242 research outputs found

    Primary Exposure to SARS-CoV-2 via Infection or Vaccination Determines Mucosal Antibody-Dependent ACE2 Binding Inhibition

    Get PDF
    Background: Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. Methods: We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. Results: Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. Conclusions: Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-Throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.</p

    Long-Term Outcome of Patients With a Hematologic Malignancy and Multiple Organ Failure Admitted at the Intensive Care

    Get PDF
    Objectives: Historically, patients with a hematologic malignancy have one of the highest mortality rates among cancer patients admitted to the ICU. Therefore, physicians are often reluctant to admit these patients to the ICU. The aim of our study was to examine the survival of patients who have a hematologic malignancy and multiple organ failure admitted to the ICU. Design: This retrospective cohort study, part of the HEMA-ICU study group, was designed to study the survival of patients with a hematologic malignancy and organ failure after admission to the ICU. Patients were followed for at least 1 year. Setting: Five university hospitals in the Netherlands. Patients: One-thousand ninety-seven patients with a hematologic malignancy who were admitted at the ICU. Interventions: None. Measurements and Main Results: Primary outcome was 1-year survival. Organ failure was categorized as acute kidney injury, respiratory failure, hepatic failure, and hemodynamic failure; multiple organ failure was defined as failure of two or more organs. The World Health Organization performance score measured 3 months after discharge from the ICU was used as a measure of functional outcome. The 1-year survival rate among these patients was 38%. Multiple organ failure was inversely associated with long-term survival, and an absence of respiratory failure was the strongest predictor of 1-year survival. The survival rate among patients with 2, 3, and 4 failing organs was 27%, 22%, and 8%, respectively. Among all surviving patients for which World Health Organization scores were available, 39% had a World Health Organization performance score of 0-1 3 months after ICU discharge. Functional outcome was not associated with the number of failing organs. Conclusions: Our results suggest that multiple organ failure should not be used as a criterion for excluding a patient with a hematologic malignancy from admission to the ICU.</p

    Development and Validation of a Prediction Model for 1-Year Mortality in Patients With a Hematologic Malignancy Admitted to the ICU

    Get PDF
    OBJECTIVES: To develop and validate a prediction model for 1-year mortality in patients with a hematologic malignancy acutely admitted to the ICU. DESIGN: A retrospective cohort study. SETTING: Five university hospitals in the Netherlands between 2002 and 2015. PATIENTS: A total of 1097 consecutive patients with a hematologic malignancy were acutely admitted to the ICU for at least 24 h.INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We created a 13-variable model from 22 potential predictors. Key predictors included active disease, age, previous hematopoietic stem cell transplantation, mechanical ventilation, lowest platelet count, acute kidney injury, maximum heart rate, and type of malignancy. A bootstrap procedure reduced overfitting and improved the model's generalizability. This involved estimating the optimism in the initial model and shrinking the regression coefficients accordingly in the final model. We assessed performance using internal-external cross-validation by center and compared it with the Acute Physiology and Chronic Health Evaluation II model. Additionally, we evaluated clinical usefulness through decision curve analysis. The overall 1-year mortality rate observed in the study was 62% (95% CI, 59-65). Our 13-variable prediction model demonstrated acceptable calibration and discrimination at internal-external validation across centers (C-statistic 0.70; 95% CI, 0.63-0.77), outperforming the Acute Physiology and Chronic Health Evaluation II model (C-statistic 0.61; 95% CI, 0.57-0.65). Decision curve analysis indicated overall net benefit within a clinically relevant threshold probability range of 60-100% predicted 1-year mortality. CONCLUSIONS: Our newly developed 13-variable prediction model predicts 1-year mortality in hematologic malignancy patients admitted to the ICU more accurately than the Acute Physiology and Chronic Health Evaluation II model. This model may aid in shared decision-making regarding the continuation of ICU care and end-of-life considerations.</p

    Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper.

    Get PDF
    The EUROFUNG network is a virtual centre of multidisciplinary expertise in the field of fungal biotechnology. The first academic-industry Think Tank was hosted by EUROFUNG to summarise the state of the art and future challenges in fungal biology and biotechnology in the coming decade. Currently, fungal cell factories are important for bulk manufacturing of organic acids, proteins, enzymes, secondary metabolites and active pharmaceutical ingredients in white and red biotechnology. In contrast, fungal pathogens of humans kill more people than malaria or tuberculosis. Fungi are significantly impacting on global food security, damaging global crop production, causing disease in domesticated animals, and spoiling an estimated 10 % of harvested crops. A number of challenges now need to be addressed to improve our strategies to control fungal pathogenicity and to optimise the use of fungi as sources for novel compounds and as cell factories for large scale manufacture of bio-based products. This white paper reports on the discussions of the Think Tank meeting and the suggestions made for moving fungal bio(techno)logy forward

    How do psychosocial determinants in migrant women in the Netherlands differ from these among their counterparts in their country of origin? A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migration of non-Western women into Western countries often results in an increase in smoking prevalence among migrant women. To gain more insight into how to prevent this increase, we compared psychosocial determinants of smoking between Surinamese women in Suriname and those in the Netherlands.</p> <p>Methods</p> <p>Data were obtained between 2000 and 2004 from two cross-sectional studies, the CVRFO study in Suriname (n = 702) and the SUNSET study in the Netherlands (n = 674). For analyses of determinants, we collected additional data in CVRFO study population (n = 85). Differences between the two groups were analysed by chi-square analyses and logistic regression analyses.</p> <p>Results</p> <p>As was found in other studies among migrant women, more Surinamese migrant women in the Netherlands smoked (31%) than women in Suriname (16%). More Surinamese women in the Netherlands than in Suriname had a positive affective and cognitive attitude towards smoking (OR = 2.6 (95%CI 1.05;6.39) and OR = 3.3 (95%CI 1.31;8.41)). They perceived a positive norm within their partners and friends regarding smoking more frequently (OR = 6.5 (95%CI 2.7;15.6) and OR = 3.3 (95%CI 1.50;7.25)).</p> <p>Conclusion</p> <p>Migrant women are more positive towards smoking and perceived a more positive norm towards smoking when compared with women in the country of origin. Interventions targeted at the psychosocial determinants regarding smoking for newly migrated women, in particular the consequences of smoking and the norm towards smoking might help to prevent an increase in smoking in those populations.</p

    Green Infrastructure in the Space of Flows: An Urban Metabolism

    Get PDF
    Recent research demonstrates that urban metabolism studies hold ample scope for informing more sustainable urban planning and design. The assessment of the resource flows that are required to sustain the growth and maintenance of cities can allow gaining a clear picture of how cities operate to comply with environmental performance standards and to ensure that both human and ecosystem health are preserved. Green infrastructure (GI) plays a key role in enhancing both cities’ environmental performance and health. For example, GI interventions mitigate the Urban Heat Island effect (improved thermal comfort), reduce particulate matter concentration (healthier air quality), and sequestrate and store atmospheric carbon (climate change mitigation). Research on ecosystem services and the application of the concept in urban planning provides a growing evidence base that an understanding of provisioning and regulating services can facilitate more environmentally informed GI planning and design. The contribution of GI in enhancing human health and psychological wellbeing is also evidenced in recent studies valuing both material and immaterial benefits provided by urban ecosystems, including cultural ecosystem services. Therefore, the use of ecosystem service frameworks can help reveal and quantify the role of GI in fostering both urban environmental quality and the wellbeing of human populations. However, there remains little discussion of how health and wellbeing aspects can be integrated with environmental performance objectives. In this chapter, urban metabolism thinking is proposed as a way forward, providing analytical tools to inform environmentally-optimized strategies across the urban scales. Opportunities to foster integrated urban metabolism approaches that can inform more holistic GI planning are discussed. Finally, future research avenues to incorporate the multiple dimensions of human health and wellbeing into urban metabolism thinking are highlighted

    Immunogenicity of Therapeutic Proteins: The Use of Animal Models

    Get PDF
    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far

    Detection of Ischemic ST-Segment Changes Using a Novel Handheld ECG Device in a Porcine Model

    Get PDF
    Background: Portable, smartphone-sized electrocardiography (ECG) has the potential to reduce time to treatment for patients suffering acute cardiac ischemia, thereby lowering the morbidity and mortality. In the UMC Utrecht, a portable, smartphone-sized, multi-lead precordial ECG recording device (miniECG 1.0, UMC Utrecht) was developed. Objectives: The purpose of this study was to investigate the ability of the miniECG to capture ischemic ECG changes in a porcine coronary occlusion model. Methods: In 8 animals, antero-septal myocardial infarction was induced by 75-minute occlusion of the left anterior descending artery, after the first or second diagonal. MiniECG and 12-lead ECG recordings were acquired simultaneously before, during and after coronary artery occlusion and ST-segment deviation was evaluated. Results: During the complete occlusion and reperfusion period, miniECG showed large ST-segment deviation in comparison to 12-lead ECG. MiniECG ST-segment deviation was observed within 1 minute for most animals. The miniECG was positive for ischemia (ie, ST-segment deviation ≥1 mm) for 99.7% (Q1-Q3: 99.6%-99.9%) of the occlusion time, while the 12-lead was only positive for 79.8% (Q1-Q3: 81.1%-98.7%) of the time (P = 0.018). ST-segment deviation reached maxima of 10.5 mm [95% CI: 6.5-14.5 mm] vs 5.0 mm [95% CI: 2.0-8.0 mm] for the miniECG vs 12-lead ECG, respectively. Conclusions: MiniECG ST-segment deviation was observed early and was of large magnitude during 75 minutes of porcine transmural antero-septal infarction. The miniECG was positive for ischemia for the complete occlusion period. These findings demonstrate the potential of the miniECG in the detection of cardiac ischemia. Although clinical research is required, data suggests that the miniECG is a promising tool for the detection of cardiac ischemia

    Novel Missense Mutation A789V in IQSEC2 underlies X-Linked intellectual disability in the MRX78 family

    Get PDF
    Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family

    Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent

    Get PDF
    Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter‐individual variability in associations between body weight and dairy consumption. Methods and results: A genome‐wide interaction study to discover genetic variants that account for variation in BMI in the context of low‐fat, high‐fat and total dairy intake in cross‐sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta‐analyzed. Twenty‐six genetic variants reached the selected significance threshold (p‐interaction \u3c10−7), and six independent variants (LINC01512‐rs7751666, PALM2/AKAP2‐rs914359, ACTA2‐rs1388, PPP1R12A‐rs7961195, LINC00333‐rs9635058, AC098847.1‐rs1791355) were evaluated meta‐analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p‐interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p‐interaction = 7.36 × 10−8) such that each serving of low‐fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2‐rs1388) approached interaction replication significance for low‐fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight
    corecore