1,227 research outputs found

    Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror

    Get PDF
    Multipulse operation was demonstrated with a Ti:sapphire laser mode-locked by a semiconductor saturable absorber mirror. Widely separated double, triple, and quadruple pulses with irregular spacing were observed. In addition, closely coupled states were also found that could be attributed to interplay between saturable absorber and filter losses, saturated gain and the coherent interaction of solitons. These observations, as well as the mechanisms in the transitions from single to multipulse states are explained within the framework of the generalized complex Ginzburg-Landau equation as the laser master equation.Peer Reviewe

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place

    Space-time versus particle-hole symmetry in quantum Enskog equations

    Get PDF
    The non-local scattering-in and -out integrals of the Enskog equation have reversed displacements of colliding particles reflecting that the -in and -out processes are conjugated by the space and time inversions. Generalisations of the Enskog equation to Fermi liquid systems are hindered by a request of the particle-hole symmetry which contradicts the reversed displacements. We resolve this problem with the help of the optical theorem. It is found that space-time and particle-hole symmetry can only be fulfilled simultaneously for the Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form allows only for particle-hole symmetry but not for space-time symmetry due to a stimulated emission of Bosons

    Dynamical Properties of small Polarons

    Full text link
    On the basis of the two-site polaron problem, which we solve by exact diagonalization, we analyse the spectral properties of polaronic systems in view of discerning localized from itinerant polarons and bound polaron pairs from an ensemble of single polarons. The corresponding experimental techniques for that concern photoemission and inverse photoemission spectroscopy. The evolution of the density of states as a function of concentration of charge carriers and strength of the electron-phonon interaction clearly shows the opening up of a gap between single polaronic and bi-polaronic states, in analogy to the Hubbard problem for strongly correlated electron systems. The crossover regime between adiabatic and anti-adiabatic small polarons is triggered by two characteristic time scales: the renormalized electron hopping rate and the renormalized vibrational frequency becoming equal. This crossover regime is then characterized by temporarily alternating self- localization and delocalization of the charge carriers which is accompanied by phase slips in the charge and molecular deformation oscillations and ultimately leads to a dephasing between these two dynamical components of the polaron problem. We visualize these features by a study of the temporal evolution of the charge redistribution and the change in molecular deformations. The spectral and dynamical properties of polarons discussed here are beyond the applicability of the standard Lang Firsov approach to the polaron problem.Comment: 31 pages and 23 figs.(eps), accepted in the Phys. Rev.

    Predicting phase equilibria in polydisperse systems

    Full text link
    Many materials containing colloids or polymers are polydisperse: They comprise particles with properties (such as particle diameter, charge, or polymer chain length) that depend continuously on one or several parameters. This review focusses on the theoretical prediction of phase equilibria in polydisperse systems; the presence of an effectively infinite number of distinguishable particle species makes this a highly nontrivial task. I first describe qualitatively some of the novel features of polydisperse phase behaviour, and outline a theoretical framework within which they can be explored. Current techniques for predicting polydisperse phase equilibria are then reviewed. I also discuss applications to some simple model systems including homopolymers and random copolymers, spherical colloids and colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like colloidal particles; the results surveyed give an idea of the rich phenomenology of polydisperse phase behaviour. Extensions to the study of polydispersity effects on interfacial behaviour and phase separation kinetics are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed Matter; uses Institute of Physics style file iopart.cls (included

    Triplet Exciton Generation in Bulk-Heterojunction Solar Cells based on Endohedral Fullerenes

    Full text link
    Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-Lu3N@C80 (Lu3N@C80-PCBEH) show an open circuit voltage (VOC) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid methyl ester (PC61BM). To fully exploit the potential of this acceptor molecule with respect to the power conversion efficiency (PCE) of solar cells, the short circuit current (JSC) should be improved to become competitive with the state of the art solar cells. Here, we address factors influencing the JSC in blends containing the high voltage absorber Lu3N@C80-PCBEH in view of both photogeneration but also transport and extraction of charge carriers. We apply optical, charge carrier extraction, morphology, and spin-sensitive techniques. In blends containing Lu3N@C80-PCBEH, we found 2 times weaker photoluminescence quenching, remainders of interchain excitons, and, most remarkably, triplet excitons formed on the polymer chain, which were absent in the reference P3HT:PC61BM blends. We show that electron back transfer to the triplet state along with the lower exciton dissociation yield due to intramolecular charge transfer in Lu3N@C80-PCBEH are responsible for the reduced photocurrent

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio

    Spin Waves in Canted Phases: An Application to Doped Manganites

    Get PDF
    We present the effective lagrangian for low energy and momentum spin waves in canted phases at next to leading order in the derivative expansion. The symmetry breaking pattern SU(2) --> 1 of the internal spin group and that of the crystallographic space group imply that there is one ferromagnetic and one antiferromagnetic spin wave. The interaction of the spin waves with the charge carriers is also discussed for canted, ferromagnetic and antiferromagnetic phases. All this together allows us to write the doping dependence of the dispersion relation parameters for doped manganites. We point out that the spin waves posses distinctive characteristics which may allow us to experimentally differentiate canted phases from phase separation regions in doped manganites.Comment: 34 pages, latex file, 1 eps included figure. Minor changes, published versio

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Competition of Zener and polaron phases in doped CMR manganites

    Full text link
    Inspired by the strong experimental evidence for the coexistence of localized and itinerant charge carriers close to the metal-insulator transition in the ferromagnetic phase of colossal magnetoresistive manganese perovskites, for a theoretical description of the CMR transition we propose a two-phase scenario with percolative characteristics between equal-density polaron and Zener band-electron states. We find that the subtle balance between these two states with distinctly different electronic properties can be readily influenced by varying physical parameters, producing various ``colossal'' effects, such as the large magnetization and conductivity changes in the vicinity of the transition temperature.Comment: 8 pages, 5 figure
    corecore