video recorded (Pinnacle Studio 9.0, Pinnacle systems Inc, Pittsburgh US) and 

the total time spent exploring each of the two objects in the sample phase and retention tests 



was measured by a blind experimenter. Object exploration was defined as the orientation of 

the nose to the object at a distance <2 cm. Turning around, climbing over, or sitting on the 

object were not included. Mice that explored <1 s both new and familiar objects were 

excluded. A discrimination index (DI) was calculated as the difference between the time 

spent exploring the new (N) and familiar object (F) divided by the total time exploring the 

objects (N-F/F+N). Higher DI is considered to reflect greater memory retention for the 

familiar object. 

 

Morris Water Maze 

The Morris Water maze assesses spatial memory. A black circular pool (diameter: 120 cm; 

height, 40 cm) filled to a depth of 25 cm with water (22 ºC) and located in a lit room with 

visual cues was used. Four positions around the edge of the tank were arbitrarily designated 

north (N), south (S), east (E), and west (W), which provided four alternative positions and 

also defined the division of the tank into four quadrants: NE, SE, SW, and NW. A circular 

black escape platform (diameter: 9.5 cm) was submerged 0.5 cm below the water surface 

and placed at the center of NW quadrant throughout the training period. Mice were trained 

for four trials per day over four days (with and inter-trial interval of 10-12 minutes). The 

start position (N, S, E, or W) was pseudo-randomized across trials. Mice were allowed up 

to 60 s to locate the escape platform. Whether or not a mouse found the platform within 60 

s, it was maintained on the platform for 15 s. The escape latency and the distance traveled 

were recorded. A probe trial was performed (24 h after the last training day) during which 

the escape platform was removed from the pool and the swimming path of each mouse was 

video-recorded (Ethovision 3.0, Noldus Information Technology B. V., Wageningen, The 

Netherlands) over 60 s while it searched for the missing platform.  



 

Western blotting 

Frontal cortex and hippocampus from pups (post-natal days 7 and 14) and adult mice  were 

rapidly dissected and homogenized in 50 mM Tris-HCl-sucrose buffer (pH 7.4, 4 ºC) and 

centrifuged at 900 g for 10 min. The resultant post-nuclear supernatant was centrifuged at 

12800 g for 10 min and the pellet was suspended in Tris-HCl-sucrose buffer containing 

0.32 M EDTA, 1 mM PMSF, 5 μg/ml aprotinine and 5 μg/ml leupeptine to a final protein 

concentration of 0.8-1 μg/μl and stored at –80 °C. 

Equal amounts of protein (10 μg per lane) were separated by SDS-PAGE (NuPage Bis-Tris 

10%, InVitrogen) and transferred onto a nitrocellulose membrane (Hybond-ECL; 

Amersham Bioscience), in Tris 50 mM, borate 50 mM buffer. The trans-blots were blocked 

for 1 h with 5 % not-fat milk in buffer PBS containing 0.1 % Tween 20 and then probed 

with one of the following primary antibodies overnight at 4 °C: VGLUT1 (1:2,000), 

VGLUT2 (1:1,000) or VGLUT3 (1:500) rabbit antibodies (donated by Dr S. El Mestikawy, 

Paris, France); vesicular inhibitory amino acid transporter (VGAT) rabbit antibody 

(1:1,000), glutamic acid decarboxylase (GAD67) (1:2,000) and synaptophysin mouse 

antibodies (1:2,000) (by Chemicon International, USA). Membranes were washed 3 times 

(5 min) with the same buffer and incubated for 2 h with horseradish peroxidase-conjugated 

secondary antibodies (DakoCytomation, Denmark. 1:10,000). Peroxidase activity was 

detected by chemiluminescence using SuperSignal West Pico (Pierce Biotechnology). 

Films were scanned and quantified using the ImageMaster 1D (Pharmacia Biotech, 

Sweden) software.  

 



Electron microscopy 

Ten adult mice, 6 heterozygotes and 4 WT, were anaesthetized and then perfused through 

the heart with saline to flush out blood from the circulation followed by 50 ml of a fixative 

containing 4% paraformaldehyde and 0.2% glutaraldehyde in 0.1 M phosphate buffer (PB, 

pH 7.4) over a period of 20-25 min. The brains were removed from the skulls, post-fixed in 

the same solution for 2-3 h at 4 ºC and then stored in PBS at 4ºC until required.  Free-

floating sections 50 microns thick were cut horizontally through the hippocampus using a 

vibrating microtome and collected in vials containing 0.1 M PB. After washing, the 

sections were flattened onto watch glasses and floated in 1 % osmium tetroxide in 0.1M PB 

for 30 minutes. After a brief wash in water, the sections were dehydrated through an 

ascending series of ethanol concentrations, containing 1% uranyl acetate to provide 

additional contrast.  After a final dehydration stage in propylene oxide the sections were 

placed in Durcupan resin (ACM Fluka, UK) overnight.  The resin was then heated gently 

and the sections transferred to cleaned slides and a coverslip applied.  The resin was cured 

in an oven at 60 ºC for 48 hours. 

The resin-embedded sections were examined in the light microscope. To ensure 

comparability between electron microscope sample blocks, these were prepared from 

sections containing the decussation of the fimbria fornix. The coverslip was removed from 

the slide and a small piece of section (about 1mm x 1mm) was cut out from the mid level of 

the stratum radiatum of the CA1 region and glued onto a pre-formed resin block.  The 

blocks were then coded and serial ultrathin sections were cut using an Ultracut E 

ultramicrotome (Leica, Milton Keynes, UK).  Sections were collected onto copper mesh 

grids, stained with lead citrate (Reynolds, 1963) and examined in a Philips 410 electron 

microscope. 



Using a systematic sampling schedule, boutons forming asymmetrical synapses were 

photographed at a final magnification of x62,000 using a digital camera (Multiscan, Gatan, 

UK) and Digital Micrograph software.  At least 30 boutons were identified for each sample 

block. Only one sample block was examined per mouse.  A scaled overlay 200 nm wide 

was aligned with the synaptic specialization and vesicles falling within this width were 

recorded according to whether they were within 100 nm of the synapse, measured at right 

angles to the synapse, or further away.  All boutons forming asymmetrical specializations 

within one photographic field of view were assessed, accounting for the different numbers 

of boutons sampled per animal.   

 

Neurotransmitter brain levels  

The concentrations of GABA, glutamate, 5-HT and dopamine in frontal cortex and 

hippocampus were determined by HPLC with electrochemical detection (DECADE, Antec-

Leyden) with a high sensitivity analytical flowcell (VT-03). Glutamate and GABA levels 

were detected as previously described (Garcia-Alloza et al., 2005). The working electrode 

was set at 0.7 V. A column (Biophase ODS 5μm, 4.6mm×150 mm) including precolumn 

derivatization with o-phthaldehyde and β mercapthoethanol (Sigma–Aldrich Ltd., 

Germany) was used. For 5-HT and dopamine detection, homogenates were prepared 

following the procedure described by Perez-Otaño et al., (1991). The working electrode 

was set at 0.8 V and a column (Spherisorb ODS2 5 μm, 15 × 0.46 mm; Teknokroma, San 

Cugat del Valles, Spain) was used. All samples were assayed in duplicate and results were 

expressed in ng per mg of wet tissue.   

 



Stastistical analysis 

Data from the Western blot, neurochemical and electron microscopy experiments were 

analyzed statistically across genotype using Student’s t-test.   

Immobility time (FST), percentage change (time and line crossings for the light-dark 

exploration test) and different behavioural items of the elevated plus maze test were 

compared for each sex across genotype using  Student´s t-test.  

Novel object recognition test:  during the sample phase, the total time spent exploring each 

object (two identical objects) was recorded and compared for each sex across genotype 

using Student´s t-test. During the retention test, comparisons between time spent exploring 

the new and old objects were performed within groups using paired t-test. DIs were 

compared for each sex and time interval across genotype with Student´s t-test.  

For MWM, performance of each group in the learning phase was compared with two-way 

ANOVA (time and genotype, repeated measures). Performance of each group in the probe 

tests was compared with one-way ANOVA using post hoc Dunnett's t-test. 

Finally, spontaneous locomotor activity in mice was analyzed using a two way ANOVA 

(time and genotype, repeated measures).  

 



Results 

Spontaneous locomotor activity is unaffected in VGLUT1+/- animals 

VGLUT1+/- mice and their WT littermates did not differ in their spontaneous locomotor 

activity (Table 1). Two-way ANOVA comparison with repeated measures revealed no 

interaction genotype × time. However, distance travelled decreased gradually across the 15 

min time blocks in all groups.  

 

Increased anxiety in VGLUT1+/- animals in the light-dark exploration test  

In the light-dark exploration test, VGLUT1+/- mice were more anxious than their WT 

littermates (Figure 1A). The time spent in white area (second exposure day) was 

significantly lower for the male and female heterozygotes than for their WT littermates. 

The number of line crossings (Figure 1B) was significantly lower for the male 

heterozygous group compared to WT. Similarly, the number of transitions was significantly 

lower, being 9.45 ± 0.6 and 5.8 ± 0.8 transitions for WT and VGLUT1+/- mice, 

respectively (p< 0.01, Student´s t-test). However, no major differences were detected 

between female groups both in the line crossings (Figure 1B) and in the number of 

transitions (5.1 ± 1 and 4.8 ± 0.7 transitions for WT and VGLUT1+/- mice respectively). In 

addition, female (heterozygotes and WT) groups were more anxious (lower time and line 

crossings in white compartment and less transitions) than male groups. 

 

Anxiety levels in the elevated plus maze are indistinguishable between VGLUT1+/- and 

WT animals 

In another model of anxiety, the elevated plus maze, no significant differences were found 



between VGLUT1+/- mice and their WT littermates in any of the behavioural items 

recorded (Table 2). Females from both groups (heterozygotes and WT) spent less time in 

open arms, indicating higher anxiety levels than the corresponding age matched male 

groups.  

 

Depressive like behaviour of VGLUT1+/- animals in the forced swimming test  

Both male and female VGLUT1+/- mice showed a significant increase in the immobility 

time in the forced swimming test (FST) compared to their WT littermates (Figure 2).  The 

magnitude of increase was 60% and 47% for VGLUT1+/- males and females respectively. 

No significant differences in the immobility time were detected between sexes.    

 

VGLUT1+/- animals show impaired long-term memory in the object recognition test 

During the sample phase, the total time spent in exploration did not differ significantly 

between groups (data not shown).  

With a one hour interval between the sample and the test phase, VGLUT1+/- and WT 

groups spent significantly more time exploring the new object than the familiar one (Fig. 

3A). The discrimination index (DIs) did not differ significantly, indicating that both groups 

had similar memory retention for the familiar object (Fig. 3C). Twenty-four hours after the 

sample phase, both male and female VGLUT1+/- mice failed to discriminate the novel 

object whereas the WT mice were still able to discriminate between the two objects (Fig. 

3B). At this time interval, heterozygous mice showed a deficit in recognition memory 

compared to their corresponding WT littermates (significantly lower DIs) (Fig. 3C).  

 

Normal spatial memory in VGLUT1+/- animals in the Morris Water Maze test 



VGLUT1+/- mice as well as their WT littermates were able to learn the location of the 

platform. Learning curves for WT and VGLUT1+/- mice did not differ significantly (two 

way repeated measures ANOVA, time and genotype, Fig. 4A).   

In the probe test (24 hour after the last training day), all groups spent significantly longer 

time in the target quadrant compared to the rest of the quadrants (Fig. 4B). No significant 

differences were found between males and females.  

 

Quantification of VGLUT1-3, VGAT and GAD67 protein levels 

VGLUT1 and VGLUT2 protein levels in frontal cortex brain extracts were quantified on 

post-natal days (P) 7, P14 and compared to the protein levels of adult mice (P90) (Figure 

5). VGLUT3 isoform was measured only in adult mice. In both WT and heterozygous mice 

VGLUT1 levels increased progressively during post-natal development (Figure 5A). One 

week after birth (P7), VGLUT1 levels in WT mice had reached approximately 10 % of 

adult levels and then increased up to 75 % two weeks after birth (P14) (Figure 5B). 

VGLUT1+/- mice showed a similar developmental increase of VGLUT1 levels. However, 

VGLUT1 protein levels in heterozygotes at the respective ages were only 40% (P7), 49% 

(P14) and 59% (adults) of WT VGLUT1 levels (Fig. 5B). The expression of VGLUT2 also 

increases during development and at one and two weeks was approximately 50 % of adult 

levels (Figure 5C). However, we detected no differences in the VGLUT2 protein levels 

between WT and heterozygous animals (Fig. 5C). Similarly, VGLUT3 levels in the frontal 

cortex of VGLUT1 heterozygotes were not changed compared to WT (data not shown). 

In the hippocampus of adult mice, VGLUT1+/- mice had about two-thirds the level of 

VGLUT1 protein found in WT mice (Figure 6B). VGLUT2 expression was not altered in 

the hippocampus. However, VGLUT3 was slightly increased (15 %) in the VGLUT1 



heterozygotes compared to WT (Figure 6B). 

We also quantified VGAT, GAD67 and synaptophysin protein levels. No changes in any of 

these proteins were found neither in the hippocampus (Figure 6) nor in the frontal cortex 

(data not shown) of adult VGLUT1+/- mice compared to WT. 

 

Electron microscopy 

On initial examination it was found that, due to poor ultrastructural preservation, three mice 

(one WT and two heterozygotes) had to be eliminated from the study. Boutons forming 

asymmetric synaptic specializations were identified in all sections examined from the 

remaining blocks.  In general the boutons contained numerous small round vesicles and the 

majority of post-synaptic targets had the morphological characteristics of spines although 

some were consistent with being small dendrites (Figure 7A). These features are 

characteristic of glutamatergic terminals. Within 100 nm of the active zone of the synapse, 

there was no difference between VGLUT1+/- and WT mice in the number of synaptic 

vesicles (258 ± 9 and 263 ± 24 vesicles respectively). However, the heterozygotes had 

significantly fewer vesicles at a distance > 100 nm from the active zone (324 ± 24) 

compared to the WT (388 ± 11), which is thought to correspond to the reserve pool (Figure 

7B).  

Neurotransmitter brain levels 

VGLUT1+/- mice showed a significant reduction of GABA levels in frontal cortex and 

dorsal hippocampus compared to WT animals. However 5-HT and dopamine levels were 

not changed in VGLUT1+/- mice compared to WT, in any of the brain regions studied 

(Table 3).  



 



 Discussion 

The present study shows that VGLUT1 heterozygous mice (C57/BL/6) display behavioural 

and learning deficits. In particular, VGLUT1+/- mice showed increased anxiety in the light-

dark exploration test and depressive-like behaviour in the forced swimming test. In the 

novel object recognition test, VGLUT1+/- mice showed normal short-term but impaired 

long-term memory. In contrast, spatial memory in the Morris water maze test was not 

affected. Western-blot studies confirmed a reduction of VGLUT1 levels in VGLUT1+/- 

mice at all stages of development. Furthermore, a moderate reduction in the reserve pool of 

synaptic vesicles in excitatory terminals was found, suggesting that a 50% reduction in 

VGLUT1 levels is sufficient to affect vesicle recycling. Finally, GABA levels were 

significantly reduced in frontal cortex and hippocampus. Our study suggests that reduced 

VGLUT1 levels affect behaviour and learning. This behavioural phenotype might be linked 

to a presynaptic alteration of the VGLUT1-dependent glutamate synaptic transmission.  

 

VGLUT1+/- mice show enhanced anxiety, depressive-like behaviour and impaired 

recognition memory  

In the light–dark box test, VGLUT1+/- mice showed increased anxiety compared to WT 

littermates but did not differ in the elevated plus-maze, another model of anxiety. Although 

both models are based on a similar conflict between the tendency of mice to explore an 

open and illuminated novel environment and its aversive properties, the elevated plus-maze 

includes two additional anxiety-provoking environmental parameters (height and a totally 

open area) (Crawley et al. 1997). Previous studies have shown that C57BL/6 mice exhibit 

higher levels of anxiety in the elevated plus-maze than in the light-dark test (Griebel et al. 

2000). Thus, similar levels of anxiety between WT and heterozygous animals in the 



elevated plus maze may be due to a ceiling effect. Interestingly, the light-dark test is 

considered a good model to measure anxiogenic behaviour in C57BL/6 transgenic mice 

(Crawley et al. 1997).  

The forced swimming test is the most widely used pharmacological model to asses 

antidepressant activity in rodents. This test is also used to detect depression and 

antidepressant-related phenotypes in genetically altered mice (Porsolt, 2000; Seong et al., 

2002; Cryan et al., 2002; 2003). VGLUT1+/- mice showed increased immobility time in this 

test compared to WT littermates and the increase was similar to that reported in a variety of 

animal models of depression, including chronic mild stress and transgenic mice models 

(Solberg et al, 1999; Griebel et al., 2002; Tannenbaum et al, 2002; Strekalova et al., 2004; 

Svenningsson et al., 2006). Interestingly, the depressive-like behaviour of mice with 

reduced VGLUT1 levels, matches other studies showing an increase of this transporter in 

rat cortical and hippocampal regions following a course of antidepressant drug or ECS 

treatment (Tordera et al., 2005; Moutsimilli et al., 2005). Taken together, these results 

suggest that alterations in VGLUT1-dependent glutamate neurotransmission might have a 

pivotal role in both the cause of depression and its successful treatment.  

 Learning and memory were studied using object recognition and spatial maze 

learning tasks. The object recognition test relies strongly on visual recognition memory and 

is based on rodents’ exploratory behaviour and spontaneous preference for novel objects 

(Ennaceur and Delacour 1988). Interestingly, this test is an incidental rather than aversive 

learning paradigm and overcomes the disadvantages of lengthy training procedures. On the 

other hand, the Morris water maze (Morris, 1984), one of the most widely used paradigms 

for testing spatial memory in transgenic mice, involves training over several days.  

 In the novel object recognition test, VGLUT1+/- mice showed impaired long-term 



(24 h) but not short-term (1 h) recognition memory. Several lines of evidence suggest a role 

for the prefrontal cortex (PFC) in discrimination of object familiarity (Meunier et al., 1997; 

Ragozzino et al., 2002; Akirav et al., 2006). Moreover, local injection of an NMDA 

receptor antagonist in the medio-ventral prefrontal cortex (mvPFC), shows that long-term 

recognition memory depends on normal function of the NMDA receptor-mediated 

glutamatergic transmission in this brain region (Akirav et al., 2006). The memory 

impairment shown by VGLUT1+/- mice could relate to a down-regulation of VGLUT1-

dependent glutamatergic transmission in those cortical brain regions where VGLUT1 is the 

predominant isoform. However further studies would be needed to explore the hypothesis 

that NMDA receptor-dependent glutamatergic transmission is altered in these mice.   

Surprisingly, spatial memory in the Morris water maze was unaffected in VGLUT1+/- mice. 

This task depends on proper functioning of the hippocampus (Moser et al., 1993; Moser et 

al., 1995; Duva et al., 1997; Broadbent et al., 2004), while the fimbria fornix and the 

perforant pathways, the routes for extrinsic glutamatergic input to the hippocampus, are 

implicated in spatial memory (Galani et al., 2002). A possible mechanism is that the 

VGLUT2-dependent transmission in the hippocampus could be playing a leading role in 

spatial memory. In support of this hypothesis, a rich network of VGLUT2-immunoreactive 

afferent fibers in the rat hippocampus (Kaneko and Fujiyama, 2002) originating in the 

fimbria fornix (Halasy et al., 2004) has been described. Interestingly, since both isoforms 

localize to different glutamatergic terminals in the adult hippocampus the decrease of 

VGLUT1 would not necessarily affect VGLUT2-dependent transmission. On the other 

hand, the fact that VGLUT1 is the majority isoform in the hippocampus also suggests that 

important compensatory changes might be taking place here. For instance, post-synaptic 

glutamate receptors could have adapted to maintain the synaptic strength in the VGLUT1 



dependent synapses in this brain region and others. The apparent normal locomotor activity 

of these mutants would also support this hypothesis. Further studies will be carried out to 

explore both hypotheses.  

 

VGLUT1+/- mice show a reduction in VGLUT1, in the reserve pool of synaptic vesicles 

and in GABA levels.  

Western blot analysis from frontal cortex extracts confirmed that the VGLUT1 

heterozygotes expressed half the amount of transporter compared to WT, both in the 

developing (post-natal days P7, P14) and in the adult (P90) mouse brain. The progressive 

increase of VGLUT1 immunoreactivity in the WT mice (expressed as percentage of adult 

levels) resembled previous studies carried out in mouse brain (Gras et al., 2005) and rat 

cerebral cortex extracts (Minelli et al., 2003).  

 We also addressed the possibility that alterations in VGLUT2 and/or VGLUT3 

isoforms might compensate for reduced VGLUT1 levels in the heterozygotes. Previous 

studies using whole brain extracts of VGLUT1-/- knockout mice (Wojcik et al., 2004; 

Fremeau et al., 2004) found no changes in VGLUT2 and VGLUT3 expression. Similarly, 

and consistent with the complementary distribution of VGLUT1, no changes were found in 

VGLUT2 in the cortex and hippocampus of the VGLUT1+/- mice. In contrast, the VGLUT3 

isoform was slightly up-regulated (15 %) in the hippocampus. Unlike the other two 

isoforms, VGLUT3 is diffusely distributed in the brain, defining a discrete subpopulation 

of non-glutamatergic neurones. Specifically in the hippocampus, VGLUT3 is expressed in 

a subpopulation of GABA interneurons in the dentate gyrus and CA2-3 fields (Schafer et 

al., 2002; Gras et al., 2002; Herzog et al., 2004). These hippocampal VGLUT3-positive 

neurons and their relatively sparse innervations may exert a feed-forward control of the 



excitability of projection neurons that would have significant impact on modulation of 

hippocampal functions such as learning and memory (Schafer et al., 2002; Herzog et al., 

2004).  

 At the ultra-structural level, the reserve pool of synaptic vesicles in hippocampal 

excitatory terminals of the heterozygous mice was significantly reduced. This agrees with a 

previous study where homozygous VGLUT1-/- mice displayed a severe reduction in the 

reserve pool of synaptic vesicles, suggesting a specific role for VGLUT1 in synaptic vesicle 

recycling (Fremeau et al., 2004). A similar function remains to be demonstrated for other 

vesicular transporters (Zhou et al., 2000; Parsons et al., 1999). However, our results show 

that, for VGLUT1, even a 50% reduction in protein levels is sufficient to affect the vesicle 

pool.  

  VGLUT1+/- mice showed a significant reduction of GABA in frontal cortex and 

hippocampus. Although a compensatory mechanism involving the balance between 

inhibitory and glutamatergic excitatory neurotransmission might be predicted, in these 

brain regions, glutamate levels were unchanged, and the ratio of excitatory-inhibitory 

neurotransmitter levels actually increased. Subsequently, we addressed the possibility that 

either a down-regulation of the vesicular inhibitory aminoacid transporter (VGAT) or the 

GABA-synthesizing enzyme GAD67 might explain these results. However, neither of these 

proteins was altered in either the cortex or in the hippocampus of the VGLUT1+/- mice. It is 

still possible, although not likely, that the other GAD isoform, GAD65, which synthesizes 

GABA for secretory vesicles (Olsen and Betz, 2006) would be affected. Importantly, given 

evidence linking low levels of GABA in prefrontal cortex to depression (reviewed in 

Kedell et al., 2004), it would be interesting to further explore other possible mechanisms 

involved in the neurochemical phenotype of these mutants.  



 

Functional implications  

Although the present study did not address the effect of reduced VGLUT1 levels on the 

efficacy of glutamatergic neurotransmission directly, there is some evidence that this would 

result in a less efficient accumulation of glutamate in the synaptic vesicles and a decreased 

synaptic availability of glutamate during neurotransmission. Firstly, despite a 50% 

reduction in protein levels as measured by Western blots, only a minor reduction in the 

reserve pool of synaptic vesicles were found in the heterozygotes. In addition, the synaptic 

vesicle protein synaptophysin was unaltered. Taken together, these results suggests that the 

number of VGLUT1 molecules per synaptic vesicle might be reduced in the heterozygotes. 

Secondly, the quantal size of glutamatergic neurons is reduced by knocking-out VGLUT1 

(Wojcik et al., 2004) and enhanced with over-expression of VGLUT1 (Wojcik et al., 2004; 

Daniels et al., 2004; Wilson et al., 2005). Finnally, decreased expression of other vesicular 

transporters (vesicular acetylcholine transporter and vesicular monoamine transporter 2) 

reduces the vesicular contents and the amount of transmitter released per quanta (Song et 

al., 1997; Pothos, 2002). However, these observations do not exclude the possibility that 

important compensatory mechanisms could take place at the postsynaptic level, to maintain 

the synaptic streght in the VGLUT1-dependent synapses. 

 Pre-clinical and clinical studies have linked alterations in glutamate 

neurotransmission to affective disorders (Javitt, 2004; Kugaya and Sanacora 2005) and 

impaired cognition (Robbins and Murphy, 2006). In line with these studies, we show that 

reduced VGLUT1 levels has significant effects on behaviour and learning. Hence, the 

modulation of this transporter may be both an endogenous mechanism of more subtle 

behavioural adjustments and a potential target of therapeutic intervention.  
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Figure 1. Performance of VGLUT1+/- and wild type (WT) mice in the light-dark 

exploration test. Values show the mean ± SEM (n= 18-20 mice per group) of (A) time spent 

in the white area and (B) number of line crossings, recorded in the same animals 24 h 

before. **P < 0.01; *P < 0.05 versus corresponding WT mice (Student t-test).  

 

Figure 2. Immobility time (sec) of VGLUT1+/- and WT mice in the forced swimming test. 

Values show the mean ± SEM (n= 18-20 mice per group). **P < 0.01; *P < 0.05 versus 

corresponding WT mice (Student´s t-test).  

 

Figure 3. Performance of VGLUT1+/- and wild type (WT) mice in the novel-object 

recognition test. Time engaged in exploring each object type (new and familiar) during the 

test phase performed (A) 1 h and (B) 24 h after the end of the sample phase. **P < 0.01; *P 

< 0.05 versus familiar object  (Student´s paired t-test). (C) Discrimination index. DI = (N − 

F)/(N + F), where N is time spent in exploring new object and F is time spent in exploring 

familiar object. **P < 0.01; *P < 0.05 versus corresponding WT mice (Student´s t-test). 

Values show the mean ± SEM (n= 18-20 mice per group). 

 

Figure 4. Performance of VGLUT1+/- and WT mice in the Morris-Water maze. (A) 

Learning curves for WT and VGLUT1+/- mice showing latencies (sec) to platform during 

four training days. Each mouse was subjected to four trials per day. (B) Results of the probe 

trial. Time spent in the four quadrants. Both WT and VGLUT1+/- mice spent significantly 

more time in the NE quadrant. **P < 0.01;*P < 0.05 versus NE quadrant (one-way 

ANOVA followed by Dunnett t-test). Values are expressed as the mean ± SEM (n = 12 



mice per group).   

 

Figure 5. Abundance of VGLUT1 and VGLUT2 protein expression in frontal cortex 

extracts as measured by Western blotting. (A) Representative immunoblots of VGLUT1 

and VGLUT2 from three WT mice and three VGLUT1+/- mice of each age (P7, P14 and 

P90; adults). Densitometric analysis of (B) VGLUT1 and (C) VGLUT2 protein expression. 

Optical density values were normalised to β-actin. Results are expressed as the percentage 

of adult WT values (means ± SEM of 4–8 animals, performed in duplicates). **P<0.05 

versus corresponding age-matched WT mice (Student's t-test).  

 

Figure 6. Abundance of VGLUT1-3 protein expression in hippocampal extracts as 

measured by Western blotting. (A) Representative immunoblots of VGLUT1-3, VGAT, 

GAD67 and synaptophysin from four WT and four VGLUT1+/- mice (P90; adults), (B) 

Densitometric analysis of VGLUT1-3 protein expression in the hippocampus. Optical 

density values were normalised to β-actin. Results are expressed as the percentage of WT 

values (means ± SEM of 8 animals, performed in duplicates). **P<0.01; *P<0.05 versus 

corresponding WT mice (Student's t-test).  

 

Figure 7. Morphological changes in the VGLUT1+/- mice.  (A) Representative micrographs 

from WT and VGLUT1+/- mice showing boutons in the CA1 region of the hippocampus 

that were evaluated in this study. All boutons form asymmetrical synaptic contacts. (B) 

Synaptic vesicles in the reserve pool (> 100nm from the active zone of the synapse) are 

reduced in VGLUT1+/- mice. Mean ± SEM: n= 3 WT and n= 5 VGLUT1+/-, *p=0.01 



(Student´s t-test). Scale bar 0.5 μm. 

 



 
Table 1.  Performance of  VGLUT1+/-  mice and wild type (WT) on motor activity.  

 Males Females 

Time WT  VGLUT1+/- WT VGLUT1+/- 

  0 - 15 min  5562 ± 314 6221 ± 338 6085 ± 503 5931 ± 258 

15 - 30 min 4231 ±  379 4681 ± 288 5024 ± 443 4511 ± 359 

30 - 45 min 3724 ±  364 4105 ± 254 4153 ± 493 3846 ± 330 

45 - 60 min  3057 ±  340 3447 ± 313 3924 ± 343 3127 ± 317 

Data show the time course of distance travelled (cm) in 15-min time blocks for 60 min. The 

data were statistically evaluated using a two-way ANOVA with repeated measures over 

time. Data represent mean ± SEM of 18-20 mice. (Genotype and sex P> 0.05; time 

P<0.001; interaction P> 0.05). 

 



 

Table 2.   Performance of VGLUT1+/-  and WT mice in the elevated plus-maze. 

 Males Females 

Parameter WT  VGLUT1+/- WT VGLUT1+/- 

Open arms (time, sec) 5.2 ± 2.1 6.7 ± 2.1 1.5 ± 0.9 1.1 ± 0.8 

Center arms (time, sec) 34.7 ± 6.3 32.1 ± 4.7 45.9 ± 8.2 43.5 ± 7.0 

Closed arms (nº entries) 9.1 ± 1.3 9.6 ± 1.3 8.6 ± 1.6 7.4 ± 1.1 

Attempts (nº) 7.1± 1.5 7.1 ± 1.1 13.2 ± 1.0 11.3 ± 1.2 

Data represent mean ± SEM of 18-20 mice. The mouse was placed in the center of the 

maze facing one of the enclosed arms and observed for 5 min. 

 



  

Table 3.  Glutamate, GABA, 5-HT and dopamine levels (expressed as ng/mg wet tissue) in 

frontal cortex and hippocampal tissue from VGLUT1+/- and wild type (WT) mice. 

Brain region  Neurotransmitter WT  VGLUT1+/- 

Frontal Cortex    Glutamate 5231 ± 259 5184 ± 337 

    GABA 1726 ± 294  930 ± 45* 

    5-HT   0.555 ± 0.023  0.630 ± 0.025 

    Dopamine   0.260 ± 0.068  0.243 ± 0.099 

    

Hippocampus   Glutamate 5194 ± 248            4708 ± 94 

   GABA  1473 ± 109   959 ± 55** 

   5-HT    0.743 ± 0.047 0.760 ± 0.067 

   Dopamine    0.033 ± 0.003           0.032 ± 0.005 

Data represent  means  ±  SEM of 8-12 mice per group. *P<0.05; **P<0.01 versus 

corresponding WT (Student´s t-test).  



  

 
 


