777 research outputs found

    TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes

    Get PDF
    Numerous studies have highlighted the importance of high-affinity interactions between T cell receptors (TCRs) and their ligands in the selection of Foxp3+ regulatory T cells (T reg cells). To determine the role of the TCR in directing T cells into the Foxp3+ lineage, we generated transgenic (Tg) mice expressing TCRs from Foxp3+ cells. Initial analyses of the TCR Tg mice crossed with RAG-deficient mice showed that the percentage of Foxp3+ cells was very low. However, intrathymic injection and bone marrow chimera experiments showed a saturable increase of the Foxp3+ population when T reg TCR Tg cells were present in low numbers. Furthermore, when analyzing whole thymi of T reg TCR Tg RAG-deficient mice, we found significantly more Foxp3+ cells than in conventional T cell TCR Tg mice. Our results indicate that although the TCR has an instructive role in determining Foxp3 expression, selection of Foxp3+ individual clones in the thymus is limited by a very small niche

    Non-classical B Cell Memory of Allergic IgE Responses

    Get PDF
    The long-term effectiveness of antibody responses relies on the development of humoral immune memory. Humoral immunity is maintained by long-lived plasma cells that secrete antigen-specific antibodies, and memory B cells that rapidly respond to antigen re-exposure by generating new plasma cells and memory B cells. Developing effective immunological memory is essential for protection against pathogens, and is the basis of successful vaccinations. IgE responses have evolved for protection against helminth parasites infections and against toxins, but IgE is also a potent mediator of allergic diseases. There has been a dramatic increase in the incidence of allergic diseases in recent decades and this has provided the impetus to study the nature of IgE antibody responses. As will be discussed in depth in this review, the IgE memory response has unique features that distinguish it from classical B cell memory

    Partial Depletion of Natural CD4+CD25+ Regulatory T Cells with Anti-CD25 Antibody Does Not Alter the Course of Acute Influenza A Virus Infection

    Get PDF
    Foxp3+ CD4+ regulatory T cells represent a T cell subset with well-characterized immunosuppressive effects during immune homeostasis and chronic infections, and there is emerging evidence to suggest these cells temper pulmonary inflammation in response to acute viral infection. Recent studies have demonstrated treatment with PC61 CD25-depleting antibody potentiates inflammation in a murine model of RSV infection, while paradoxically delaying recruitment of CD8+ T cells to the site of inflammation. The present study therefore sought to examine the role of these cells in a murine model of acute influenza A virus infection through the administration of PC61 CD25-depleting antibody. PC61 antibody is able to partially deplete CD25+Foxp3+ regulatory T cells to a comparable degree as seen within previous work examining RSV, however this does not alter influenza A-virus induced mortality, weight loss, viral clearance and cellularity within the lung. Collectively, these data demonstrate that partial depletion of CD4+CD25+ regulatory T cells with PC61 antibody does not alter the course of influenza A virus infection

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen

    Immune Tolerance by Induced Regulatory T Cells in Asthma

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens

    Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis

    Get PDF
    Crescentic glomerulonephritis is mediated by inappropriate humoral and cellular immune responses toward self-antigens that may result from defects in central and peripheral tolerance. Evidence now suggests that regulatory T cells (Tregs) may be of pathophysiological importance in proliferative and crescentic forms of glomerulonephritis. To analyze the role of endogenous Tregs in a T cell-dependent glomerulonephritis model of nephrotoxic nephritis, we used ‘depletion of regulatory T cell' (DEREG) mice that express the diphtheria toxin receptor under control of the FoxP3 (forkhead box P3) gene promoter. Toxin injection into these mice efficiently depleted renal and splenic FoxP3+ Treg cells as determined by fluorescent-activated cell sorting (FACS) and immunohistochemical analyses. Treg depletion exacerbated systemic and renal interferon-γ (IFNγ) expression and increased recruitment of IFNγ-producing Th1 cells into the kidney without an effect on the Th17 immune response. The enhanced Th1 response, following Treg cell depletion, was associated with an aggravated course of glomerulonephritis as measured by glomerular crescent formation. Thus, our results establish the functional importance of endogenous Tregs in the control of a significantly enhanced systemic and renal Th1 immune response in experimental glomerulonephritis

    Systemic IL-2/anti-IL-2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells

    Get PDF
    Therapeutic tolerance restoration has been proven to modify food allergy in patients and animal models and although sublingual immunotherapy (SLIT) has showed promise, combined therapy may be necessary to achieve a strong and long‐term tolerance. In this work, we combined SLIT with systemic administration of IL‐2 associated with an anti‐IL‐2 monoclonal antibody (IL‐2/anti‐IL‐2Ab complex or IL‐2C) to reverse the IgE‐mediated experimental allergy. Balb/c mice were sensitized with cholera toxin and milk proteins and orally challenged with allergen to elicit hypersensitivity reactions. Then, allergic mice were treated with a sublingual administration of very low amounts of milk proteins combined with intraperitoneal injection of low doses of IL‐2C. The animals were next re‐exposed to allergens and mucosal as well as systemic immunological parameters were assessed in vivo and in vitro. The treatment reduced serum specific IgE, IL‐5 secretion by spleen cells and increased IL‐10 and TGF‐β in the lamina propria of buccal and duodenal mucosa. We found an augmented frequency of IL‐10‐secreting CD4+CD25+Foxp3+ regulatory T cells (Treg) in the submaxilar lymph nodes and buccal lamina propria. Tregs were sorted, characterized and adoptively transferred to naïve mice, which were subsequently sensitized. No allergy was experienced in these mice and we encouragingly discovered a faster and more efficient tolerance induction with the combined therapy compared with SLIT. The combination of two therapeutic strategies rendered Treg‐mediated tolerance more efficient compared to individual treatments and reversed the established IgE‐mediated food allergy. This approach highlights the ability of IL‐2C to expand Tregs, and it may represent a promising disease‐modifying therapy for managing food allergyInstituto de Estudios Inmunológicos y FisiopatológicosConsejo Nacional de Investigaciones Científicas y Técnica
    corecore