956 research outputs found

    Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1

    Full text link
    The dwarf galaxy Segue 1 is one of the most promising targets for the indirect detection of dark matter. Here we examine what constraints 9 months of Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark matter particle. We use nested sampling to explore the CMSSM parameter space, simultaneously fitting other relevant constraints from accelerator bounds, the relic density, electroweak precision observables, the anomalous magnetic moment of the muon and B-physics. We include spectral and spatial fits to the Fermi observations, a full treatment of the instrumental response and its related uncertainty, and detailed background models. We also perform an extrapolation to 5 years of observations, assuming no signal is observed from Segue 1 in that time. Results marginally disfavour models with low neutralino masses and high annihilation cross-sections. Virtually all of these models are however already disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters, expanded introduction and discussion in response to referee's comment

    Search for dark matter signals with Fermi-LAT observation of globular clusters NGC 6388 and M 15

    Full text link
    The globular clusters are probably good targets for dark matter (DM) searches in γ\gamma-rays due to the possible adiabatic contraction of DM by baryons. In this work we analyse the three-year data collected by {\it Fermi} Large Area Telescope of globular clusters NGC 6388 and M 15 to search for possible DM signals. For NGC 6388 the detection of γ\gamma-ray emission was reported by {\it Fermi} collaboration, which is consistent with the emission of a population of millisecond pulsars. The spectral shape of NGC 6388 is also shown to be consistent with a DM contribution if assuming the annihilation final state is bbˉb\bar{b}. No significant γ\gamma-ray emission from M 15 is observed. We give the upper limits of DM contribution to γ\gamma-ray emission in both NGC 6388 and M 15, for annihilation final states bbˉb\bar{b}, W+WW^+W^-, μ+μ\mu^+\mu^-, τ+τ\tau^+\tau^- and monochromatic line. The constraints are stronger than that derived from observation of dwarf galaxies by {\it Fermi}.Comment: 17 pages, 6 figures, accepted by JCA

    Systematic effects in the extraction of the 'WMAP haze'

    Full text link
    The extraction of a 'haze' from the WMAP microwave skymaps is based on subtraction of known foregrounds, viz. free-free (bremsstrahlung), thermal dust and synchrotron, each traced by other skymaps. While the 408 MHz all-sky survey is used for the synchrotron template, the WMAP bands are at tens of GHz where the spatial distribution of the radiating cosmic ray electrons ought to be quite different because of the energy-dependence of their diffusion in the Galaxy. The systematic uncertainty this introduces in the residual skymap is comparable to the claimed haze and can, for certain source distributions, have a very similar spectrum and latitudinal profile and even a somewhat similar morphology. Hence caution must be exercised in interpreting the 'haze' as a physical signature of, e.g., dark matter annihilation in the Galactic centre.Comment: 17 pages, 12 figures; improved diffusion model; extended discussion of spectral index maps; clarifying comments, figures and references added; to appear in JCA

    Axion-like particle imprint in cosmological very-high-energy sources

    Full text link
    Discoveries of very high energy (VHE) photons from distant blazars suggest that, after correction by extragalactic background light (EBL) absorption, there is a flatness or even a turn-up in their spectra at the highest energies that cannot be easily explained by the standard framework. Here, it is shown that a possible solution to this problem is achieved by assuming the existence of axion-like particles (ALPs) with masses ~1 neV. The ALP scenario is tested making use of observations of the highest redshift blazars known in the VHE energy regime, namely 3C 279, 3C 66A, PKS 1222+216 and PG 1553+113. In all cases, better fits to the observed spectra are found when including ALPs rather than considering EBL only. Interestingly, quite similar critical energies for photon/ALP conversions are also derived, independently of the source considered.Comment: 12 pages, 2 figures, 2 tables; accepted by JCAP. Replaced to match the accepted versio

    Non-minimally coupled dark matter: effective pressure and structure formation

    Full text link
    We propose a phenomenological model in which a non-minimal coupling between gravity and dark matter is present in order to address some of the apparent small scales issues of \lcdm model. When described in a frame in which gravity dynamics is given by the standard Einstein-Hilbert action, the non-minimal coupling translates into an effective pressure for the dark matter component. We consider some phenomenological examples and describe both background and linear perturbations. We show that the presence of an effective pressure may lead these scenarios to differ from \lcdm at the scales where the non-minimal coupling (and therefore the pressure) is active. In particular two effects are present: a pressure term for the dark matter component that is able to reduce the growth of structures at galactic scales, possibly reconciling simulations and observations; an effective interaction term between dark matter and baryons that could explain observed correlations between the two components of the cosmic fluid within Tully-Fisher analysis.Comment: 18 pages, 6 figures, references added. Published in JCA

    Dark Matter and the CACTUS Gamma-Ray Excess from Draco

    Get PDF
    The CACTUS atmospheric Cherenkov telescope collaboration recently reported a gamma-ray excess from the Draco dwarf spheroidal galaxy. Draco features a very low gas content and a large mass-to-light ratio, suggesting as a possible explanation annihilation of weakly interacting massive particles (WIMPs) in the Draco dark-matter halo. We show that with improved angular resolution, future measurements can determine whether the halo is cored or cuspy, as well as its scale radius. We find the relevant WIMP masses and annihilation cross sections and show that supersymmetric models can account for the required gamma-ray flux. The annihilation cross section range is found to be not compatible with a standard thermal relic dark-matter production. We compute for these supersymmetric models the resulting Draco gamma-ray flux in the GLAST energy range and the rates for direct neutralino detection and for the flux of neutrinos from neutralino annihilation in the Sun. We also discuss the possibility that the bulk of the signal detected by CACTUS comes from direct WIMP annihilation to two photons and point out that a decaying-dark-matter scenario for Draco is not compatible with the gamma-ray flux from the Galactic center and in the diffuse gamma-ray background.Comment: 24 pages, 10 figures; version accepted for publication in JCA

    Interactions Between the Amazonian Rainforest and Cumuli Clouds: A Large‐Eddy Simulation, High‐Resolution ECMWF, and Observational Intercomparison Study

    Get PDF
    The explicit coupling at meter and second scales of vegetation's responses to the atmospheric‐boundary layer dynamics drives a dynamic heterogeneity that influences canopy‐top fluxes and cloud formation. Focusing on a representative day during the Amazonian dry season, we investigate the diurnal cycle of energy, moisture and carbon dioxide at the canopy top, and the transition from clear to cloudy conditions. To this end, we compare results from a large‐eddy simulation technique, a high‐resolution global weather model, and a complete observational data set collected during the GoAmazon14/15 campaign. The overall model‐observation comparisons of radiation and canopy‐top fluxes, turbulence, and cloud dynamics are very satisfactory, with all the modeled variables lying within the standard deviation of the monthly aggregated observations. Our analysis indicates that the timing of the change in the daylight carbon exchange, from a sink to a source, remains uncertain and is probably related to the stomata closure caused by the increase in vapor pressure deficit during the afternoon. We demonstrate quantitatively that heat and moisture transport from the subcloud layer into the cloud layer are misrepresented by the global model, yielding low values of specific humidity and thermal instability above the cloud base. Finally, the numerical simulations and observational data are adequate settings for benchmarking more comprehensive studies of plant responses, microphysics, and radiation

    Can AMS-02 discriminate the origin of an anti-proton signal?

    Get PDF
    Indirect searches can be used to test dark matter models against expected signals in various channels, in particular antiprotons. With antiproton data available soon at higher and higher energies, it is important to test the dark matter hypothesis against alternative astrophysical sources, e.g. econdaries accelerated in supernova remnants. We investigate the two signals from different dark matter models and different supernova remnant parameters, as forecasted for the AMS-02, and show that they present a significant degeneracy

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    Complementarity of Galactic radio and collider data in constraining WIMP dark matter models

    Full text link
    In this work we confront dark matter models to constraints that may be derived from radio synchrotron radiation from the Galaxy, taking into account the astrophysical uncertainties and we compare these to bounds set by accelerator and complementary indirect dark matter searches. Specifically we apply our analysis to three popular particle physics models. First, a generic effective operator approach, in which case we set bounds on the corresponding mass scale, and then, two specific UV completions, the Z' and Higgs portals. We show that for many candidates, the radio synchrotron limits are competitive with the other searches, and could even give the strongest constraints (as of today) with some reasonable assumptions regarding the astrophysical uncertainties.Comment: 22 pages, 12 figure
    corecore