153 research outputs found

    Carbonic anhydrase inhibition selectively prevents amyloid b neurovascular mitochondrial toxicity

    Full text link
    Mounting evidence suggests that mitochondrial dysfunction plays a causal role in the etiology and progression of Alzheimer’s disease (AD). We recently showed that the carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) prevents amyloid b (Ab)-mediated onset of apoptosis in the mouse brain. In this study, we used MTZ and, for the first time, the analog CAI acetazolamide (ATZ) in neuronal and cerebral vascular cells challenged with Ab, to clarify their protective effects and mitochondrial molecular mechanism of action. The CAIs selectively inhibited mitochondrial dysfunction pathways induced by Ab, without affecting metabolic function. ATZ was effective at concentrations 10 times lower than MTZ. Both MTZ and ATZ prevented mitochondrial membrane depolarization and H2O2 generation, with no effects on intracellular pH or ATP production. Importantly, the drugs did not primarily affect calcium homeostasis. This work suggests a new role for carbonic anhydrases (CAs) in the Ab-induced mitochondrial toxicity associated with AD and cerebral amyloid angiopathy (CAA), and paves the way to AD clinical trials for CAIs, FDA-approved drugs with a well-known profile of brain delivery

    Resting-State Glucose Metabolism Level Is Associated with the Regional Pattern of Amyloid Pathology in Alzheimer's Disease

    Get PDF
    It has been suggested that glucose metabolism within the brain's default network is directly associated with—and may even cause—the amyloid pathology of Alzheimer's disease (AD). Here we performed 2-[18F]fluoro-2-deoxy-D-glucose (FDG) and [11C]-labeled Pittsburgh Compound B (PIB) positron emission tomography (PET) on cognitively normal elderly subjects and on AD patients and conducted quantitative regional analysis of FDG- and PIB-PET images using an automated region of interest technique. We confirmed that resting glucose metabolism within the posterior components of the brain's default network is high in normal elderly subjects and low in AD patients, which is partially in agreement with the regional pattern of PIB uptake within the default network of AD patients. However, in several regions outside the default network, glucose metabolism was high in normal elderly subjects but was not depressed in AD patients, who exhibited significantly increased PIB uptakes in these regions. In contrast, the level of resting glucose metabolism in the default network and in regions outside the default network in normal elderly subjects was significantly correlated with the level of regional PIB uptake in AD patients. These results are discussed with experimental evidence suggesting that beta amyloid production and amyloid precursor protein regulation are dependent on neuronal activity

    Glymphatic clearance estimated using diffusion tensor imaging along perivascular spaces is reduced after traumatic brain injury and correlates with plasma neurofilament light, a biomarker of injury severity

    Get PDF
    The glymphatic system is a perivascular fluid clearance system, most active during sleep, considered important for clearing the brain of waste products and toxins. Glymphatic failure is hypothesized to underlie brain protein deposition in neurodegenerative disorders like Alzheimer's disease. Preclinical evidence suggests that a functioning glymphatic system is also essential for recovery from traumatic brain injury, which involves release of debris and toxic proteins that need to be cleared from the brain. In a cross-sectional observational study, we estimated glymphatic clearance using diffusion tensor imaging along perivascular spaces, an MRI-derived measure of water diffusivity surrounding veins in the periventricular region, in 13 non-injured controls and 37 subjects who had experienced traumatic brain injury ∼5 months previously. We additionally measured the volume of the perivascular space using T2-weighted MRI. We measured plasma concentrations of neurofilament light chain, a biomarker of injury severity, in a subset of subjects. Diffusion tensor imaging along perivascular spaces index was modestly though significantly lower in subjects with traumatic brain injury compared with controls when covarying for age. Diffusion tensor imaging along perivascular spaces index was significantly, negatively correlated with blood levels of neurofilament light chain. Perivascular space volume did not differ in subjects with traumatic brain injury as compared with controls and did not correlate with blood levels of neurofilament light chain, suggesting it may be a less sensitive measure for injury-related perivascular clearance changes. Glymphatic impairment after traumatic brain injury could be due to mechanisms such as mislocalization of glymphatic water channels, inflammation, proteinopathy and/or sleep disruption. Diffusion tensor imaging along perivascular spaces is a promising method for estimating glymphatic clearance, though additional work is needed to confirm results and assess associations with outcome. Understanding changes in glymphatic functioning following traumatic brain injury could inform novel therapies to improve short-term recovery and reduce later risk of neurodegeneration

    Challenges associated with biomarker-based classification systems for Alzheimer's disease

    Get PDF
    Altres ajuts: This work was also supported by research grants from the Carlos III Institute of Health, Spain and the CIBERNED program (Program 1, Alzheimer Disease to Alberto Lleó and SIGNAL study, www.signalstudy.es), partly funded by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, "Una manera de hacer Europa". This work has also been supported by a "Marató TV3" grant (20141210 to Juan Fortea and 044412 to Rafael Blesa) and by Generalitat de Catalunya and a grant from the Fundació Bancaria La Caixa to Rafael Blesa. I. Illán-Gala is supported by the i-PFIS grant from the FIS, Instituto de Salud Carlos III and the Rio Hortega grant (CM17/00074) from "Acción estratégica en Salud 2013-2016" and the European Social Fund. USPHS NIH grants awarded to M.J.d.L. include: AG13616, AG022374, AG12101, and AG057570.We aimed to evaluate the consistency of the A/T/N classification system. We included healthy controls, mild cognitive impairment, and dementia patients from Alzheimer's disease Neuroimaging Initiative. We assessed subject classification consistency with different biomarker combinations and the agreement and correlation between biomarkers. Subject classification discordance ranged from 12.2% to 44.5% in the whole sample; 17.3%-46.4% in healthy controls; 11.9%-46.5% in mild cognitive impairment, and 1%-35.7% in dementia patients. Amyloid, but not neurodegeneration biomarkers, showed good agreement both in the whole sample and in the clinical subgroups. Amyloid biomarkers were correlated in the whole sample, but not along the Alzheimer's disease continuum (as defined by a positive amyloid positron emission tomography). Neurodegeneration biomarkers were poorly correlated both in the whole sample and along the Alzheimer's disease continuum. The relationship between biomarkers was stage-dependent. Our findings suggest that the current A/T/N classification system does not achieve the required consistency to be used in the clinical setting

    Periodontal disease's contribution to Alzheimer's disease progression in Down syndrome

    Get PDF
    Altres ajuts: This study was supported by National institutes of Health (NIH)/National Institute on Aging grants AG035137, AG032554, AG12101, AG022374, and AG13616, NIH DE023139-02, Alzheimer's Association NIRG-12-173937, and NIH/NCATS UL1 TR000038. Conflict of interest: No conflict of interest is reported for A.R.K., M.J., P.C., R.G.C., D.S., K.R.C.A., M.R., A.M., J.O.F., S.V., M.C.-I., and B.B. M.J. de Leon has a patent on an image analysis technology that was licensed to Abiant Imaging, Inc., by NYU, and has a financial interest in this license agreement, and NYU holds stock options on the company. M. de Leon has received compensation for consulting services from Abiant Imaging. Dr L. Glodzic was a principal investigator on an Investigator-Initiated project funded by Forest Laboratories and received an honorarium for serving as a consultant to Roche Pharma. Contributors: A.R.K., M.J.de.L., and J.F. wrote the manuscript. All the other authors reviewed the manuscript and contributed with the scientific literature, concepts, and modeling. All authors reviewed the manuscript for intellectual content and approved the final draft.People with Down syndrome (DS) are at an increased risk for Alzheimer's disease (AD). After 60 years of age, >50% of DS subjects acquire dementia. Nevertheless, the age of onset is highly variable possibly because of both genetic and environmental factors. Genetics cannot be modified, but environmental risk factors present a potentially relevant intervention for DS persons at risk for AD. Among them, inflammation, important in AD of DS type, is potential target. Consistent with this hypothesis, chronic peripheral inflammation and infections may contribute to AD pathogenesis in DS. People with DS have an aggressive form of periodontitis characterized by rapid progression, significant bacterial and inflammatory burden, and an onset as early as 6 years of age. This review offers a hypothetical mechanistic link between periodontitis and AD in the DS population. Because periodontitis is a treatable condition, it may be a readily modifiable risk factor for AD

    Associations of lifestyle and vascular risk factors with Alzheimer\u27s brain biomarker changes during middle age: a 3 year longitudinal study in the broader New York City area

    Full text link
    Objective To investigate the associations between lifestyle and vascular risk factors and changes in Alzheimer’s disease (AD) biomarkers (beta-amyloid load via 11C-PiB PET, glucose metabolism via 18F-FDG PET and neurodegeneration via structural MRI) and global cognition in middle-aged asymptomatic participants at risk for AD. Design Prospective, longitudinal. Setting The study was conducted at New York University Langone/Weill Cornell Medical Centres in New York City. Participants Seventy cognitively normal participants from multiple community sources, aged 30–60 years with lifestyle measures (diet, intellectual activity and physical activity), vascular risk measures and two imaging biomarkers visits over at least 2 years, were included in the study. Outcome measures We examined MRI-based cortical thickness, fluoro-deoxy-glucose (FDG) glucose metabolism and PiB beta-amyloid in AD-vulnerable regions. A global cognitive z-score served as our summary cognition measure. We used regression change models to investigate the associations of clinical, lifestyle and vascular risk measures with changes in AD biomarkers and global cognition. Results Diet influenced changes in glucose metabolism, but not amyloid or cortical thickness changes. With and without accounting for demographic measures, vascular risk and baseline FDG measures, lower adherence to a Mediterranean-style diet was associated with faster rates of FDG decline in the posterior cingulate cortex (p≤0.05) and marginally in the frontal cortex (p=0.07). None of the other lifestyle variables or vascular measures showed associations with AD biomarker changes. Higher baseline plasma homocysteine was associated with faster rates of decline in global cognition, with and without accounting for lifestyle and biomarker measures (p=0.048). None of the lifestyle variables were associated with cognition. Conclusions Diet influenced brain glucose metabolism in middle-aged participants, while plasma homocysteine explained variability in cognitive performance. These findings suggest that these modifiable risk factors affect AD risk through different pathways and support further investigation of risk reduction strategies in midlife

    Current Challenges for the Early Detection of Alzheimer's Disease: Brain Imaging and CSF Studies

    Get PDF
    The development of prevention therapies for Alzheimer's disease (AD) would greatly benefit from biomarkers that are sensitive to the subtle brain changes that occur in the preclinical stage of the disease. Reductions in the cerebral metabolic rate of glucose (CMRglc), a measure of neuronal function, have proven to be a promising tool in the early diagnosis of AD. In vivo brain 2-[18F]fluoro-2-Deoxy-D-glucose-positron emission tomography (FDG-PET) imaging demonstrates consistent and progressive CMRglc reductions in AD patients, the extent and topography of which correlate with symptom severity. There is increasing evidence that hypometabolism appears during the preclinical stages of AD and can predict decline years before the onset of symptoms. This review will give an overview of FDG-PET results in individuals at risk for developing dementia, including: presymptomatic individuals carrying mutations responsible for early-onset familial AD; patients with Mild Cognitive Impairment (MCI), often a prodrome to late-onset sporadic AD; non-demented carriers of the Apolipoprotein E (ApoE) ε4 allele, a strong genetic risk factor for late-onset AD; cognitively normal subjects with a family history of AD; subjects with subjective memory complaints; and normal elderly followed longitudinally until they expressed the clinical symptoms and received post-mortem confirmation of AD. Finally, we will discuss the potential to combine different PET tracers and CSF markers of pathology to improve the early detection of AD

    Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer’s disease: a cross-sectional study of middle-aged adults from the broader New York City area

    Full text link
    Objective To investigate the effects of lifestyle and vascular-related risk factors for Alzheimer’s disease (AD) on in vivo MRI-based brain atrophy in asymptomatic young to middle-aged adults. Design Cross-sectional, observational. Setting Broader New York City area. Two research centres affiliated with the Alzheimer’s disease Core Center at New York University School of Medicine. Participants We studied 116 cognitively normal healthy research participants aged 30–60 years, who completed a three-dimensional T1-weighted volumetric MRI and had lifestyle (diet, physical activity and intellectual enrichment), vascular risk (overweight, hypertension, insulin resistance, elevated cholesterol and homocysteine) and cognition (memory, executive function, language) data. Estimates of cortical thickness for entorhinal (EC), posterior cingulate, orbitofrontal, inferior and middle temporal cortex were obtained by use of automated segmentation tools. We applied confirmatory factor analysis and structural equation modelling to evaluate the associations between lifestyle, vascular risk, brain and cognition. Results Adherence to a Mediterranean-style diet (MeDi) and insulin sensitivity were both positively associated with MRI-based cortical thickness (diet: βs≥0.26, insulin sensitivity βs≥0.58, P≤0.008). After accounting for vascular risk, EC in turn explained variance in memory (P≤0.001). None of the other lifestyle and vascular risk variables were associated with brain thickness. In addition, the path associations between intellectual enrichment and better cognition were significant (βs≥0.25 P≤0.001), as were those between overweight and lower cognition (βs≥-0.22, P≤0.01). Conclusions In cognitively normal middle-aged adults, MeDi and insulin sensitivity explained cortical thickness in key brain regions for AD, and EC thickness predicted memory performance in turn. Intellectual activity and overweight were associated with cognitive performance through different pathways. Our findings support further investigation of lifestyle and vascular risk factor modification against brain ageing and AD. More studies with larger samples are needed to replicate these research findings in more diverse, community-based settings

    Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers : novel roles for sleep spindles and tau

    Get PDF
    Background: Based on associations between sleep spindles, cognition, and sleep-dependent memory processing, here we evaluated potential relationships between levels of CSF Aβ42, P-tau, and T-tau with sleep spindle density and other biophysical properties of sleep spindles in a sample of cognitively normal elderly individuals. Methods: One-night in-lab nocturnal polysomnography (NPSG) and morning to early afternoon CSF collection were performed to measure CSF Aβ42, P-tau and T-tau. Seven days of actigraphy were collected to assess habitual total sleep time. Results: Spindle density during NREM stage 2 (N2) sleep was negatively correlated with CSF Aβ42, P-tau and T-tau. From the three, CSF T-tau was the most significantly associated with spindle density, after adjusting for age, sex and ApoE4. Spindle duration, count and fast spindle density were also negatively correlated with T-tau levels. Sleep duration and other measures of sleep quality were not correlated with spindle characteristics and did not modify the associations between sleep spindle characteristics and the CSF biomarkers of AD. Conclusions: Reduced spindles during N2 sleep may represent an early dysfunction related to tau, possibly reflecting axonal damage or altered neuronal tau secretion, rendering it a potentially novel biomarker for early neuronal dysfunction. Given their putative role in memory consolidation and neuroplasticity, sleep spindles may represent a mechanism by which tau impairs memory consolidation, as well as a possible target for therapeutic interventions in cognitive decline

    Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 “<scp>ISMRM</scp> Imaging Neurofluids Study group” Workshop in Rome

    Get PDF
    Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three‐day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery.Evidence level: 1Technical Efficacy: Stage
    corecore