108 research outputs found

    Neural Correlates of Intentional Communication

    Get PDF
    We know a great deal about the neurophysiological mechanisms supporting instrumental actions, i.e., actions designed to alter the physical state of the environment. In contrast, little is known about our ability to select communicative actions, i.e., actions directly designed to modify the mental state of another agent. We have recently provided novel empirical evidence for a mechanism in which a communicator selects his actions on the basis of a prediction of the communicative intentions that an addressee is most likely to attribute to those actions. The main novelty of those findings was that this prediction of intention recognition is cerebrally implemented within the intention recognition system of the communicator, is modulated by the ambiguity in meaning of the communicative acts, and not by their sensorimotor complexity. The characteristics of this predictive mechanism support the notion that human communicative abilities are distinct from both sensorimotor and linguistic processes

    Brain Mechanisms Underlying Human Communication

    Get PDF
    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities

    MR-Linac Radiotherapy - The Beam Angle Selection Problem

    Get PDF
    BACKGROUND: With the large-scale introduction of volumetric modulated arc therapy (VMAT), selection of optimal beam angles for coplanar static-beam IMRT has increasingly become obsolete. Due to unavailability of VMAT in current MR-linacs, the problem has re-gained importance. An application for automated IMRT treatment planning with integrated, patient-specific computer-optimization of beam angles (BAO) was used to systematically investigate computer-aided generation of beam angle class solutions (CS) for replacement of computationally expensive patient-specific BAO. Rectal cancer was used as a model case. MATERIALS AND METHODS: 23 patients treated at a Unity MR-linac were included. BAO(x) plans (x=7-12 beams) were generated for all patients. Analyses of BAO(12) plans resulted in CS(x) class solutions. BAO(x) plans, CS(x) plans, and plans with equi-angular setups (EQUI(x), x=9-56) were mutually compared. RESULTS: For x>7, plan quality for CS(x) and BAO(x) was highly similar, while both were superior to EQUI(x). E.g. with CS(9), bowel/bladder D(mean) reduced by 22% [11%, 38%] compared to EQUI(9) (p<0.001). For equal plan quality, the number of EQUI beams had to be doubled compared to BAO and CS. CONCLUSIONS: Computer-generated beam angle CS could replace individualized BAO without loss in plan quality, while reducing planning complexity and calculation times, and resulting in a simpler clinical workflow. CS and BAO largely outperformed equi-angular treatment. With the developed CS, time consuming beam angle re-optimization in daily adaptive MR-linac treatment could be avoided. Further systematic research on computerized development of beam angle class solutions for MR-linac treatment planning is warranted

    Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1

    Get PDF
    Collagens are the most abundant proteins in the human body, important in maintenance of tissue structure and hemostasis. Here we report that collagens are high affinity ligands for the broadly expressed inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). The interaction is dependent on the conserved Gly-Pro-Hyp collagen repeats. Antibody cross-linking of LAIR-1 is known to inhibit immune cell function in vitro. We now show that collagens are functional ligands for LAIR-1 and directly inhibit immune cell activation in vitro. Thus far, all documented ligands for immune inhibitory receptors are membrane molecules, implying a regulatory role in cell–cell interaction. Our data reveal a novel mechanism of peripheral immune regulation by inhibitory immune receptors binding to extracellular matrix collagens

    Fibrodysplasia Ossificans Progressiva: what have we achieved and where are we now? follow-up to the 2015 Lorentz Workshop

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics

    Resectability and Ablatability Criteria for the Treatment of Liver Only Colorectal Metastases:Multidisciplinary Consensus Document from the COLLISION Trial Group

    Get PDF
    The guidelines for metastatic colorectal cancer crudely state that the best local treatment should be selected from a 'toolbox' of techniques according to patient- and treatment-related factors. We created an interdisciplinary, consensus-based algorithm with specific resectability and ablatability criteria for the treatment of colorectal liver metastases (CRLM). To pursue consensus, members of the multidisciplinary COLLISION and COLDFIRE trial expert panel employed the RAND appropriateness method (RAM). Statements regarding patient, disease, tumor and treatment characteristics were categorized as appropriate, equipoise or inappropriate. Patients with ECOG≤2, ASA≤3 and Charlson comorbidity index ≤8 should be considered fit for curative-intent local therapy. When easily resectable and/or ablatable (stage IVa), (neo)adjuvant systemic therapy is not indicated. When requiring major hepatectomy (stage IVb), neo-adjuvant systemic therapy is appropriate for early metachronous disease and to reduce procedural risk. To downstage patients (stage IVc), downsizing induction systemic therapy and/or future remnant augmentation is advised. Disease can only be deemed permanently unsuitable for local therapy if downstaging failed (stage IVd). Liver resection remains the gold standard. Thermal ablation is reserved for unresectable CRLM, deep-seated resectable CRLM and can be considered when patients are in poor health. Irreversible electroporation and stereotactic body radiotherapy can be considered for unresectable perihilar and perivascular CRLM 0-5cm. This consensus document provides per-patient and per-tumor resectability and ablatability criteria for the treatment of CRLM. These criteria are intended to aid tumor board discussions, improve consistency when designing prospective trials and advance intersociety communications. Areas where consensus is lacking warrant future comparative studies.</p

    Trends and overall survival after combined liver resection and thermal ablation of colorectal liver metastases:a nationwide population-based propensity score-matched study

    Get PDF
    Background: In colorectal liver metastases (CRLM) patients, combination of liver resection and ablation permit a more parenchymal-sparing approach. This study assessed trends in use of combined resection and ablation, outcomes, and overall survival (OS). Methods: This population-based study included all CRLM patients who underwent liver resection between 2014 and 2022. To assess OS, data was linked to two databases containing date of death for patients treated between 2014 and 2018. Hospital variation in the use of combined minor liver resection and ablation versus major liver resection alone in patients with 2–3 CRLM and ≤3 cm was assessed. Propensity score matching (PSM) was applied to evaluate outcomes. Results: This study included 3593 patients, of whom 1336 (37.2%) underwent combined resection and ablation. Combined resection increased from 31.7% in 2014 to 47.9% in 2022. Significant hospital variation (range 5.9–53.8%) was observed in the use of combined minor liver resection and ablation. PSM resulted in 1005 patients in each group. Major morbidity was not different (11.6% vs. 5%, P = 1.00). Liver failure occurred less often after combined resection and ablation (1.9% vs. 0.6%, P = 0.017). Five-year OS rates were not different (39.3% vs. 33.9%, P = 0.145). Conclusion: Combined resection and ablation should be available and considered as an alternative to resection alone in any patient with multiple metastases.</p
    corecore