10 research outputs found

    Parametric modelling of the 3.6um to 8um colour distributions of galaxies in the SWIRE Survey

    Get PDF
    We fit a parametric model comprising a mixture of multi-dimensional Gaussian functions to the 3.6 to 8um colour and optical photo-z distribution of galaxy populations in the ELAIS-N1 and Lockman Fields of SWIRE. For 16,698 sources in ELAIS-N1 we find our data are best modelled (in the sense of the Bayesian Information Criterion) by the sum of four Gaussian distributions or modes (C_a, C_b, C_c and C_d). We compare the fit of our empirical model with predictions from existing semi-analytic and phenomological models. We infer that our empirical model provides a better description of the mid-infrared colour distribution of the SWIRE survey than these existing models. This colour distribution test is thus a powerful model discriminator and complementary to comparisons of number counts. We use our model to provide a galaxy classification scheme and explore the nature of the galaxies in the different modes of the model. C_a consists of dusty star-forming systems such as ULIRG's. Low redshift late-type spirals are found in C_b, where PAH emission dominates at 8um. C_c consists of dusty starburst systems at intermediate redshifts. Low redshift early-type spirals and ellipticals dominate C_d. We thus find a greater variety of galaxy types than one can with optical photometry alone. Finally we develop a new technique to identify unusual objects, and find a selection of outliers with very red IRAC colours. These objects are not detected in the optical, but have very strong detections in the mid-infrared. These sources are modelled as dust-enshrouded, strongly obscured AGN, where the high mid-infrared emission may either be attributed to dust heated by the AGN or substantial star-formation. These sources have z_ph ~ 2-4, making them incredibly infrared luminous, with a L_IR ~ 10^(12.6-14.1) L_sun.Comment: 44 pages, 10 figures, 6 tables. Accepted for publication in the Astronomical Journa

    Chandra and Spitzer unveil heavily obscured quasars in the SWIRE/Chandra Survey

    Get PDF
    Using the large multi-wavelength data set in the chandra/SWIRE Survey (0.6 square degrees in the Lockman Hole), we show evidence for the existence of highly obscured (Compton-thick) AGN, estimate a lower limit to their surface density and characterize their multi-wavelength properties. Two independent selection methods based on the X-ray and infrared spectral properties are presented. The two selected samples contain 1) 5 X-ray sources with hard X-ray spectra and column densities > 10^24 cm-2, and 2) 120 infrared sources with red and AGN-dominated infrared spectral energy distributions (SEDs). We estimate a surface density of at least 25 Compton-thick AGN per square degree detected in the infrared in the chandra/SWIRE field of which ~40% show distinct AGN signatures in their optical/near-infrared SEDs, the remainings being dominated by the host-galaxy emission. Only ~33% of all Compton-thick AGN are detected in the X-rays at our depth (F(0.3-8 keV)>10^-15 erg/cm2/s. We report the discovery of two sources in our sample of Compton-thick AGN, SWIRE_J104409.95+585224.8 (z=2.54) and SWIRE_J104406.30+583954.1 (z=2.43), which are the most luminous Compton-thick AGN at high-z currently known. The properties of these two sources are discussed in detail with an analysis of their spectra, SEDs, luminosities and black-hole masses.Comment: ApJ accepted (to appear in May 2006 issue, vol. 642, of ApJ) Figures 2, 3, and 14 have been degraded due to space consideration

    JWST’s PEARLS: A JWST/NIRCam View of ALMA Sources

    Get PDF
    We report the results of James Webb Space Telescope/NIRCam observations of 19 (sub)millimeter sources detected by the Atacama Large Millimeter Array (ALMA). The accurate ALMA positions allowed unambiguous identifications of their NIRCam counterparts. Taking gravitational lensing into account, these represent 16 distinct galaxies in three fields and constitute the largest sample of its kind to date. The counterparts' spectral energy distributions cover from rest-frame ultraviolet to near-IR and provide photometric redshifts (1 1010.5 M⊙), which are similar to submillimeter galaxies (SMGs) studied previously. However, our sample is fainter in (sub)millimeter than the classic SMG samples are, and our sources exhibit a wider range of properties. They have dust-embedded star formation rates as low as 10 M⊙ yr−1, and the sources populate both the star-forming main sequence and the quiescent categories. The deep NIRCam data allow us to study the rest-frame near-IR morphologies. Excluding two multiply imaged systems and one quasar, the majority of the remaining sources are disk-like and show either little or no disturbance. This suggests that secular growth is a potential route for the assembly of high-mass disk galaxies. While a few objects have large disks, the majority have small disks (median half-mass radius of 1.6 kpc). At this time, it is unclear whether this is due to the prevalence of small disks at these redshifts or some unknown selection effects of deep ALMA observations. A larger sample of ALMA sources with NIRCam observations will be able to address this question

    The formation and build-up of the red-sequence over the past 9 Gyr in VIPERS

    Get PDF
    We present the Luminosity Function (LF) and Colour-Magnitude Relation (CMR) using ~45000 galaxies drawn from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using different selection criteria, we define several samples of early-type galaxies and explore their impact on the evolution of the red-sequence (RS) and the effects of dust. Our results suggest a rapid build-up of the RS within a short time scale. We find a rise in the number density of early-type galaxies and a strong evolution in LF and CMR. Massive galaxies exist already 9 Gyr ago and experience an efficient quenching of their star formation at z = 1, followed by a passive evolution with only limited merging activity. In contrast, low-mass galaxies indicate a different mass assembly history and cause a slow build-up of the CMR over cosmic time

    VizieR Online Data Catalog: XXL Survey. DR2 (Chiappetti+, 2018)

    No full text
    The data tables of the XXL survey (second data release DR2) are archived and accessible both at CDS and in the XXL database hosted at IASF Milano http://cosmosdb.iasf-milano.inaf.it/XXL/We present the second data release (DR2) of the XXL Survey, contextually with the appearance of a second A&A special issue dedicated to XXL. This intermediate release includes the following catalogues and data: The X-ray point source catalogue (3XLSS) and the associated multiwavelength catalogues in the XXL-N and XXL-s areas (XXL paper XXVII). The same paper also provides the list of XMM pointings used, and a supplementary catalogue of redshifts obtained with the AAOmega spectrograph in the XXL-S area. The XXL-365-GC galaxy cluster catalogue (XXL paper XX) with the complete subset of clusters for which the selection function is well determined plus all X-ray clusters which are, to date, spectroscopically confirmed. The ATCA 2.1 GHz radio source catalogue in the XXL-S area (XXL paper XXVIII), together with the catalogue of ther optical and near infrared counterparts (XXL paper XXVI). The GMRT 610 MHz radio source catalogue in the XXL-N area (XXL paper XXIX). FITS images of the XXL-North field: continuum radio mosaic from observations with the Giant Meterwave Radio Telescope (GMRT) at 610MHz, and the corresponding noise map. A complete spectrophotometric sample of galaxies within X-ray detected, optically spectroscopically confirmed groups and clusters (G&C), including also field objects, in the XXL-N area (XXL paper XXII). The list of brightest cluster galaxies (BCGs) in the XXL-N area (XXL paper XXVIII). FITS images of the two radio galaxies described in XXL paper XXXIV. ATCA XXL-S source classification data (XXL paper XXXVI) http://sci.esa.int/xmm-newton/60686-tracing-the-universe-x-ray-survey- supports-standard-cosmological-model/ List of XXL DR2 papers: XVI. The clustering of X-ray selected galaxy clusters at z∌0.3 XVII. X-ray and Sunyaev-Zel'dovich properties of the redshift 2.0 galaxy cluster XLSSC 122 XVIII. ATCA 2.1 GHz radio source catalogue and source counts for the XXL-South field XIX. A realistic population of simulated X-ray AGN: Comparison of models with observations XX. The 365 cluster catalogue XXI. The environment and clustering of X-ray AGN in the XXL-South field XXII. The XXL-North spectrophotometric sample and galaxy stellar mass function in X-ray detected groups and clusters XXIII. The mass scale of XXL clusters from ensemble spectroscopy XXIV. The final detection pipeline XXV. Cosmological analysis of the C1 cluster number counts XXVI. Optical and near infrared identification of the ATCA 2.1 GHz radio sources in the XXL-S field XXVII. The 3XLSS point source catalogue XXVIII. Galaxy luminosity functions of the XXL-N clusters XXIX. GMRT 610 MHz continuum observations XXX. Characterisation of the XLSSsC N01 supercluster and analysis of the galaxy stellar populations XXXI. Classification and host galaxy properties of 2.1 GHz ATCA XXL-S radio sources XXXII. Spatial clustering of the XXL-S AGN XXXIII. Chandra constraints on the AGN contamination of z > 1 XXL galaxy clusters XXXIV. Double irony in XXL-North. A tale of two radio galaxies in a supercluster at z = 0.14 XXXV. The role of cluster mass in AGN activity XXXVI. Evolution and black hole feedback of high-excitation and low-excitation radio galaxies in XXL-

    JWST PEARLS. Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results

    Get PDF
    We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9-4.5 ÎŒm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9-4.5 ÎŒm. PEARLS is designed to be of lasting benefit to the community
    corecore