1,113 research outputs found
Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster
This is the final version. Available from European Geosciences Union (EGU) / Copernicus Publications via the DOI in this record.âŻThe Campanian age (Late Cretaceous) is characterized by a warm greenhouse climate with limited land-ice volume. This makes this period an ideal target for studying climate dynamics during greenhouse periods, which are essential for predictions of future climate change due to anthropogenic greenhouse gas emissions. Well-preserved fossil shells from the Campanian (±78âMa) high mid-latitude (50ââN) coastal faunas of the Kristianstad Basin (southern Sweden) offer a unique snapshot of short-term climate and environmental variability, which complements existing long-term climate reconstructions. In this study, we apply a combination of high-resolution spatially resolved trace element analyses (micro-X-ray fluorescence â ”XRF â and laser ablation inductively coupled plasma mass spectrometry â LA-ICP-MS), stable isotope analyses (IRMS) and growth modeling to study short-term (seasonal) variations recorded in the oyster species Rastellum diluvianum from the Ivö Klack locality. Geochemical records through 12 specimens shed light on the influence of specimen-specific and ontogenetic effects on the expression of seasonal variations in shell chemistry and allow disentangling vital effects from environmental influences in an effort to refine paleoseasonality reconstructions of Late Cretaceous greenhouse climates. Growth models based on stable oxygen isotope records yield information on the mode of life, circadian rhythm and reproductive cycle of these extinct oysters. This multi-proxy study reveals that mean annual temperatures in the Campanian higher mid-latitudes were 17 to 19ââC, with winter minima of âŒ13ââC and summer maxima of 26ââC, assuming a Late Cretaceous seawater oxygen isotope composition of â1ââ° VSMOW (Vienna standard mean ocean water). These results yield smaller latitudinal differences in temperature seasonality in the Campanian compared to today. Latitudinal temperature gradients were similar to the present, contrasting with previous notions of âequable climateâ during the Late Cretaceous. Our results also demonstrate that species-specific differences and uncertainties in the composition of Late Cretaceous seawater prevent trace element proxies (MgâCa, SrâCa, MgâLi and SrâLi) from being used as reliable temperature proxies for fossil oyster shells. However, trace element profiles can serve as a quick tool for diagenesis screening and investigating seasonal growth patterns in ancient shells.Flemish Institute for Science and Technology (IWT)Hercules InfrastructureFWOBelspo BRAIN ProjectCarlsbergfondetVUB Strategic Research
A two-domain elevator mechanism for sodium/proton antiport
Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pHâ6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3âĂ
resolution, solved from crystals grown at pHâ7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500âionsâper second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general
The association of health literacy with adherence in older 2 adults, and its role in interventions: a systematic meta-review
Background: Low health literacy is a common problem among older adults. It is often suggested to be associated with poor adherence. This suggested association implies a need for effective adherence interventions in low health literate people. However, previous reviews show mixed results on the association between low health literacy and poor adherence. A systematic meta-review of systematic reviews was conducted to study the association between health literacy and adherence in adults above the age of 50. Evidence for the effectiveness of adherence interventions among adults in this older age group with low health literacy was also explored. Methods: Eight electronic databases (MEDLINE, ERIC, EMBASE, PsycINFO, CINAHL, DARE, the Cochrane Library, and Web of Knowledge) were searched using a variety of keywords regarding health literacy and adherence. Additionally, references of identified articles were checked. Systematic reviews were included if they assessed the association between health literacy and adherence or evaluated the effectiveness of interventions to improve adherence in adults with low health literacy. The AMSTAR tool was used to assess the quality of the included reviews. The selection procedure, data-extraction, and quality assessment were performed by two independent reviewers. Seventeen reviews were selected for inclusion. Results: Reviews varied widely in quality. Both reviews of high and low quality found only weak or mixed associations between health literacy and adherence among older adults. Reviews report on seven studies that assess the effectiveness of adherence interventions among low health literate older adults. The results suggest that some adherence interventions are effective for this group. The interventions described in the reviews focused mainly on education and on lowering the health literacy demands of adherence instructions. No conclusions could be drawn about which type of intervention could be most beneficial for this population. Conclusions: Evidence on the association between health literacy and adherence in older adults is relatively weak. Adherence interventions are potentially effective for the vulnerable population of older adults with low levels of health literacy, but the evidence on this topic is limited. Further research is needed on the association between health literacy and general health behavior, and on the effectiveness of interventions
The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls
Cyclostratigraphy is an important tool for understanding astronomical climate forcing and reading geological time in sedimentary sequences, provided that an imprint of insolation variations caused by Earthâs orbital eccentricity, obliquity and/or precession is preserved (Milankovitch forcing). Numerous stratigraphic and paleoclimate studies have applied cyclostratigraphy, but the robustness of the methodology and its dependence on the investigator have not been systematically evaluated. We developed the Cyclostratigraphy Intercomparison Project (CIP) to assess the robustness of cyclostratigraphic methods using an experimental design of three artificial cyclostratigraphic case studies with known input parameters. Each case study is designed to address specific challenges that are relevant to cyclostratigraphy. Case 1 represents an offshore research vessel environment, as only a drill-core photo and the approximate position of a late Miocene stage boundary are available for analysis. In Case 2, the Pleistocene proxy record displays clear nonlinear cyclical patterns and the interpretation is complicated by the presence of a hiatus. Case 3 represents a Late Devonian proxy record with a low signal-to-noise ratio with no specific theoretical astronomical solution available for this age. Each case was analyzed by a test group of 17-20 participants, with varying experience levels, methodological preferences and dedicated analysis time. During the CIP 2018 meeting in Brussels, Belgium, the ensuing analyses and discussion demonstrated that most participants did not arrive at a perfect solution, which may be partly explained by the limited amount of time spent on the exercises (âŒ4.5 hours per case). However, in all three cases, the median solution of all submitted analyses accurately approached the correct result and several participants obtained the exact correct answers. Interestingly, systematically better performances were obtained for cases that represented the data type and stratigraphic age that were closest to the individual participantsâ experience. This experiment demonstrates that cyclostratigraphy is a powerful tool for deciphering time in sedimentary successions and, importantly, that it is a trainable skill. Finally, we emphasize the importance of an integrated stratigraphic approach and provide flexible guidelines on what good practices in cyclostratigraphy should include. Our case studies provide valuable insight into current common practices in cyclostratigraphy, their potential merits and pitfalls. Our work does not provide a quantitative measure of reliability and uncertainty of cyclostratigraphy, but rather constitutes a starting point for further discussions on how to move the maturing field of cyclostratigraphy forward
Effectiveness of a family-centered method for the early identification of social-emotional and behavioral problems in children: a quasi experimental study
Background: Social-emotional and behavioral problems are common in childhood. Early identification of these is important as it can lead to interventions which may improve the child's prognosis. In Dutch Preventive Child Healthcare (PCH), a new family-centered method has been implemented to identify these problems in early childhood. Its main features are consideration of the child's developmental context and empowerment of parents to enhance the developmental context. Methods/design: In a quasi-experimental study, embedded in routine PCH in the Netherlands, regions in which the family-centered method has been implemented (intervention condition) will be compared to "care as usual" regions (control condition). These regions are comparable in regard to socio-demographic characteristics. From more than 3,500 newborn babies, 18-month follow-up data on social-emotional and behavioral development will be obtained. PCH professionals will assess development during each routine well-child visit; participating parents will fill in standardized questionnaires. Primary outcomes in the study are the proportion of social-emotional and behavioral problems identified by PCH professionals in children aged 2-14 and 18 months in both conditions, and the proportion of agreement between the assessment of PCH professionals and parents. In addition, the added value of the family-centered approach will be assessed by comparing PCH findings with standardized questionnaires. The secondary outcomes are the degree to which the needs of parents are met and the degree to which they are willing to disclose concerns. Discussion: The family-centered method seems promising for early identification of social-emotional and behavioral problems. The results of this study will contribute to evidence-based public health. Trial registration: NTR2681
Allomorphy as a mechanism of post-translational control of enzyme activity
Enzyme regulation is vital for metabolic adaptability in living systems. Fine control of enzyme activity is often delivered through post-translational mechanisms, such as allostery or allokairy. ÎČ-phosphoglucomutase (ÎČPGM) from Lactococcus lactis is a phosphoryl transfer enzyme required for complete catabolism of trehalose and maltose, through the isomerisation of ÎČ-glucose 1-phosphate to glucose 6-phosphate via ÎČ-glucose 1,6-bisphosphate. Surprisingly for a gatekeeper of glycolysis, no fine control mechanism of ÎČPGM has yet been reported. Herein, we describe allomorphy, a post-translational control mechanism of enzyme activity. In ÎČPGM, isomerisation of the K145-P146 peptide bond results in the population of two conformers that have different activities owing to repositioning of the K145 sidechain. In vivo phosphorylating agents, such as fructose 1,6-bisphosphate, generate phosphorylated forms of both conformers, leading to a lag phase in activity until the more active phosphorylated conformer dominates. In contrast, the reaction intermediate ÎČ-glucose 1,6-bisphosphate, whose concentration depends on the ÎČ-glucose 1-phosphate concentration, couples the conformational switch and the phosphorylation step, resulting in the rapid generation of the more active phosphorylated conformer. In enabling different behaviours for different allomorphic activators, allomorphy allows an organism to maximise its responsiveness to environmental changes while minimising the diversion of valuable metabolites
Recommended from our members
Percutaneous coronary intervention of native coronary artery versus saphenous vein graft in patients with prior coronary artery bypass graft surgery: Rationale and design of the multicenter, randomized PROCTOR trial.
BACKGROUND: Patients with prior coronary artery bypass grafting (CABG) frequently require repeat percutaneous revascularization due to advanced age, progressive coronary artery disease and bypass graft failure. Percutaneous coronary intervention (PCI) of either the bypass graft or the native coronary artery may be performed. Randomized trials comparing native vessel PCI with bypass graft PCI are lacking and long-term outcomes have not been reported. METHODS: PROCTOR (NCT03805048) is a prospective, multicenter, randomized controlled trial, that will include 584 patients presenting with saphenous vein graft (SVG) failure and a clinical indication for revascularization, as determined by the local Heart Team. The trial is designed to compare the clinical and angiographic outcomes in patients randomly allocated in a 1:1 fashion to either a strategy of native vessel PCI or SVG PCI. The primary study endpoint is a 3-year composite of major adverse cardiac events (MACE: all-cause mortality, non-fatal target coronary territory myocardial infarction [MI], or clinically driven target coronary territory revascularization). At 3-years, after evaluation of the primary endpoint, follow-up invasive coronary angiography will be performed. Secondary endpoints comprise individual components of MACE at 1, 3 and 5 years follow-up, PCI-related MI, MI >48 hours after index PCI, target vessel failure, target lesion revascularization, renal failure requiring renal-replacement therapy, angiographic outcomes at 3-years and quality of life (delta Seattle Angina Questionnaire, Canadian Cardiovascular Society Grading Scale and Rose Dyspnea Scale). CONCLUSION: PROCTOR is the first randomized trial comparing an invasive strategy of native coronary artery PCI with SVG PCI in post-CABG patients presenting with SVG failure
Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.
The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.: This work was supported by the British Heart Foundation (BHF; Grants NH/11/1/28922, G1000847, FS/13/29/30024 and FS/18/46/33663), Oxford-Cambridge Centre for Regenerative Medicine (RM/13/3/30159), the UK Medical Research Council (MRC) and the Cambridge Hospitals National Institute for Health Research Biomedical Research Centre funding (SS), as well as National Institutes of Health Grants P01HL094374, P01GM081619, R01HL12836 and a grant from the Fondation Leducq Transatlantic Network of Excellence (CEM). J.B. was supported by a Cambridge National Institute for Health Research Biomedical Research Centre Cardiovascular Clinical Research Fellowship and subsequently, by a BHF Studentship (Grant FS/13/65/30441). DI received a University of Cambridge Commonwealth Scholarship. LG is supported by BHF Award RM/l3/3/30159 and LPO is funded by a Wellcome Trust Fellowship (203568/Z/16/Z). NF was supported by BHF grants RG/13/14/30314. NL was supported by the Biotechnology and Biological Sciences Research Council (Institute Strategic Programmes BBS/E/B/000C0419 and BBS/E/B/000C0434). SS and MB were supported by the British Heart Foundation Centre for Cardiovascular Research Excellence. Core support was provided by the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z), The authors thank Osiris for provision of the primary mesenchymal stem cells (59
A half-site multimeric enzyme achieves its cooperativity without conformational changes
Cooperativity is a feature many multimeric proteins use to control activity. Here we show that the bacterial heptose isomerase GmhA displays homotropic positive and negative cooperativity among its four protomers. Most similar proteins achieve this through conformational changes: GmhA instead employs a delicate network of hydrogen bonds, and couples pairs of active sites controlled by a unique water channel. This network apparently raises the Lewis acidity of the catalytic zinc, thus increasing the activity at one active site at the cost of preventing substrate from adopting a reactive conformation at the paired negatively cooperative site â a âhalf-siteâ behavior. Our study establishes the principle that multimeric enzymes can exploit this cooperativity without conformational changes to maximize their catalytic power and control. More broadly, this subtlety by which enzymes regulate functions could be used to explore new inhibitor design strategies
Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance
This paper presents DELPHI measurements and interpretations of
cross-sections, forward-backward asymmetries, and angular distributions, for
the e+e- -> ffbar process for centre-of-mass energies above the Z resonance,
from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are
consistent with the predictions of the Standard Model and are used to study a
variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering
and several models which include physics beyond the Standard Model: the
exchange of Z' bosons, contact interactions between fermions, the exchange of
gravitons in large extra dimensions and the exchange of sneutrino in R-parity
violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.
- âŠ