4,189 research outputs found

    Nonholonomic constraints in kk-symplectic Classical Field Theories

    Get PDF
    A kk-symplectic framework for classical field theories subject to nonholonomic constraints is presented. If the constrained problem is regular one can construct a projection operator such that the solutions of the constrained problem are obtained by projecting the solutions of the free problem. Symmetries for the nonholonomic system are introduced and we show that for every such symmetry, there exist a nonholonomic momentum equation. The proposed formalism permits to introduce in a simple way many tools of nonholonomic mechanics to nonholonomic field theories.Comment: 27 page

    Higher-order Mechanics: Variational Principles and other topics

    Get PDF
    After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we state a unified geometrical version of the Variational Principles which allows us to derive the Lagrangian and Hamiltonian equations for these kinds of systems. Then, the standard Lagrangian and Hamiltonian formulations of these principles and the corresponding dynamical equations are recovered from this unified framework.Comment: New version of the paper "Variational principles for higher-order dynamical systems", which was presented in the "III Iberoamerican Meeting on Geometry, Mechanics and Control" (Salamanca, 2012). The title is changed. A detailed review is added. Sections containing results about variational principles are enlarged with additional comments, diagrams and summarizing results. Bibliography is update

    Symmetries in Classical Field Theory

    Full text link
    The multisymplectic description of Classical Field Theories is revisited, including its relation with the presymplectic formalism on the space of Cauchy data. Both descriptions allow us to give a complete scheme of classification of infinitesimal symmetries, and to obtain the corresponding conservation laws.Comment: 70S05; 70H33; 55R10; 58A2

    Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries

    Full text link
    We state the intrinsic form of the Hamiltonian equations of first-order Classical Field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analyzed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between {\sl Cartan-Noether symmetries} and {\sl general symmetries} of the system is discussed. Noether's theorem is also stated in this context, both the ``classical'' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.Comment: Some minor mistakes are corrected. Bibliography is updated. To be published in J. Phys. A: Mathematical and Genera

    Hamiltonian Dynamics of Linearly Polarized Gowdy Models Coupled to Massless Scalar Fields

    Get PDF
    The purpose of this paper is to analyze in detail the Hamiltonian formulation for the compact Gowdy models coupled to massless scalar fields as a necessary first step towards their quantization. We will pay special attention to the coupling of matter and those features that arise for the three-handle and three-sphere topologies that are not present in the well studied three torus case -in particular the polar constraints that come from the regularity conditions on the metric. As a byproduct of our analysis we will get an alternative understanding, within the Hamiltonian framework, of the appearance of initial and final singularities for these models.Comment: Final version to appear in Classical and Quantum Gravit

    On the k-Symplectic, k-Cosymplectic and Multisymplectic Formalisms of Classical Field Theories

    Get PDF
    The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).Comment: 25 page

    Unambiguous Formalism for Higher-Order Lagrangian Field Theories

    Get PDF
    The aim of this paper is to propose an unambiguous intrinsic formalism for higher-order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, which implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher-order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both, the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher-order jet bundle and the canonical multisymplectic form on its dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher-order field theories. Several examples illustrate our construction.Comment: 21 pages; 4 diagrams; (this version) corrected typos; moved paragraphs; publishe

    Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings

    Full text link
    The aim of this paper is to study the relationship between Hamiltonian dynamics and constrained variational calculus. We describe both using the notion of Lagrangian submanifolds of convenient symplectic manifolds and using the so-called Tulczyjew's triples. The results are also extended to the case of discrete dynamics and nonholonomic mechanics. Interesting applications to geometrical integration of Hamiltonian systems are obtained.Comment: 33 page

    High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates

    Get PDF
    AbstractStenotrophomonas maltophilia is the only known bacterium in which quinolone-resistant isolates do not present mutations in the genes encoding bacterial topoisomerases. The expression of the intrinsic quinolone resistance elements smeDEF, smeVWX and Smqnr was analysed in 31 clinical S. maltophilia isolates presenting a minimum inhibitory concentration (MIC) range to ciprofloxacin between 0.5 and > 32 μg/mL; 11 (35.5%) overexpressed smeDEF, 2 (6.5%) presenting the highest quinolone MICs overexpressed smeVWX and 1 (3.2%) overexpressed Smqnr. Both strains overexpressing smeVWX presented changes at the Gly266 position of SmeRv, the repressor of smeVWX. Changes at the same position were previously observed in in vitro selected S. maltophilia quinolone-resistant mutants, indicating this amino acid is highly relevant for the activity of SmeRv in repressing smeVWX expression. For the first time SmeVWX overexpression is associated with quinolone resistance of S. maltophilia clinical isolates

    Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

    Get PDF
    This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).Comment: 45 page
    corecore