9 research outputs found

    Solar-driven CO2 reduction catalysed by hybrid supramolecular photocathodes and enhanced by ionic liquids

    Get PDF
    Photoelectrochemical carbon dioxide reduction (CO2) at ambient temperature and pressure was performed using molecular chromophores and catalyst assemblies on CuGaO2-based electrodes in an ionic liquid (IL) organic solution, acting as a CO2 absorbent and electrolyte. A simple and versatile methodology based on the silanization of the CuGaO2 electrode followed by electropolymerization provided a series of molecular and supramolecular hybrid photocathodes for solar driven CO2 reduction. Focusing on the cathodic half reactions, the most promising conditions for the formation of CO2 reduction products were determined. The results revealed a beneficial effect of the ionic liquid on the conversion of CO2 to formic acid and suppression of the production of hydrogen. The potentiality of anchoring supramolecular complexes on semiconductor photoelectrocatalysts was demonstrated to boost both carrier transport and catalytic activity with a FEred of up to 81% compared with the obtained FEred of 52% using bare CuGaO2 with formate as the major product

    Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles

    Full text link
    [EN] Development of nanotechnologies to improve the functionality of natural antimicrobials for food applications has received much attention in recent years. Mesoporous silica particles, such as MCM-41, have been recently proposed as smart delivery devices capable of loading and releasing large amounts of cargo. In this study, the antimicrobial activity of caprylic acid entrapped in MCM-41 nanoparticles against Escherichia coli, Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes was tested and compared with the bactericidal effect of free caprylic acid using the macrodilution method. The minimum bactericidal concentration for free caprylic acid was established to be below 18.5 mM for S. aureus and L. monocytogenes and within the 18.5-20 mM range for E. coli and S. enterica. Moreover, caprylic acid loaded nanoparticles showed a total inhibition of the growth within the 18.5-20 mM range for the tested bacteria, and therefore the antimicrobial activity was preserved. Transmission electron microscopy images revealed that bacteria treatment with the caprylic acid-loaded nanoparticles generated disruption of cell envelope and leakage of cytoplasmic content, which resulted in cell death. We believe that caprylic acid encapsulation in nanoparticles MCM-41 can provide an effective system for potential applications in food safety in the food industry due to the possible controlled release of fatty acid and the masking of its unpleasant organoleptic properties. (C) 2015 Elsevier Ltd. All rights reservedRuiz Rico, M.; Fuentes López, C.; Pérez-Esteve, É.; Jiménez Belenguer, AI.; Quiles Chuliá, MD.; Marcos Martínez, MD.; Martínez-Máñez, R.... (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control. 56:77-85. doi:10.1016/j.foodcont.2015.03.016S77855

    Science with the Cherenkov Telescope Array

    Get PDF
    213 pages, including references and glossary. Version 2: credits and references updated, some figures updated, and author list updatedInternational audienceThe Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document

    Science with the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array, CTA, will be the major global observatory forvery high energy gamma-ray astronomy over the next decade and beyond. Thescientific potential of CTA is extremely broad: from understanding the role ofrelativistic cosmic particles to the search for dark matter. CTA is an explorerof the extreme universe, probing environments from the immediate neighbourhoodof black holes to cosmic voids on the largest scales. Covering a huge range inphoton energy from 20 GeV to 300 TeV, CTA will improve on all aspects ofperformance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to providefull sky coverage and will hence maximize the potential for the rarestphenomena such as very nearby supernovae, gamma-ray bursts or gravitationalwave transients. With 99 telescopes on the southern site and 19 telescopes onthe northern site, flexible operation will be possible, with sub-arraysavailable for specific tasks. CTA will have important synergies with many ofthe new generation of major astronomical and astroparticle observatories.Multi-wavelength and multi-messenger approaches combining CTA data with thosefrom other instruments will lead to a deeper understanding of the broad-bandnon-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory,with all data available on a public archive after a pre-defined proprietaryperiod. Scientists from institutions worldwide have combined together to formthe CTA Consortium. This Consortium has prepared a proposal for a CoreProgramme of highly motivated observations. The programme, encompassingapproximately 40% of the available observing time over the first ten years ofCTA operation, is made up of individual Key Science Projects (KSPs), which arepresented in this document

    Cherenkov Telescope Array Contributions to the 35th International Cosmic Ray Conference (ICRC2017)

    Full text link
    List of contributions from the Cherenkov Telescope Array Consortium presented at the 35th International Cosmic Ray Conference, July 12-20 2017, Busan, Korea.Comment: Index of Cherenkov Telescope Array conference proceedings at the ICRC2017, Busan, Kore

    Science with the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document

    Science with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    No full text
    The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, E>100GeV E > 100 G e V ) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system
    corecore