93 research outputs found

    Decreased clearance of von Willebrand factor in a patient with type 2B von Willebrand disease following development of immune thrombocytopenia

    Full text link
    We report a case of concurrent type 2B von Willebrand disease (VWD) and immune thrombocytopenia (ITP). The patient had characteristic loss of von Willebrand factor (VWF) high molecular weight multimers (HMWM) but a normal platelet count in the initial 8 years after diagnosis of type 2B VWD. When he developed severe thrombocytopenia, however, both his VWD indices and VWF HMWM normalized. As his platelet count increased, he again lost the HMWM and his VWD indices decreased. These results suggest that the severe thrombocytopenia led to decreased clearance of VWF, especially the HMWM. Pediatr Blood Cancer 2008;51:416–418. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60454/1/21593_ftp.pd

    Analysis and interpretation of a fast limb CME with eruptive prominence, C-flare and EUV dimming

    Full text link
    Coronal Mass ejections or CMEs are large dynamical solar-corona events. The mass balance and kinematics of a fast limb CME, including its prominence progenitor and the associated flare, will be compared with computed magnetic structures to look for their origin and effect. Multi-wavelength ground-based and space-borne observations are used to study a fast W-limb CME event of December 2, 2003, taking into account both on and off disk observations. Its erupting prominence is measured at high cadence with the Pic du Midi full H-alpha line-flux imaging coronagraph. EUV images from space instruments are processed including difference imaging. SOHO/LASCO images are used to study the mass excess and motions. A fast bright expanding coronal loop is identified in the region recorded slightly later by GOES as a C7.2 flare, followed by a brightening and an acceleration phase of the erupting material with both cool and hot components. The total coronal radiative flux dropped by 5 percent in the EUV channels, revealing a large dimming effect at and above the limb. The typical 3-part structure observed 1 hour later shows a core shaped similarly to the eruptive filament/prominence. The total measured mass of the escaping CME (1.5x10to16 g from C2 LASCO observations) definitely exceeds the estimated mass of the escaping cool prominence material although assumptions made to analyse the Ha erupting prominence, as well as the corresponding EUV darkening of the filament observed several days before, made this evaluation uncertain by a factor of 2. From the current free extrapolation we discuss the shape of the magnetic neutral surface and a possible scenario leading to an instability, including the small scale dynamics inside and around the filament.Comment: 11 pages, 9 figure

    Transgenic goats producing an improved version of cetuximab in milk [preprint]

    Get PDF
    Therapeutic monoclonal antibodies (mAbs) represent one of the most important classes of pharmaceutical proteins to treat human diseases. Most are produced in cultured mammalian cells which is expensive, limiting their availability. Goats, striking a good balance between a relatively short generation time and copious milk yield, present an alternative platform for the cost-effective, flexible, large-scale production of therapeutic mAbs. Here, we focused on cetuximab, a mAb against epidermal growth factor receptor, that is commercially produced under the brand name Erbitux and approved for anti-cancer treatments. We generated several transgenic goat lines that produce cetuximab in their milk. Two lines were selected for detailed characterization. Both showed stable genotypes and cetuximab production levels of up to 10g/L. The mAb could be readily purified and showed improved characteristics compared to Erbitux. The goat-produced cetuximab (gCetuximab) lacked a highly immunogenic epitope that is part of Erbitux. Moreover, it showed enhanced binding to CD16 and increased antibody-dependent cell-dependent cytotoxicity compared to Erbitux. This indicates that these goats produce an improved cetuximab version with the potential for enhanced effectiveness and better safety profile compared to treatments with Erbitux. In addition, our study validates transgenic goats as an excellent platform for large-scale production of therapeutic mAbs

    Obinutuzumab in hematologic malignancies: Lessons learned to date

    Get PDF
    AbstractThe routine use of anti-CD20 monoclonal antibodies (mAbs) has improved patient outcomes in CD20-positive non-Hodgkin’s lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Despite the clinical success achieved with rituximab, relapses are still common with further improvements in anti-CD20 mAb efficacy required. Many novel anti-CD20 antibodies are in development, but obinutuzumab is currently the only type II glycoengineered anti-CD20 mAb in clinical testing.Obinutuzumab has increased antibody-dependent cell-mediated cytotoxicity, reduced complement-dependent cytotoxicity and enhanced direct non-apoptotic cell death. In preclinical models, obinutuzumab induced superior tumor remission compared with rituximab at the equivalent dose levels, and was active in rituximab-refractory tumors. Obinutuzumab exhibits encouraging efficacy as monotherapy in NHL, and combined with chemotherapy in relapsed/refractory NHL and treatment-naïve symptomatic CLL. In a recent randomized, phase III trial in patients with untreated comorbid CLL, overall response rate was significantly greater (78% vs. 65%, P<0.0001) and median progression-free survival was significantly prolonged (26.7 vs. 15.2months, P<0.0001) for obinutuzumab plus chlorambucil vs. rituximab plus chlorambucil.Obinutuzumab is a type II anti-CD20 antibody that utilizes distinct mechanisms of action relative to type I antibodies like rituximab and has led to significant clinical improvement over rituximab in a phase III trial in CLL. Further trials are ongoing to determine whether such improvements in outcome will be seen in CD20-positive B-cell malignancies

    The Dual Targeting of FcRn and FcγRs via Monomeric Fc Fragments Results in Strong Inhibition of IgG-Dependent Autoimmune Pathologies

    Get PDF
    Novel molecules that directly target the neonatal Fc receptor (FcRn) and/or Fc gamma receptors (FcγRs) are emerging as promising treatments for immunoglobulin G (IgG)-dependent autoimmune pathologies. Mutated Fc regions and monoclonal antibodies that target FcRn are currently in clinical development and hold promise for reducing the levels of circulating IgG. Additionally, engineered structures containing multimeric Fc regions allow the dual targeting of FcRn and FcγRs; however, their tolerance needs to first be validated in phase I clinical studies. Here, for the first time, we have developed a modified monomeric recombinant Fc optimized for binding to all FcRns and FcγRs without the drawback of possible tolerance associated with FcγR cross-linking. A rational approach using Fc engineering allowed the selection of LFBD192, an Fc with a combination of six mutations that exhibits improved binding to human FcRn and FcγR as well as mouse FcRn and FcγRIV. The potency of LFBD192 was compared with that of intravenous immunoglobulin (IVIg), an FcRn blocker (Fc-MST-HN), and a trimeric Fc that blocks FcRn and/or immune complex-mediated cell activation through FcγR without triggering an immune reaction in several in vitro tests and validated in three mouse models of autoimmune disease

    Rise and Fall of an Anti-MUC1 Specific Antibody

    Get PDF
    So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate.A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10(-10) M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells.Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these "best in class" binding parameters, the therapeutic success of this antibody was prevented by the target biology

    Etude fonctionnelle du facteur Willebrand dans l'adhesion plaquettaire par un systeme de perfusion

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    EMABling

    No full text
    • …
    corecore