153 research outputs found

    Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer.

    Get PDF
    BackgroundWe previously developed a bladder cancer-specific ligand (PLZ4) that can specifically bind to both human and dog bladder cancer cells in vitro and in vivo. We have also developed a micelle nanocarrier drug-delivery system. Here, we assessed whether the targeting micelles decorated with PLZ4 on the surface could specifically target dog bladder cancer cells.Materials and methodsMicelle-building monomers (ie, telodendrimers) were synthesized through conjugation of polyethylene glycol with a cholic acid cluster at one end and PLZ4 at the other, which then self-assembled in an aqueous solution to form micelles. Dog bladder cancer cell lines were used for in vitro and in vivo drug delivery studies.ResultsCompared to nontargeting micelles, targeting PLZ4 micelles (23.2 ± 8.1 nm in diameter) loaded with the imaging agent DiD and the chemotherapeutic drug paclitaxel or daunorubicin were more efficient in targeted drug delivery and more effective in cell killing in vitro. PLZ4 facilitated the uptake of micelles together with the cargo load into the target cells. We also developed an orthotopic invasive dog bladder cancer xenograft model in mice. In vivo studies with this model showed the targeting micelles were more efficient in targeted drug delivery than the free dye (14.3×; P < 0.01) and nontargeting micelles (1.5×; P < 0.05).ConclusionTargeting micelles decorated with PLZ4 can selectively target dog bladder cancer cells and potentially be developed as imaging and therapeutic agents in a clinical setting. Preclinical studies of targeting micelles can be performed in dogs with spontaneous bladder cancer before proceeding with studies using human patients

    Diversification of African tree legumes in Miombo-Mopane woodlands

    Get PDF
    The southern African Miombo and Mopane ecoregions constitute a unique repository of plant diversity whose diversification and evolutionary history is still understudied. In this work, we assessed the diversity, distribution, and conservation status of Miombo and Mopane tree legumes within the Zambezian phytoregion. Data were retrieved from several plant and gene databases and phylogenetic analyses were performed based on genetic barcodes. Seventy-eight species (74 from Miombo and 23 from Mopane, 19 common to both ecoregions) have been scored. Species diversity was high within both ecoregions, but information about the actual conservation status is scarce and available only for ca. 15% of the species. Results of phylogenetic analyses were consistent with current legume classification but did not allow us to draw any conclusion regarding the evolutionary history of Miombo and Mopane tree legumes. Future studies are proposed to dissect the diversity and structure of key species in order to consolidate the network of conservation areasinfo:eu-repo/semantics/publishedVersio

    Targeting canine bladder transitional cell carcinoma with a human bladder cancer-specific ligand

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To determine if a human bladder cancer-specific peptide named PLZ4 can target canine bladder cancer cells.</p> <p>Experimental Design</p> <p>The binding of PLZ4 to five established canine invasive transitional cell carcinoma (TCC) cell lines and to normal canine bladder urothelial cells was determined using the whole cell binding assay and an affinitofluorescence assay. The WST-8 assay was performed to determine whether PLZ4 affected cell viability. <it>In vivo </it>tumor-specific homing/targeting property and biodistribution of PLZ4 was performed in a mouse xenograft model via tail vein injection and was confirmed with <it>ex vivo </it>imaging.</p> <p>Results</p> <p>PLZ4 exhibited high affinity and specific dose-dependent binding to canine bladder TCC cell lines, but not to normal canine urothelial cells. No significant changes in cell viability or proliferation were observed upon incubation with PLZ4. The <it>in vivo </it>and <it>ex vivo </it>optical imaging study showed that, when linked with the near-infrared fluorescent dye Cy5.5, PLZ4 substantially accumulated at the canine bladder cancer foci in the mouse xenograft model as compared to the control.</p> <p>Conclusions and Clinical Relevance</p> <p>PLZ4 can specifically bind to canine bladder cancer cells. This suggests that the preclinical studies of PLZ4 as a potential diagnostic and therapeutic agent can be performed in dogs with naturally occurring bladder cancer, and that PLZ4 can possibly be developed in the management of canine bladder cancer.</p

    Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer

    Get PDF
    Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse

    Beliefs and perceptions about the causes of breast cancer: a case-control study

    Get PDF
    Background: Attributions of causality are common for many diseases, including breast cancer. The risk of developing breast cancer can be reduced by modifications to lifestyle and behaviours to minimise exposure to specific risk factors, such as obesity. However, these modifications will only occur if women believe that certain behaviours/lifestyle factors have an impact on the development of breast cancer. Method: The Breast Cancer, Environment and Employment Study is a case-control study of breast cancer conducted in Western Australia between 2009 and 2011. As part of the study 1109 women with breast cancer and 1633 women without the disease completed a Risk Perception questionnaire in which they were asked in an open-ended question for specific cause/s to the development of breast cancer in themselves or in others. The study identified specific causal beliefs, and assessed differences in the beliefs between women with and without breast cancer. Results: The most common attributions in women without breast cancer were to familial or inherited factors (77.6%), followed by lifestyle factors, such as poor diet and smoking (47.1%), and environmental factors, such as food additives (45.4%). The most common attributions in women with breast cancer were to mental or emotional factors (46.3%), especially stress, followed by lifestyle factors (38.6%) and physiological factors (37.5%), particularly relating to hormonal history.Conclusions: While the majority of participants in this study provided one or more causal attributions for breast cancer, many of the reported risk factors do not correspond to those generally accepted by the scientific community. These misperceptions could be having a significant impact on the success of prevention and early detection programs that seek to minimise the pain and suffering caused by this disease. In particular, women who have no family history of the disease may not work to minimise their exposure to the modifiable risk factors

    Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement

    Full text link
    The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10462-016-9505-7.The evaluation of artificial intelligence systems and components is crucial for the progress of the discipline. In this paper we describe and critically assess the different ways AI systems are evaluated, and the role of components and techniques in these systems. We first focus on the traditional task-oriented evaluation approach. We identify three kinds of evaluation: human discrimination, problem benchmarks and peer confrontation. We describe some of the limitations of the many evaluation schemes and competitions in these three categories, and follow the progression of some of these tests. We then focus on a less customary (and challenging) ability-oriented evaluation approach, where a system is characterised by its (cognitive) abilities, rather than by the tasks it is designed to solve. We discuss several possibilities: the adaptation of cognitive tests used for humans and animals, the development of tests derived from algorithmic information theory or more integrated approaches under the perspective of universal psychometrics. We analyse some evaluation tests from AI that are better positioned for an ability-oriented evaluation and discuss how their problems and limitations can possibly be addressed with some of the tools and ideas that appear within the paper. Finally, we enumerate a series of lessons learnt and generic guidelines to be used when an AI evaluation scheme is under consideration.I thank the organisers of the AEPIA Summer School On Artificial Intelligence, held in September 2014, for giving me the opportunity to give a lecture on 'AI Evaluation'. This paper was born out of and evolved through that lecture. The information about many benchmarks and competitions discussed in this paper have been contrasted with information from and discussions with many people: M. Bedia, A. Cangelosi, C. Dimitrakakis, I. GarcIa-Varea, Katja Hofmann, W. Langdon, E. Messina, S. Mueller, M. Siebers and C. Soares. Figure 4 is courtesy of F. Martinez-Plumed. Finally, I thank the anonymous reviewers, whose comments have helped to significantly improve the balance and coverage of the paper. This work has been partially supported by the EU (FEDER) and the Spanish MINECO under Grants TIN 2013-45732-C4-1-P, TIN 2015-69175-C4-1-R and by Generalitat Valenciana PROMETEOII2015/013.José Hernández-Orallo (2016). Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement. Artificial Intelligence Review. 1-51. https://doi.org/10.1007/s10462-016-9505-7S151Abel D, Agarwal A, Diaz F, Krishnamurthy A, Schapire RE (2016) Exploratory gradient boosting for reinforcement learning in complex domains. arXiv preprint arXiv:1603.04119Adams S, Arel I, Bach J, Coop R, Furlan R, Goertzel B, Hall JS, Samsonovich A, Scheutz M, Schlesinger M, Shapiro SC, Sowa J (2012) Mapping the landscape of human-level artificial general intelligence. AI Mag 33(1):25–42Adams SS, Banavar G, Campbell M (2016) I-athlon: towards a multi-dimensional Turing test. AI Mag 37(1):78–84Alcalá J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2010) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Mult Valued Logic Soft Comput 17:255–287Alexander JRM, Smales S (1997) Intelligence, learning and long-term memory. Personal Individ Differ 23(5):815–825Alpcan T, Everitt T, Hutter M (2014) Can we measure the difficulty of an optimization problem? In: IEEE information theory workshop (ITW)Alur R, Bodik R, Juniwal G, Martin MMK, Raghothaman M, Seshia SA, Singh R, Solar-Lezama A, Torlak E, Udupa A (2013) Syntax-guided synthesis. In: Formal methods in computer-aided design (FMCAD), 2013, IEEE, pp 1–17Alvarado N, Adams SS, Burbeck S, Latta C (2002) Beyond the Turing test: performance metrics for evaluating a computer simulation of the human mind. In: Proceedings of the 2nd international conference on development and learning, IEEE, pp 147–152Amigoni F, Bastianelli E, Berghofer J, Bonarini A, Fontana G, Hochgeschwender N, Iocchi L, Kraetzschmar G, Lima P, Matteucci M, Miraldo P, Nardi D, Schiaffonati V (2015) Competitions for benchmarking: task and functionality scoring complete performance assessment. IEEE Robot Autom Mag 22(3):53–61Anderson J, Lebiere C (2003) The Newell test for a theory of cognition. Behav Brain Sci 26(5):587–601Anderson J, Baltes J, Cheng CT (2011) Robotics competitions as benchmarks for AI research. Knowl Eng Rev 26(01):11–17Arel I, Rose DC, Karnowski TP (2010) Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput Intell Mag 5(4):13–18Asada M, Hosoda K, Kuniyoshi Y, Ishiguro H, Inui T, Yoshikawa Y, Ogino M, Yoshida C (2009) Cognitive developmental robotics: a survey. IEEE Trans Auton Ment Dev 1(1):12–34Aziz H, Brill M, Fischer F, Harrenstein P, Lang J, Seedig HG (2015) Possible and necessary winners of partial tournaments. J Artif Intell Res 54:493–534Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/mlBagnall AJ, Zatuchna ZV (2005) On the classification of maze problems. In: Bull L, Kovacs T (eds) Foundations of learning classifier system. Studies in fuzziness and soft computing, vol. 183, Springer, pp 305–316. http://rd.springer.com/chapter/10.1007/11319122_12Baldwin D, Yadav SB (1995) The process of research investigations in artificial intelligence - a unified view. IEEE Trans Syst Man Cybern 25(5):852–861Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: an evaluation platform for general agents. J Artif Intell Res 47:253–279Besold TR (2014) A note on chances and limitations of psychometric ai. In: KI 2014: advances in artificial intelligence. Springer, pp 49–54Biever C (2011) Ultimate IQ: one test to rule them all. New Sci 211(2829, 10 September 2011):42–45Borg M, Johansen SS, Thomsen DL, Kraus M (2012) Practical implementation of a graphics Turing test. In: Advances in visual computing. Springer, pp 305–313Boring EG (1923) Intelligence as the tests test it. New Repub 35–37Bostrom N (2014) Superintelligence: paths, dangers, strategies. Oxford University Press, OxfordBrazdil P, Carrier CG, Soares C, Vilalta R (2008) Metalearning: applications to data mining. Springer, New YorkBringsjord S (2011) Psychometric artificial intelligence. J Exp Theor Artif Intell 23(3):271–277Bringsjord S, Schimanski B (2003) What is artificial intelligence? Psychometric AI as an answer. In: International joint conference on artificial intelligence, pp 887–893Brundage M (2016) Modeling progress in ai. AAAI 2016 Workshop on AI, Ethics, and SocietyBuchanan BG (1988) Artificial intelligence as an experimental science. Springer, New YorkBuhrmester M, Kwang T, Gosling SD (2011) Amazon’s mechanical turk a new source of inexpensive, yet high-quality, data? Perspect Psychol Sci 6(1):3–5Bursztein E, Aigrain J, Moscicki A, Mitchell JC (2014) The end is nigh: generic solving of text-based captchas. In: Proceedings of the 8th USENIX conference on Offensive Technologies, USENIX Association, p 3Campbell M, Hoane AJ, Hsu F (2002) Deep Blue. Artif Intell 134(1–2):57–83Cangelosi A, Schlesinger M, Smith LB (2015) Developmental robotics: from babies to robots. MIT Press, CambridgeCaputo B, Müller H, Martinez-Gomez J, Villegas M, Acar B, Patricia N, Marvasti N, Üsküdarlı S, Paredes R, Cazorla M et al (2014) Imageclef 2014: overview and analysis of the results. In: Information access evaluation. Multilinguality, multimodality, and interaction, Springer, pp 192–211Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER Jr, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: AAAI, vol 5, p 3Carroll JB (1993) Human cognitive abilities: a survey of factor-analytic studies. Cambridge University Press, CambridgeCaruana R (1997) Multitask learning. Mach Learn 28(1):41–75Chaitin GJ (1982) Gödel’s theorem and information. Int J Theor Phys 21(12):941–954Chandrasekaran B (1990) What kind of information processing is intelligence? In: The foundation of artificial intelligence—a sourcebook. Cambridge University Press, pp 14–46Chater N (1999) The search for simplicity: a fundamental cognitive principle? Q J Exp Psychol Sect A 52(2):273–302Chater N, Vitányi P (2003) Simplicity: a unifying principle in cognitive science? Trends Cogn Sci 7(1):19–22Chu Z, Gianvecchio S, Wang H, Jajodia S (2010) Who is tweeting on twitter: human, bot, or cyborg? In: Proceedings of the 26th annual computer security applications conference, ACM, pp 21–30Cochran WG (2007) Sampling techniques. Wiley, New YorkCohen PR, Howe AE (1988) How evaluation guides AI research: the message still counts more than the medium. AI Mag 9(4):35Cohen Y (2013) Testing and cognitive enhancement. Technical repor, National Institute for Testing and Evaluation, Jerusalem, IsraelConrad JG, Zeleznikow J (2013) The significance of evaluation in AI and law: a case study re-examining ICAIL proceedings. In: Proceedings of the 14th international conference on artificial intelligence and law, ACM, pp 186–191Conrad JG, Zeleznikow J (2015) The role of evaluation in ai and law. In: Proceedings of the 15th international conference on artificial intelligence and law, pp 181–186Deary IJ, Der G, Ford G (2001) Reaction times and intelligence differences: a population-based cohort study. Intelligence 29(5):389–399Decker KS, Durfee EH, Lesser VR (1989) Evaluating research in cooperative distributed problem solving. Distrib Artif Intell 2:487–519Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30Detterman DK (2011) A challenge to Watson. Intelligence 39(2–3):77–78Dimitrakakis C (2016) Personal communicationDimitrakakis C, Li G, Tziortziotis N (2014) The reinforcement learning competition 2014. AI Mag 35(3):61–65Dowe DL (2013) Introduction to Ray Solomonoff 85th memorial conference. In: Dowe DL (ed) Algorithmic probability and friends. Bayesian prediction and artificial intelligence, lecture notes in computer science, vol 7070. Springer, Berlin, pp 1–36Dowe DL, Hajek AR (1997) A computational extension to the Turing Test. In: Proceedings of the 4th conference of the Australasian cognitive science society, University of Newcastle, NSW, AustraliaDowe DL, Hajek AR (1998) A non-behavioural, computational extension to the Turing test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106Dowe DL, Hernández-Orallo J (2012) IQ tests are not for machines, yet. Intelligence 40(2):77–81Dowe DL, Hernández-Orallo J (2014) How universal can an intelligence test be? Adapt Behav 22(1):51–69Drummond C (2009) Replicability is not reproducibility: nor is it good science. In: Proceedings of the evaluation methods for machine learning workshop at the 26th ICML, Montreal, CanadaDrummond C, Japkowicz N (2010) Warning: statistical benchmarking is addictive. Kicking the habit in machine learning. J Exp Theor Artif Intell 22(1):67–80Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous control. arXiv preprint arXiv:1604.06778Eden AH, Moor JH, Soraker JH, Steinhart E (2013) Singularity hypotheses: a scientific and philosophical assessment. Springer, New YorkEdmondson W (2012) The intelligence in ETI—what can we know? Acta Astronaut 78:37–42Elo AE (1978) The rating of chessplayers, past and present, vol 3. Batsford, LondonEmbretson SE, Reise SP (2000) Item response theory for psychologists. L. Erlbaum, HillsdaleEvans JM, Messina ER (2001) Performance metrics for intelligent systems. NIST Special Publication SP, pp 101–104Everitt T, Lattimore T, Hutter M (2014) Free lunch for optimisation under the universal distribution. In: 2014 IEEE Congress on evolutionary computation (CEC), IEEE, pp 167–174Falkenauer E (1998) On method overfitting. J Heuristics 4(3):281–287Feldman J (2003) Simplicity and complexity in human concept learning. Gen Psychol 38(1):9–15Ferrando PJ (2009) Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Appl Psychol Meas 33(1):9–24Ferrando PJ (2012) Assessing the discriminating power of item and test scores in the linear factor-analysis model. Psicológica 33:111–139Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recogn Lett 30(1):27–38Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock J, Nyberg E, Prager J et al (2010) Building Watson: an overview of the DeepQA project. AI Mag 31(3):59–79Fogel DB (1991) The evolution of intelligent decision making in gaming. Cybern Syst 22(2):223–236Gaschnig J, Klahr P, Pople H, Shortliffe E, Terry A (1983) Evaluation of expert systems: issues and case studies. Build Exp Syst 1:241–278Geissman JR, Schultz RD (1988) Verification & validation. AI Exp 3(2):26–33Genesereth M, Love N, Pell B (2005) General game playing: overview of the AAAI competition. AI Mag 26(2):62Gerónimo D, López AM (2014) Datasets and benchmarking. In: Vision-based pedestrian protection systems for intelligent vehicles. Springer, pp 87–93Goertzel B, Pennachin C (eds) (2007) Artificial general intelligence. Springer, New YorkGoertzel B, Arel I, Scheutz M (2009) Toward a roadmap for human-level artificial general intelligence: embedding HLAI systems in broad, approachable, physical or virtual contexts. Artif Gen Intell Roadmap InitiatGoldreich O, Vadhan S (2007) Special issue on worst-case versus average-case complexity editors’ foreword. Comput complex 16(4):325–330Gordon BB (2007) Report on panel discussion on (re-)establishing or increasing collaborative links between artificial intelligence and intelligent systems. In: Messina ER, Madhavan R (eds) Proceedings of the 2007 workshop on performance metrics for intelligent systems, pp 302–303Gulwani S, Hernández-Orallo J, Kitzelmann E, Muggleton SH, Schmid U, Zorn B (2015) Inductive programming meets the real world. Commun ACM 58(11):90–99Hand DJ (2004) Measurement theory and practice. A Hodder Arnold Publication, LondonHernández-Orallo J (2000a) Beyond the Turing test. J Logic Lang Inf 9(4):447–466Hernández-Orallo J (2000b) On the computational measurement of intelligence factors. In: Meystel A (ed) Performance metrics for intelligent systems workshop. National Institute of Standards and Technology, Gaithersburg, pp 1–8Hernández-Orallo J (2000c) Thesis: computational measures of information gain and reinforcement in inference processes. AI Commun 13(1):49–50Hernández-Orallo J (2010) A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Artificial general intelligence, 3rd International Conference. Atlantis Press, Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf , pp 182–183Hernández-Orallo J (2014) On environment difficulty and discriminating power. Auton Agents Multi-Agent Syst. 29(3):402–454. doi: 10.1007/s10458-014-9257-1Hernández-Orallo J, Dowe DL (2010) Measuring universal intelligence: towards an anytime intelligence test. Artif Intell 174(18):1508–1539Hernández-Orallo J, Dowe DL (2013) On potential cognitive abilities in the machine kingdom. Minds Mach 23:179–210Hernández-Orallo J, Minaya-Collado N (1998) A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proceedings of international symposium of engineering of intelligent systems (EIS’98), ICSC Press, pp 146–163Hernández-Orallo J, Dowe DL, España-Cubillo S, Hernández-Lloreda MV, Insa-Cabrera J (2011) On more realistic environment distributions for defining, evaluating and developing intelligence. In: Schmidhuber J, Thórisson K, Looks M (eds) Artificial general intelligence, LNAI, vol 6830. Springer, New York, pp 82–91Hernández-Orallo J, Flach P, Ferri C (2012a) A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13(1):2813–2869Hernández-Orallo J, Insa-Cabrera J, Dowe DL, Hibbard B (2012b) Turing Tests with Turing machines. In: Voronkov A (ed) Turing-100, EPiC Series, vol 10, pp 140–156Hernández-Orallo J, Dowe DL, Hernández-Lloreda MV (2014) Universal psychometrics: measuring cognitive abilities in the machine kingdom. Cogn Syst Res 27:50–74Hernández-Orallo J, Martínez-Plumed F, Schmid U, Siebers M, Dowe DL (2016) Computer models solving intelligence test problems: progress and implications. Artif Intell 230:74–107Herrmann E, Call J, Hernández-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843):1360–1366Hibbard B (2009) Bias and no free lunch in formal measures of intelligence. J Artif Gen Intell 1(1):54–61Hingston P (2010) A new design for a Turing Test for bots. In: 2010 IEEE symposium on computational intelligence and games (CIG), IEEE, pp 345–350Hingston P (2012) Believable bots: can computers play like people?. Springer, New YorkHo TK, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289–300Hutter M (2007) Universal algorithmic intelligence: a mathematical top \rightarrow → down approach. In: Goertzel B, Pennachin C (eds) Artificial general intelligence, cognitive technologies. Springer, Berlin, pp 227–290Igel C, Toussaint M (2005) A no-free-lunch theorem for non-uniform distributions of target functions. J Math Model Algorithms 3(4):313–322Insa-Cabrera J (2016) Towards a universal test of social intelligence. Ph.D. thesis, Departament de Sistemes Informátics i Computació, UPVInsa-Cabrera J, Dowe DL, España-Cubillo S, Hernández-Lloreda MV, Hernández-Orallo J (2011a) Comparing humans and ai agents. In: Schmidhuber J, Thórisson K, Looks M (eds) Artificial general intelligence, LNAI, vol 6830. Springer, New York, pp 122–132Insa-Cabrera J, Dowe DL, Hernández-Orallo J (2011) Evaluating a reinforcement learning algorithm with a general intelligence test. In: Lozano JA, Gamez JM (eds) Current topics in artificial intelligence. CAEPIA 2011, LNAI series 7023. Springer, New YorkInsa-Cabrera J, Benacloch-Ayuso JL, Hernández-Orallo J (2012) On measuring social intelligence: experiments on competition and cooperation. In: Bach J, Goertzel B, Iklé M (eds) AGI, lecture notes in computer science, vol 7716. Springer, New York, pp 126–135Jacoff A, Messina E, Weiss BA, Tadokoro S, Nakagawa Y (2003) Test arenas and performance metrics for urban search and rescue robots. In: Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 (IROS 2003), IEEE, vol 4, pp 3396–3403Japkowicz N, Shah M (2011) Evaluating learning algorithms. Cambridge University Press, CambridgeJiang J (2008) A literature survey on domain adaptation of statistical classifiers. http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/surveyJohnson M, Hofmann K, Hutton T, Bignell D (2016) The Malmo platform for artificial intelligence experimentation. In: International joint conference on artificial intelligence (IJCAI)Keith TZ, Reynolds MR (2010) Cattell–Horn–Carroll abilities and cognitive tests: what we’ve learned from 20 years of research. Psychol Schools 47(7):635–650Ketter W, Symeonidis A (2012) Competitive benchmarking: lessons learned from the trading agent competition. AI Mag 33(2):103Khreich W, Granger E, Miri A, Sabourin R (2012) A survey of techniques for incremental learning of HMM parameters. Inf Sci 197:105–130Kim JH (2004) Soccer robotics, vol 11. Springer, New YorkKitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E (1997) Robocup: the robot world cup initiative. In: Proceedings of the first international conference on autonomous agents, ACM, pp 340–347Kleiner K (2011) Who are you calling bird-brained? An attempt is being made to devise a universal intelligence test. Economist 398(8723, 5 March 2011):82Knuth DE (1973) Sorting and searching, volume 3 of the art of computer programming. Addison-Wesley, ReadingKoza JR (2010) Human-competitive results produced by genetic programming. Genet Program Evolvable Mach 11(3–4):251–284Krueger J, Osherson D (1980) On the psychology of structural simplicity. In: Jusczyk PW, Klein RM (eds) The nature of thought: essays in honor of D. O. Hebb. Psychology Press, London, pp 187–205Langford J (2005) Clever methods of overfitting. Machine Learning (Theory). http://hunch.netLangley P (1987) Research papers in machine learning. Mach Learn 2(3):195–198Langley P (2011) The changing science of machine learning. Mach Learn 82(3):275–279Langley P (2012) The cognitive systems paradigm. Adv Cogn Syst 1:3–13Lattimore T, Hutter M (2013) No free lunch versus Occam’s razor in supervised learning. Algorithmic Probability and Friends. Springer, Bayesian Prediction and Artificial Intelligence, pp 223–235Leeuwenberg ELJ, Van Der Helm PA (2012) Structural information theory: the simplicity of visual form. Cambridge University Press, CambridgeLegg S, Hutter M (2007a) Tests of machine intelligence. In: Lungarella M, Iida F, Bongard J, Pfeifer R (eds) 50 Years of Artificial Intelligence, Lecture Notes in Computer Science, vol 4850, Springer Berlin Heidelberg, pp 232–242. doi: 10.1007/978-3-540-77296-5_22Legg S, Hutter M (2007b) Universal intelligence: a definition of machine intelligence. Minds Mach 17(4):391–444Legg S, Veness J (2013) An approximation of the universal intelligence measure. Algorithmic Probability and Friends. Springer, Bayesian Prediction and Artificial Intelligence, pp 236–249Levesque HJ (2014) On our best behaviour. Artif Intell 212:27–35Levesque HJ, Davis E, Morgenstern L (2012) The winog

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore