10 research outputs found

    Temporal Genetic Structure Of Major Dengue Vector Aedes Aegypti From Manaus, Amazonas, Brazil

    No full text
    In recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus. © 2014 Elsevier B.V.13418088Apostol, B.L., Black, I.V., Reiter, W.C., Miller, P.B.R., Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico (1994) Am. J. Trop. Med. Hyg., 51, pp. 89-97Bastos, M.S., Figueiredo, R.M.P., Ramasawmy, R., Itapirema, E., Gimaque, J.B.L., Santos, L.O., Figueiredo, L.T.M., MourĂŁo, M.P.G., Simultaneous circulation of all four dengue serotypes in Manaus, State of Amazonas Brazil, in 2011 (2012) Rev. Soc. Brasil. Med. Trop., 45, pp. 393-394Brown, J.E., McBride, C.S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., Lutomiah, J., Powell, C.J.R., Worldwide patterns of genetic differentiation imply multiple "domestications" of Aedes aegypti, a major vector of human diseases (2010) Proc. R. Soc. B, p. 2469Campos, M., Spenassatto, C., Macoris, M.L.G., Paduan, K.S., Pinto, J., Ribolla, P.E.M., Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in SĂŁo Paulo, Brazil (2012) Ecol. Evol., 2, pp. 2794-2802Chambers, E.W., Meece, J.K., McGowan, J.A., Lovin, D.D., Hemme, R.R., Chadee, D.D., McAbee, K., Severson, D.W., Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti (2007) J. Hered., 98, pp. 202-210Collins, F.H., Kamau, L., Ranson, H.A., Vulule, J.M., Molecular entomology and prospects for malaria control (2000) Bull. World Health Organ., 78, pp. 1412-1423Collins, F.H., Mendez, M.A., Rasmussen, M.O., Mehaffey, P.C., Besansky, N.J., Finnerty, V., A ribossomal RNA gene probe differentiations member species of the Anopheles gambiae complex (1987) Am. J. Trop. Med. Hyg., 37, pp. 37-41Cornuet, J.M., Luikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data (1996) Genetics, 144, pp. 2001-2014Costa-Ribeiro, M.C.V., Lourenço-de-Oliveira, R., Failloux, A.B., Geographic and temporal genetic patterns of Aedes aegypti populations in Rio de Janeiro, Brazil (2006) Trop. Med. Int. Health, 2, pp. 1276-1285Creste, S., Tulmann Neto, A., Figueira, A., Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining (2001) Plant Mol. Biol., 19, pp. 299-306Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software Structure: a simulation study (2005) Mol. Ecol., 14, pp. 2611-2620Excoffier, L., Laval, G., Schneider, S., (2006) An Integrated Software Package for Population Genetics Data Analysis, Version 3.01, , http://www.cmpg.unibe.ch/software/arlequin3, Computational and Molecular Population Genetics Lab. Institute of Zoology, University of Berne, Switzerland, Available fromFailloux, A.-B., Vazeille, M., Rodhain, F., Geographic genetic variation in populations of the dengue virus vector Aedes aegypti (2002) J. Mol. Evol., 55, pp. 653-663Forattini, O.P., (2002) Culicidologia MĂ©dica, Volume 2: Identificação, Biologia, Epidemiologia, p. 860. , Editora da Universidade de SĂŁo Paulo, SĂŁo Paulo, BrasilGoudet, J., FSTAT, version 2.9.3.2. A computer program to calculate F-statistics (1995) J. Hered., 86, pp. 485-486Gubler, D.J., Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem (1997) Dengue and Dengue Hemorrhagic Fever, pp. 1-23. , CAB International, New York, D.J. Gubler, G. Kino (Eds.)Gubler, D.J., Epidemic dengue/dengue hemorrhagic fever as a public health, social, and economic problem in the 21st century (2002) Trends Microbiol., 10, pp. 100-103GutiĂ©rrez, L.A., GĂłmes, G.G., GonzĂĄlez, J.J., Castro, M.I., Luckhart, S., Conn, J.E., Correa, M.M., Microgeographic genetic variation of the malaria vector Anopheles darlingi Root (Diptera: Culicidae) from CĂłrdoba and Antioquia, Colombia (2010) Am. J. Trop. Med. Hyg., 83, pp. 38-47Hlaing, T., Tun-Lin, W., Somboon, P., Socheat, D., Setha, T., Min, S., Thaung, S., Walton, C., Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia (2010) Evol. Applicat., 3, pp. 319-339Holm, S., A simple sequential rejective multiple test procedure (1979) Scand. J. Stat., 6, pp. 65-70Huber, K., Loan, L.L., Hoang, T.H., Ravel, S., Rodhain, F., Failloux, A.-B., Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City Vietnam) using microsatellite markers (2002) Mol. Ecol., 11, pp. 1629-1635Huber, K., Loan, L.L., Hoang, T.H., Tien, T.K., Rodhain, F., Failloux, A.-B., Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam) (2002) Heredity, 89, pp. 7-14Huber, K., Ba, Y., Dia, I., Mathiot, C., Sall, A.A., Diallo, M., Aedes aegypti in Senegal: genetic diversity and genetic structure of domestic and sylvatic populations (2008) Am. J. Trop. Med. Hyg., 79, pp. 218-229(2013) Instituto Brasileiro de Geografia e EstatĂ­stica, , www.ibge.gov.br/home/estatistica/pesquisas/indicadores.php, IBGE Available at: (accessed 01.09.13)Lima-JĂșnior, R.S., Scarpassa, V.M., Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon based on mitochondrial DNA ND4 gene sequences (2009) Genet. Mol. Biol., 32, pp. 414-422Lourenço-de-Oliveira, R., Vazeille, M., Filippis, A.M.B., Failloux, A.-B., Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil (2002) Mem. Inst. Oswaldo Cruz, 97, pp. 437-439Lourenço-de-Oliveira, R., Vazeille, M., Filippis, A.M.B., Failloux, A.-B., Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses (2004) Trans. Royal Soc. Trop. Med. Hyg., 98, pp. 43-54McCauley, D.E., Genetics consequence of local population extinction and recolonization (1991) Trends Ecol. Evol., 6, pp. 5-8Midega, J.T., Muturi, E.J., Baliraine, F.N., Mbogo, C.M., Githure, J., Beier, J.C., Yan, G., Population structure of Anopheles gambiae along the Kenyan coast (2010) Acta Trop., 114, pp. 103-108Miller, M., (1997) A Windows Program for the Analysis of Allozyme and Molecular Population Genetics Data (TFPGA), , Department of Biological Sciences, Northern Arizona University, Flagstaff, USAMoreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G., Pyke, A.T., Hedges, L.M., Rocha, B.C., O'Neill, S.L., A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium (2009) Cell, 139, pp. 1268-1278(2012) MinistĂ©rio da SaĂșde. Situação da Dengue no Brasil, BrasĂ­lia, DF, Brazil, , http://portal.saude.gov.br/portal/arquivos/pdf/boletimdengue, MS Available at: (accessed 02.03.13)Neis Ribeiro, A., Gassen Balsan, L., Moura, G., (2013) AnĂĄlise das polĂ­ticas pĂșblicas de combate Ă  dengue En Contribuciones a lĂŁs Ciencias Sociales, , www.eumed.net/rev/cccss/24/politicas-publicas-dengue.html, Available atPark, S.D.E., (2001) MSTools, version 3, , http://www.acer.gen.tcd.ie/sdepark/ms-toolkit, Available at: (accessed 04.04.10)Paupy, C., Vazeille-Falcoz, M., Mousson, L., Rodhain, F., Failloux, A.-B., Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzymes differentiation in the mosquito population according to human population density (2000) Am. J. Trop. Med. Hyg., 62, pp. 217-224Paupy, C., Chantha, N., Reynes, J.M., Failloux, A.-B., Factors influencing the population structure of Aedes aegypti from the many cities in Cambodia (2005) Heredity, 95, pp. 144-147Paupy, C., Brengues, C., Kamgang, B., Herve, J.-P., Fontenille, D., Simard, F., Gene Flow Between Domestic and Sylvan Populations of Aedes aegypti (Diptera: Culicidae) in North Cameroon (2008) J. Med. Entomol., 45, pp. 391-400Paupy, C., Le Goff, G., Brengues, C., Guerra, M., Revollo, J., Simon, Z.B., HervĂ©, J.-P., Fontenille, D., Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia (2012) Infect. Genet. Evol., 12, pp. 1260-1269Peel, D., Ovenden, J., Peel, S., NeEstimator: Software for Estimating Effective Population Size: Queensland Government (2004) Department of Primary Industries and FisheriesPinheiro, V.C.S., Tadei, P.W., Frequency, diversity, and productivity study on the Aedes aegypti most preferred containers in the city of Manaus, Amazonas, Brazil (2002) Rev. Inst. Med. Trop. SĂŁo Paulo, 44, pp. 245-250Pritchard, J.K., Stephens, M., Donnelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959RĂ­os-VelĂĄsquez, C.M., Codeço, C.T., HonĂłrio, N.A., Sabroza, P.S., Moresco, M., Cunha, I.C.L., Levino, A., Luz, S.L.B., Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 617-623Ravel, S., Monteny, N., Olmos, D.V., Verduro, J.E., Cuny, G., A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers (2001) Acta Trop., 78, pp. 241-250Ravel, S., HervĂ©, J.P., Diarrassouba, S., Cuny, G., Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from CÔte d'Ivoire: evidence for a microgeographic genetic differentiation of mosquitos from BouakĂ© (2002) Acta Trop., 82, pp. 39-49Rousset, F., Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux (2008) Mol. Ecol. Res., 8, pp. 103-106Scarpassa, V.M., Conn, J.E., Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 319-327Scarpassa, V.M., Cardoza, T.B., Cardoso-JĂșnior, R.P., Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil (2008) Am. J. Trop. Med. Hyg., 78, pp. 895-903Slotman, M.A., Kelly, N.B., Harrington, L.C., Kitthawee, S., Jones, J.W., Scott, T.W., Caccone, A., Powell, J.R., Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever (2007) Mol. Ecol. Notes, 7, pp. 168-171Tabachnick, W.J., Powell, J.R., A world-wide survey of genetic variation in the yellow fever mosquito Aedes aegypti (1979) Genet. Res., 34, pp. 215-229Teixeira, M.G., Costa, M.C.N., Barreto, F., Barreto, M.L., Dengue: twenty-five years since reemergence in Brazil (2009) Cad. SaĂșde PĂșblica, 25, pp. S7-S18Van Oosterhout, C., Hutchinson, W.F., Willis, D.P.M., Shipley, P., Micro-checker: software for identifying and correcting genotyping errors in microsatellite data (2004) Mol. Ecol. Notes, 4, pp. 535-538YĂ©bakima, A., Charles, C., Mousson, L., Vazeille, M., Yp-Tcha, M.M., Failloux, A.-B., Genetic heterogeneity of the dengue vector Aedes aegypti in Martinique (2004) Trop. Med. Int. Health, 9, pp. 582-587Wallis, G.P., Tabachnick, W.J., Powell, J.R., Macrogeographic genetic variation in a human commensal: Aedes aegypti, the yellow fever mosquito (1983) Genet. Res., 41, pp. 241-258(2007) Impact of Dengue, , www.who.int/csr/disease/dengue/impact/en/index.htm, WHO - World Health Organization Available at(2010) First WHO Report on Neglected Tropical Diseases: Working to Overcome the Global Impact of Neglected Tropical Diseases, p. 172. , http://www.who.int/neglected_diseases, WHO - World Health Organization World Health Organization, Geneva, Available at: (accessed in 03.07.2012

    Potato Cultivar Identification Using Molecular Markers [identificação De Cultivares De Batata Por Marcadores Moleculares]

    No full text
    The objective of this work was to evaluate a set of microsatellite markers for varietal identification and characterization of the most widespread potato cultivars in Brazil. The DNA from 14 potato cultivars was genotyped using microsatellite markers and the alleles were scored in silver-stained polyacrylamide gel. Twenty-four microsatellite markers were evaluated, and only one locus was monomorphic. Based on band patterns, a set of two microsatellites that were able to identify and differentiate all examined cultivars was obtained.451110113Collares, E.A.S., Choer, E., Pereira, A.S., Characterization of potato genotypes using molecular markers (2004) Pesquisa AgropecuĂĄria Brasileira, 39, pp. 871-878Creste, S., Tulmann, A., Figueira, A., Detection of Single Sequence Repeat Polymorphism in denaturating polyacrylamide sequencing gels by silver staining (2001) Plant Molecular Biology Reporter, 19, pp. 299-306Demecke, T., Kawchuk, L.M., Linch, D.R., Identification of potato cultivars and clonal variants by Random Amplified Polymorphic DNA analysis (1993) American Potato Journal, 70, pp. 561-570Douches, D.S., Ludlan, K., Eletrophoretic characterization of North American potato cultivars (1991) American Potato Journal, 68, pp. 767-780Feingold, S., Lloyd, J., Norero, N., Bonierbale, M., Lorenzen, J., Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.) (2005) Theoretical and Applied Genetics, 111, pp. 456-466Ghislain, M., Spooner, D.M., RodrĂ­guez, F., VillamĂłn, F., NĂșnez, J., VĂĄsquez, C., Waugh, R., Bonierbale, M., Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato (2004) Theoretical and Applied Genetics, 108, pp. 881-890Isenegger, D.A., Taylor, P.W.J., Ford, R., Franz, P., Mcgregor, G.R., Hutchinson, J.F., DNA fingerprinting and genetic relationships of potato cultivars (Solanum tuberosum L.) commercially grown in Australia (2001) Australian Journal of Agricultural Research, 52, pp. 911-918Kim, J.H., Juong, H., Kim, H.Y., Lim, Y.P., Estimation of genetic variation and relationship in potato (Solanum tuberosum L.) cultivars using AFLP markers (1998) American Journal of Potato Research, 75, pp. 107-112Mathias, M.R., Sagrado, B.D., Kalazich, J.B., Use of SSR markers to identify potato germplasm in INIA Chile breeding program (2007) Agricultura TĂ©cnica, 67, pp. 3-15McGregor, C.E., Lambert, C.A., Greyling, M.M., Louw, J.H., Warnich, L., A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm (2000) Euphytica, 113, pp. 135-144Moisan-Thiery, M., Marhadour, S., Kerlan, M.C., Dessenne, N., Perramant, M., Gokelalre, T., Le Hingrat, Y., Potato cultivar identification using simple sequence repeats markers (SSR) (2005) Potato Research, 48, pp. 191-200Norero, N., Malleville, J., Huarte, M., Feingold, S., Cost efficient potato (Solanum tuberosum L.) cultivar identification by microsatellite amplification (2002) Potato Research, 45, pp. 131-138Reid, A., Kerr, E.M., A rapid simple sequence repeat (SSR)-based identification method for potato cultivars (2007) Plant Genetic Resources: Characterization and Utilization, 5, pp. 7-13Tessier, C., David, J., This, P., Boursiquot, J.M., Charrier, A., Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L (1999) Theoretical and Applied Genetics, 98, pp. 171-177Wulff, E.G., Torres, S., Gonzales, E.V., Protocol for DNA extraction from potato tubers (2002) Plant Molecular Biology Reporter, 20, pp. 187a-1187

    Development And Characterization Of 14 Microsatellite Loci From An Enriched Genomic Library Of Eucalyptus Camaldulensis Dehnh

    No full text
    Eucalyptus camaldulensis Dehnh is an Australian tree species which occurs in various climatic and environmental conditions and show large genetic diversity. Twenty five microsatellite markers were developed from a CT 8-GT 8 enriched genomic library of E. camaldulensis. The number of alleles ranged from 4 to 13 (average of 8). The polymorphism information content (PIC) and the discriminating power (D) of each primer ranged from 0.37 to 0.88 (average of 0.72) and 0.48 to 0.99 (average of 0.84), respectively. The observed and expected heterozygosities ranged from 0.28 to 0.84 and 0.25 to 0.90, respectively. Four loci showed statistically significant from Hardy-Weinberg equilibrium after Bonferroni correction (P, (5%) < 0.0038). All polymorphic markers were tested for cross-amplification in 25 different Eucalyptus species. Those microsatellite loci will be useful to investigate questions of genetic diversity and structure, gene flow, mating system and ex situ genetic conservation of E. camaldulensis. © Springer Science+Business Media B.V. 2009.11465469Billotte, N., Lagoda, P.J.R., Risterucci, A.M., Baurens, F.C., Microsatellite enriched libraries: Applied methodology for the development of SSR markers in tropical crops (1999) Fruits, 54, pp. 277-288Brondani, R.P.V., Brondani, C., Tarchini, R., Grattapaglia, D., Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and (1998) Urophylla Theor Appl Genet, 97, pp. 816-827Butcher, P.A., Otero, A., McDonald, M.W., Moran, G.F., Nuclear RFLP variation in Eucalyptus camaldulensis Dehnh from northern Australia (2002) Heredity, 88, pp. 402-412Butcher, P.A., McDonald, M.W., Bell, J.C., Congruence between environmental parameters, morphology and genetic structure in Australia's most widely distributed eucalypt, Eucalyptus camaldulensis (2009) Tree Genet Genomes, 5, pp. 189-210Cordeiro, G.M., Taylor, G.O., Henry, R.J., Characterization of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploidy species (2000) Plant Sci, 155, pp. 161-168Creste, S., Tulmann Neto, A., Figueira, A., Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining (2001) Plant Mol Biol Rep, 19, pp. 299-306Dexter, B.D., Rose, H.J., Davies, N., River regulation and associate forest management problems in the River Murray red gum forests (1986) Aust For, 49, pp. 16-27Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K., Mattick, J.S., "Touchdown" PCR to circumvent spurious priming during gene amplification (1991) Nucleic Acids Res, 19, p. 4008Doyle, J.J., Doyle, J.L., Isolation of plant DNA from fresh tissue (1990) Focus, 12, pp. 13-15Eldridge, K., Davidson, J., Harwood, C., Wyk, G., (1993) Eucalypt Domestication and Breeding, pp. 60-71. , Clarendon, OxfordGoudet, J., FSTAT (Version 2.9.3.2.): A computer program to calculate F-statistics (1995) J Hered, 86, pp. 485-486Kalinowski, S.T., Taper, M.L., Marshall, T.C., Revising how computer program Cervus accommodates genotyping error increase success in paternity assignment (2007) Mol Ecol, 16, pp. 1099-1106Lewis, P., Zaykin, D., Genetic data analysis (GDA): Computer program for the analysis of allelic data (software) (2002) Version 1.1, , http://alleyn.eeb.uconn.edu/gda/Nieto, V.M., Rodriguez, J., Eucalyptus camaldulensis Dehnh (2003) Tropical Tree Seed Manual. Part II-species Descriptions, pp. 466-467. , In: Vozzo JA (ed), United States Department of Agriculture Forest Service, WashingtonPryor, L.D., (1976) Biology of Eucalyptus, , Esward Arnold, LondonTemnykh, S., Declerck, G., Lukashova, A., Lipovich, L., Catinhour, S., McCouch, S., Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential (2001) Genome, 11, pp. 1441-1452Tessier, C., David, J., This, P., Boursiquot, J.M., Charrier, A., Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L (1999) Theor Appl Genet, 98, pp. 171-17

    Development And Characterization Of 15 Microsatellite Loci For Cariniana Estrellensis And Transferability To Cariniana Legalis, Two Endangered Tropical Tree Species

    No full text
    From a genomic library enriched for GA/CA repeats, 15 highly polymorphic microsatellite markers were developed for Cariniana estrellensis, a tropical forest tree. The microsatellite loci were screened in 49 mature trees found between Pardo river and Mogi-Guaçu river basins, in the state of São Paulo, Brazil. A total of 140 alleles were detected with an average of 9.33 alleles per locus. The expected heterozygosity ranged from 0.37 to 0.88. These loci showed a high probability of paternity exclusion. Additionally, 12 loci were effectively transferred to Cariniana legalis. High levels of polymorphism make the present SSR markers useful for population genetic studies. © 2008 Springer Science+Business Media B.V.10410011004Billotte, N., Lagoda, P.J.L., Risterucci, A.M., Baurens, F.C., Microsatellite-enriched libraries: Applied methodology for the development of SSR markers in tropical crops (1999) Fruits, 54, pp. 277-288Doyle, J.J., Doyle, J.L., Isolation of plant DNA from fresh tissue (1990) Focus, 12, pp. 13-15Ferreira-Ramos, R., Laborda, P.R., Santos, M.O., Mayor, M.S., Mestriner, M.A., Souza, A.P., Alzate-Marin, A.L., Genetic analysis of forest species Eugenia uniflora L. through of newly developed SSR markers (2007) Conserv Genet., , doi: 10.1007/s10592-007-9458-0Goudet, J., (2002) FSTAT Version 2.9.3.2, , http://www2.unil.ch/popgen/softwares/fstat.htm, Institute of Ecology, Lausanne, Switzerland Accessed 20 May 2008Kalinowski, S.T., Taper, M.L., Marshall, T.C., Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment (2007) Mol Ecol, 16, pp. 1099-1106. , 10.1111/j.1365-294X.2007.03089.xLeite, E.J., State-of-knowledge on Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae) for genetic conservation in Brazil (2007) Res J Bot, 2, pp. 138-160Rozen, S., Skaletsky, H.J., Primer3 on the www for general users and for biologist programmers (2000) Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386. , http://www.frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi, Krawetz S, Misener S (eds) Humana Press, Totowa Accessed 05 June 200

    Inheritance Of Growth Habit Detected By Genetic Linkage Analysis Using Microsatellites In The Common Bean (phaseolus Vulgaris L.)

    No full text
    The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA × CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait. © 2010 Springer Science+Business Media B.V.274549560Adam-Blondom, A.M., SĂ©vignac, M., Dron, M., A genetic map of common bean to localize specific resistance genes against anthracnose (1994) Genome, 37, pp. 915-924Al-Mukhtar, F.A., Coyne, D.P., Inheritance and association of flower, ovule, seed, pod and maturity characters in dry edible beans (Phaseolus vulgaris L.) (1981) J Am Soc Hort Sci, 106, pp. 713-719Arumuganathan, K., Earle, E.D., Nuclear DNA content of some important plant species (1991) Plant Mol Biol, 9, pp. 208-218Bai, Y., Michaels, T.E., Pauls, K.P., Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L (1997) Genome, 40, pp. 544-551Basset, M.J., A revised linkage map of common bean (1991) Hort Sci, 26, pp. 834-836Benchimol, L.L., Campos, T., Carbonell, S.A.M., Colombo, C.A., Chioratto, A.F., Formighieri, E.F., Gouvea, L.R.L., Souza, A.P., Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers (2007) Genet Res Crop Evol, 54, pp. 1747-1762Blair, M.W., Pedraza, F., Buedia, H.F., GaitĂĄn-SolĂ­s, E., Beebe, S.E., Gepts, P., Tohme, J., Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.) (2003) Theor Appl Genet, 107, pp. 1362-1374Blair, M.W., Giraldo, M.C., Buendia, H.F., Tovar, E., Duque, M.C., Beebe, S.E., Microsatellite marker diversity in common bean (Phaseolus vulgaris L.) (2006) Theor Appl Genet, 113, pp. 100-109Blair, M.W., Iriarte, G., Beebe, S., QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross (2006) Theor Appl Genet, 112, pp. 1149-1163Blair, M.W., BuendĂ­a, H.F., Giraldo, M.C., MĂ©tais, I., Peltier, D., Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.) (2008) Theor Appl Genet, 118, pp. 91-103Blair, M.W., DĂ­az, L.M., BuendĂ­a, H.F., Duque, M.C., Genetic diversity, seed size associations and population structure of a core collection in common beans (Phaseolus vulgaris L.) (2009) Theor Appl Genet, 119, pp. 955-972Buso, G.S.C., Amaral, Z.P.S., Brondani, R.P.V., Ferreira, M.E., Microsatellite markers for the common bean Phaseolus vulgaris (2006) Mol Ecol Notes, 6, pp. 252-254Caixeta, E.T., BorĂ©m, A., Kelly, J.D., Development of microsatellite markers based on BAC common bean clones (2005) Crop Breed Appl Biotechnol, 5, pp. 125-133Campos, T., Benchimol, L.L., Carbonell, S.A.M., Chioratto, A.F., Formighieri, E.F., Souza, A.P., Microsatellites for genetic studies and breeding programs in common bean (2007) Pesq Agropec Bras, 42, pp. 589-592Cardoso, J.M.K., Oblessuc, P.R., Campos, T., Sforça, D.A., Carbonell, S.A.M., Chioratto, A.F., Formighieri, E.E., Benchimol, L.L., New microsatellite markers developed from an enriched microsatellite common bean library (2008) Pesq Agropec Bras, 43, pp. 929-936Condit, R., Hubbell, S.P., Abundance and DNA sequence of two-base regions in tropical tree genomes (1991) Genome, 34, pp. 66-71Creste, S., Tulmann, A., Figueira, A., Detection of single sequence repeat polymorphism in denaturating polyacrylamide sequencing gels by silver staining (2001) Plant Mol Biol, 19, pp. 299-306Creusot, F., MacadrĂ©, C., Ferrier Cana, E., Riou, C., Geffroy, V., SĂ©vignac, M., Dron, M., Langin, T., Cloning and molecular characterization of three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris (1999) Genome, 42, pp. 254-264David, P., Chen, N.W.G., Pedrosa-Harand, A., Thareau, V., SĂ©vignac, M., Cannon, S.B., Debouck, D., Geffroy, V., A nomadic subtelomeric disease resistance gene cluster in common bean (2009) Plant Physiol, 151, pp. 1048-1065Freyre, C.I., Skroch, P., Geffroy, V., Adam-Blondon, A.F., Shirmohamadali, A., Johnson, W., Llaca, V., Gepts, P., Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps (1998) Theor Appl Genet, 97, pp. 847-856GaitĂĄn-SolĂ­s, E., Duque, M.C., Edwards, K.J., Tohme, J., Microsatmap of Phaseolus vulgaris L.ellite in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in-Phaseolus ssp (2002) Crop Sci, 42, pp. 2128-2136Geffroy, V., MacadrĂ©, C., David, P., Pedrosa-Harand, A., Sevignac, M., Dauga, C., Langin, T., Molecular analysis of a large subtelomeric nucleotide binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris (2009) Genetics, 181, pp. 405-419Gepts, P.R., Nodari, R., Tsai, R., Koinange, E.M.K., Llaca, V., Gilbertson, R., Guzman, P., Linkage mapping in common bean (1993) Annu Rep Bean Improve Coop, 36, pp. 24-38Grisi, M.C.M., Blair, M.W., Gepts, P., Brondani, C., Pereira, P.A.A., Brondani, R.P.V., Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558 (2007) Genet Mol Res, 6, pp. 691-706Guerra-Sanz, J.M., New SSR markers of Phaseolus vulgaris from sequence databases (2004) Plant Breed, 123, pp. 87-89Guo, X., Castill-Ramirez, S., Gonzalez, V., Bustos, P., Fernandez-Vazgueq, J.L., Santamaria, R.I., Arellano, J., Davila, G., Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts (2007) BMC Genomics, 8, p. 228Hackuf, B., Wehling, P., Identification of microsatellite polymorphism in an expressed portion of rye genome (2002) Plant Breed, 121, pp. 17-25Hanai, L.R., Campos, T., Camargo, L.E.A., Benchimol, L.L., Souza, A.P., Melloto, M., Carbonell, S.A.M., Vieira, M.L.C., Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources (2007) Genome, 50, pp. 266-277Harper, G.L., Maclean, N., Goulson, D., Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus (2003) Mol Ecol, 12, pp. 3349-3357Hoisington, D., Khairallah, M., GonzĂĄlez-de-LeĂłn, D., (1994) Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory, , 2nd edn., Mexico, DF: CIMMYTHougaard, B.K., Madsen, L.H., Sandal, N., Moretzsohn, M.C., Fredslund, J., Schauser, L., Nielsen, A.M., Stougaard, J., Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis (2008) Genetics, 179, pp. 2299-2312Koinange, E.M.K., Singh, S.P., Gepts, P., Genetic control of the domestication syndrome in common bean (1996) Crop Sci, 36, pp. 1037-1045Kornegay, J., White, J.W., Cruz, O.O., Growth habit and gene pool effects on inheritance of yield in common bean (1992) Euphytica, 62, pp. 171-180Kosambi, D.D., The estimation of map distances from recombination values (1944) Ann Eugen, 12, pp. 172-175Kwak, M., Velasco, D., Gepts, P., Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris) (2008) J Hered, 99, pp. 283-291Lamprecht, H., Zur Genetik von Phaseolus vulgaris. X. Über Infloreszenztypen und ihre Vererbung (1935) Hereditas, 20, pp. 71-93Lamprecht, H., Zur Genetik von Phaseolus vulgaris. XIV. Über die Wirkung der Gene P, C, J, Ins, Can, G, B, V, Vir, Och und Flav (1939) Hereditas, 25, pp. 255-288Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L., Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations (1987) Genomics, 1, pp. 174-181Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits, , 980p, Sunderland: Sinauer AssociatesMcClean, P.E., Lee, P.K., Otto, C., Getps, P., Bassett, M.J., Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.) (2002) J Hered, 93, pp. 148-152MĂ©tais, I., Hamon, B., Jalouzot, R., Peltier, D., Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library (2002) Theor Appl Genet, 104, pp. 1346-1352Mollinari, M., Margarido, G.R.A., Vencovsky, R., Garcia, A.A.F., Evaluation of algorithms used to order markers on genetic maps (2009) Heredity, 103, pp. 494-502Moore, S.S., Hale, P., Byrne, K., NCAM: a polymorphic microsatellite locus conserved across eutherian mammal species (1998) Anim Genet, 29, pp. 33-36Murray, J., Larsen, J., Michaels, T.E., Schaafsma, A., Vallejos, C.E., Pauls, K.P., Identification of putative genes in bean (Phaseolus vulgaris) genomic (Bng) RFLP clones and their conversion to STSs (2002) Genome, 45, pp. 1013-1024Nodari, R.O., Tsai, S.M., Gilbertson, R.L., Gepts, P., Towards an integrated map of common bean-2: development of a RFLP-based linkage map (1993) Theor Appl Genet, 85, pp. 513-520Oliveira, K.M., Pinto, L.R., Marconi, T.G., Molinari, M., Ulian, E.C., Chabregas, S.M., Falco, M.C., Souza, A.P., Characterization of new polymorphic functional markers for sugarcane (2009) Genome, 52, pp. 191-209Pedrosa, A., Porch, T., Gepts, P., Standard nomenclature for common bean chromosomes and linkage groups (2008) Annu Rept Bean Improv Coop, 51, pp. 106-107Primmer, C.R., Raudsepp, T., Chowdhary, B.P., MĂžller, A.P., Ellegren, H., Low frequency of microsatellites in the avian genome (1997) Genome Res, 7, pp. 471-482Rico, C., Zadworny, D., Kuhnlein, U., Fitzgerald, G.J., Characterization of hypervariable microsatellite loci in the threespine stickleback Gasterosteus aculeatus (1993) Mol Ecol, 2, pp. 271-272RodrĂ­guez-SuĂĄrez, C., MĂ©ndez-Vigo, B., Pañeda, A., Ferreira, J.J., Giraldez, R., A genetic linkage map of Phaseolus vulgaris L. and localization of genes for specific resistance to six races of anthracnose (Colletotrichum lindemuthianum) (2006) Theor Appl Genet, 114, pp. 713-722Rudorf, W., Genetics of Phaseolus aborigineus Burkart (1958) Proc X Intl Congr Genet, 2, p. 243. , (Abstr.)Schlueter, J.A., Goicoechea, J.L., Collura, K., Gill, N., Lin, J., Yu, Y., Kudrna, D., Jackson, S.A., BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome (2008) Trop Plant Biol, 1, pp. 40-48Schuelke, M., An economic method for the fluorescent labeling of PCR fragments (2000) Nat Biotechnol, 18, pp. 233-234Shizhong, X., Quantitative trait locus mapping can benefit from segregation distortion (2008) Genetics, 180, pp. 2201-2208Singh, S., Nodari, R., Gepts, P., Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits (1991) Crop Sci, 31, pp. 23-29Ta'an, B., Michaels, T.E., Pauls, K.P., Identification of markers associated with quantitative traits in beans (2001) Annu Rep Bean Improve Coop, 44, pp. 9-10Tar'an, B., Michaels, T.E., Pauls, K.P., Genetic mapping of agronomic traits in common bean (2002) Crop Sci, 42, pp. 544-556Tautz, D., Renz, M., Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes (1984) Nucleic Acids Res, 12, pp. 4127-4137Vallejos, C.E., Sakiyama, N.S., Chase, C.D., A molecular marker-based linkage map of Phaseolus vulgaris L (1992) Genetics, 131, pp. 733-740Yaish, M.W.F., PĂ©rez de la Vega, M., Isolation of (GA)n microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (Phaseolus vulgaris L.) (2003) Genet Mol Biol, 26, pp. 337-342Yang, G.P., Shagai Maroof, M.A., Xu, C.G., Zhang, Q., Biyashev, R.M., Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice (1994) Mol Gen Genet, 245, pp. 187-194Yu, K., Park, S.J., Poysa, V., Abundance and variation of microsatellite DNA sequences in beans (Phaseolus vulgaris and Vigna) (1999) Genome, 42, pp. 27-34Yu, K., Park, S.J., Poysa, V., Gepts, P., Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.) (2000) J Hered, 91, pp. 429-434Zhang, X., Blair, M.W., Wang, S., Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers (2008) Theor Appl Genet, 117, pp. 629-66

    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009–31 January 2010

    No full text
    This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primitivus, Elodea canadensis, Ephydatia fluviatilis, Galapaganus howdenae howdenae, Hoplostethus atlanticus, Ischnura elegans, Larimichthys polyactis, Opheodrys vernalis, Pelteobagrus fulvidraco, Phragmidium violaceum, Pistacia vera, and Thunnus thynnus. These loci were cross-tested on the following species: Allanblackia gabonensis, Allanblackia stanerana, Neoceratitis cyanescens, Dacus ciliatus, Dacus demmerezi, Bactrocera zonata, Ceratitis capitata, Ceratitis rosa, Ceratits catoirii, Dacus punctatifrons, Ephydatia mĂŒlleri, Spongilla lacustris, Geodia cydonium, Axinella sp., Ischnura graellsii, Ischnura ramburii, Ischnura pumilio, Pistacia integerrima and Pistacia terebinthus
    corecore