204 research outputs found

    Co/Ni Ratio Between 0.8 - 5 GeV/nucleon from TIGER-2001

    Get PDF

    Journey 'Round the Sun: STEREO Science and Spacecraft Performance Results

    Get PDF
    The Solar TErrestrial RElations Observatory (STEREO) was originally designed as a two to five year heliocentric orbit mission to study coronal mass ejections (CMEs), solar energetic particles (SEPs), and the solar wind. After over ten years of continuous science data collection, the twin NASA STEREO observatories have significantly advanced the understanding of Heliophysics. This mission was the first to image CMEs all the way from the Sun to Earth and to observe the entire sphere of the Sun at one time. STEREO has demonstrated the importance of a point of view beyond the Sun-Earth line to significantly improve CME arrival time estimates and in understanding CME structure and trajectories and the longitudinal distribution of SEPs. STEREO was also the first to use one launch vehicle to insert two spacecraft into opposing heliocentric orbits, undergo a 3.5 month long superior solar conjunction, implement unattended daily science operations on two deep space observatories, maintain 7 arcsec continuous pointing without gyros, and detect and attempt to recover a spacecraft after a 22-month long communications anomaly at a range of 2 AU. This paper discusses the significant performance results after the first ten years of operations of the STEREO mission from its journey around the Sun

    Simulated Performance of 3-DTI Gamma-Ray Telescope Concepts

    Get PDF
    We present Monte Carlo simulations of two astronomical gamma-ray telescope concepts based on the ThreeDimensional Track Imager (3- DTI) detector. The 3-DTI consists of a time projection chamber with two-dimensional, crossedstrip micro-well detector readout. The full three- dimensional reconstruction of charged-particle tracks in the gas volume is obtained from transient digitizers, which record the time signature of the charge collected in the wells of each strip. Such detectors hold great promise for advanced Compton telescope (ACT) and advanced pair telescope (APT) concepts due to the very precise measurement of charged particle momenta that is possible (Compton recoil electrons and electron-positron pairs, respectively). We have investigated the performance of baseline ACT and APT designs based on the 3-DTI detector using simulation tools based on GEANT3 and GEANT4, respectively. We present the expected imaging, spectroscopy, polarimetry, and background performance of each design

    Journey 'Round the Sun: STEREO Science and Spacecraft Performance Results

    Get PDF
    The Solar TErrestrial RElations Observatory (STEREO) was originally designed as a two- to five-year heliocentric orbit mission to study coronal mass ejections (CMEs), solar energetic particles (SEPs), and the solar wind. After over ten years of continuous science data collection, the twin NASA STEREO observatories have significantly advanced the understanding of Heliophysics. This mission was the first to image CMEs all the way from the Sun to Earth and to observe the entire sphere of the Sun at one time. STEREO has demonstrated the importance of a point of view beyond the Sun-Earth line to significantly improve CME arrival time estimates and in understanding CME structure and trajectories and the longitudinal distribution of SEPs. STEREO was also the first to use one launch vehicle to insert two spacecraft into opposing heliocentric orbits, undergo a 3.5-month-long superior solar conjunction, implement unattended daily science operations on two deep space observatories, maintain 7 arcsec continuous pointing without gyros, and detect and attempt to recover a spacecraft after a 22-month long communications anomaly at a range of 2 AU (Astronomical Units). This paper discusses the significant performance results after the first ten years of operations of the STEREO mission from its journey around the Sun

    The Phosphorus, Sulfur, Argon, and Calcium Isotopic Composition of the Galactic Cosmic Ray Source

    Get PDF
    Galactic cosmic ray (GCR) measurements of the phosphorus, sulfur, argon, and calcium isotopes made by the Cosmic Ray Isotope Spectrometer aboard the Advanced Composition Explorer are reported over the energy range from ~100 to ~400 MeV nucleon^(–1). The propagation of cosmic rays through the Galaxy and heliosphere is modeled with constraints imposed by measurements. Isotopic source abundance ratios ^(31)P/^(32)S, ^(34)S/^(32)S, ^(38)Ar/^(36)Ar, and ^(44)Ca/^(40)Ca are deduced. The derived ^(31)P/^(32)S ratio is 2.34 ± 0.34 times larger than the solar system value, lending further credence to the suggestion that refractory elements are enriched in the GCRs due to the sputtering of ions off grains in the cores of superbubbles. By determining the GCR source abundances of argon (a noble gas) and calcium (a refractory), it is determined that material in grains is accelerated to GCR energies a factor of 6.4 ± 0.3 more efficiently than gas-phase material in this charge range. With this information, the dust fraction of phosphorus and sulfur in the interstellar material that is mixed with stellar ejecta to form the GCR seed material is found to be consistent with astronomical observations

    Radiation dose during relativistic electron precipitation events at the International Space Station

    Get PDF
    AbstractWe provide a quantitative estimate of the radiation dose during relativistic electron precipitation (REP) events at the International Space Station (ISS). To this goal, we take advantage of the data collected by the CALorimetric Electron Telescope, the Monitor of All‐sky X‐ray Image, and the Space Environment Data Acquisition equipment‐Attached Payload. The three ISS detectors offer complementary REP observations, including energy spectra and flux directional information, during a period of approximately 2.5 years, from November 2015 to March 2018. We have identified 762 REP events during this period from which we obtain the distribution of radiation dose, relevant to extravehicular activities outside the ISS

    Spectral Analysis of the September 2017 Solar Energetic Particle Events

    Get PDF
    An interval of exceptional solar activity was registered in early September 2017, late in the decay phase of solar cycle 24, involving the complex Active Region 12673 as it rotated across the western hemisphere with respect to Earth. A large number of eruptions occurred between 4 and 10 September, including four associated with Xclass flares. The X9.3 flare on 6 September and the X8.2 flare on 10 September are currently the two largest during cycle 24. Both were accompanied by fast coronal mass ejections and gave rise to solar energetic particle (SEP) events measured by nearEarth spacecraft. In particular, the partially occulted solar event on 10 September triggered a groundlevel enhancement (GLE), the second GLE of cycle 24. A further, much less energetic SEP event was recorded on 4 September. In this work we analyze observations by the Advanced Composition Explorer (ACE) and the Geostationary Operational Environmental Satellites (GOES), estimating the SEP eventintegrated spectra above 300 keV and carrying out a detailed study of the spectral shape temporal evolution. Derived spectra are characterized by a lowenergy break at few/tens of MeV; the 10 September event spectrum, extending up to 1 GeV, exhibits an additional rollover at several hundred MeV. We discuss the spectral interpretation in the scenario of shock acceleration and in terms of other important external influences related to interplanetary transport and magnetic connectivity, taking advantage of multipoint observations from the Solar Terrestrial Relations Observatory. Spectral results are also compared with those obtained for the 17 May 2012 GLE event

    Medium-Energy Gamma-Ray Astrophysics with the 3-DTI Gamma-Ray Telescope

    Get PDF
    Gamma-ray observations in the medium energy range (0.50-50.0 MeV) are central to unfolding many outstanding questions in astrophysics. The challenges of medium-energy gamma-ray observations, however, are the low photon statistics and large backgrounds. We review these questions, address the telescope technology requirements, and describe our development of the 3-Dimensional Track Imaging (3-DTI) Compton telescope and its performance for a new mediumenergy gamma-ray mission. The 3-DTI is a large-volume time projection chamber (TPC) with a 2-dimensional gas micro-well detector (MWD) readout

    BurstCube: A CubeSat for Gravitational Wave Counterparts

    Full text link
    BurstCube will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of 10\sim10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.Comment: In the 35th International Cosmic Ray Conference, Busan, Kore
    corecore