162 research outputs found
High versus low dietary protein intake and bone health in older adults: A systematic review and meta-analysis
Protein may play a beneficial role in the prevention of bone loss and in slowing down osteoporosis. The effect of dietary protein may be different in older adults compared to younger adults, since this population has a greater need for protein. The aim of this systematic review and meta-analysis was to investigate the impact of a dietary protein intake above the Recommended Dietary Allowance (RDA) of 0.8âŻg/kg body weight/day from any source on Bone Mineral Density (BMD)/Bone Mineral Content (BMC), bone turnover markers, and fracture risk in older adults compared to a lower dietary protein intake. A systematic search was conducted through October 2018 in 3 databases: CENTRAL, MEDLINE, and EMBASE. We included all prospective cohort studies and Randomized Controlled Trials (RCTs) among adults aged â„65âŻyears that examined the relation between protein intake on bone health outcomes. Two investigators independently conducted abstract and full-text screenings, data extractions, and risk of bias assessments. Authors were contacted for missing data. After screening of 523 records, twelve cohort studies and one RCT were included. Qualitative evaluation showed a positive trend between higher protein intakes and higher femoral neck and total hip BMD. Meta-analysis of four cohort studies showed that higher protein intakes resulted in a significant decrease in hip fractures (pooled hazard ratio: 0.89; 95% confidence interval: 0.84, 0.94). This systematic review supports that a protein intake above the current RDA may reduce hip fracture risk and may play a beneficial role in BMD maintenance and loss in older adults
Discussion on protein recommendations for supporting muscle and bone health in older adults: a mini review
Muscle and bone tissues are interconnected, and both rely on an adequate protein intake. Recommendations for protein intake for older adults specifically vary across countries. The purpose of this narrative review is to discuss the existing evidence for protein recommendations for supporting muscle and bone health in older adults and to evaluate if a protein intake above the current population reference intake (PRI) for older adults would be scientifically justified. First, this review summarizes the protein recommendations from bodies setting dietary reference values, expert groups, and national health organizations. Next, relevant studies investigating the impact of protein on muscle and bone health in older adults are discussed. In addition, the importance of protein quality for muscle and bone health is addressed. Lastly, a number of research gaps are identified to further explore the added value of a protein intake above the PRI for older adults
Loneliness Literacy Scale: Development and Evaluation of an Early Indicator for Loneliness Prevention
To develop and evaluate the Loneliness Literacy Scale for the assessment of short-term outcomes of a loneliness prevention programme among Dutch elderly persons. Scale development was based on evidence from literature and experiences from local stakeholders and representatives of the target group. The scale was pre-tested among 303 elderly persons aged 65 years and over. Principal component analysis and internal consistency analysis were used to affirm the scale structure, reduce the number of items and assess the reliability of the constructs. Linear regression analysis was conducted to evaluate the association between the literacy constructs and loneliness. The four constructs âmotivationâ, âself-efficacyâ, âperceived social supportâ and âsubjective normâ derived from principal component analysis captured 56 % of the original variance. Cronbachâs coefficient α was above 0.7 for each construct. The constructs âself-efficacyâ and âperceived social supportâ were positively and âsubjective normâ was negatively associated with loneliness. To our knowledge this is the first study developing a short-term indicator for loneliness prevention. The indicator contributes to the need of evaluating public health interventions more close to the intervention activities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11205-013-0322-y) contains supplementary material, which is available to authorized users
Associations between Pro- and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cognitive Functioning in Dutch Healthy Older Adults : The NU-AGE Study
Dietary modulation of the gastro-intestinal microbiota is a potential target in improving healthy ageing and age-related functional outcomes, including cognitive decline. We explored the association between diet, gastro-intestinal microbiota and cognition in Dutch healthy older adults of the 'New dietary strategies addressing the specific needs of the elderly population for healthy aging in Europe' (NU-AGE) study. The microbiota profile of 452 fecal samples from 226 subjects was determined using a 16S ribosomal RNA gene-targeted microarray. Dietary intake was assessed by 7-day food records. Cognitive functioning was measured with an extensive cognitive test battery. We observed a dietary and microbial pro- to anti-inflammatory gradient associated with diets richer in animal- or plant-based foods. Fresh fruits, nuts, seeds and peanuts, red and processed meat and grain products were most strongly associated to microbiota composition. Plant-rich diets containing fresh fruits, nuts, seeds and peanuts were positively correlated with alpha-diversity, various taxa from the Bacteroidetes phylum and anti-inflammatory species, including those related to Faecalibacterium prausnitzii and Eubacterium rectale and E. biforme. Animal product-rich diets associated with pro-inflammatory species, including those related to Ruminococcus gnavus and Collinsella spp.. Cognition was neither associated with microbiota composition nor alpha-diversity. In conclusion, diets richer in animal- and plant-based foods were related to a pro- and anti-inflammatory microbial profile, while cognition was associated with neither.Peer reviewe
Overview of methods used to evaluate the adequacy of nutrient intakes for individuals and populations
The objective of the present paper is to review the methods of measuring micronutrient intake adequacy for individuals and for populations in order to ascertain best practice. A systematic review was conducted to locate studies on the methodological aspects of measuring nutrient adequacy. The results showed that for individuals, qualitative methods (to find probability of adequacy) and quantitative methods (to find confidence of adequacy) have been proposed for micronutrients where there is enough data to set an average nutrient requirement (ANR). If micronutrients do not have ANR, an adequate intake (AI) is often defined and can be used to assess adequacy, provided the distribution of daily intake over a number of days is known. The probability of an individual's intake being excessive can also be compared with the upper level of safe intake and the confidence of this estimate determined in a similar way. At the population level, adequacy can be judged from the ANR using the probability approach or its short cut - the estimated average requirement cut-point method. If the micronutrient does not have an ANR, adequacy cannot be determined from the average intake and must be expressed differently. The upper level of safe intake can be used for populations in a similar way to that of individuals. All of the methodological studies reviewed were from the American continent and all used the methodology described in the Institute of Medicine publications. The present methodology should now be adapted for use in Europ
Plasma Protein Profiling Reveals Protein Clusters Related to BMI and Insulin Levels in Middle-Aged Overweight Subjects
Biomarkers that allow detection of the onset of disease are of high interest since early detection would allow intervening with lifestyle and nutritional changes before the disease is manifested and pharmacological therapy is required. Our study aimed to improve the phenotypic characterization of overweight but apparently healthy subjects and to identify new candidate profiles for early biomarkers of obesity-related diseases such as cardiovascular disease and type 2 diabetes
Ingestion of an ample amount of meat substitute based on a lysine-enriched,plant-based protein blend stimulates postprandial muscle proteinsynthesis to a similar extent as an isonitrogenous amount of chickenin healthy, young men
Plant-based proteins are considered to be less effective in their capacity to stimulate muscle protein synthesis when compared with animal-based protein sources, likely due to differences in amino acid contents. We compared the postprandial muscle protein synthetic response following the ingestion of a lysine-enriched plant-based protein product with an isonitrogenous amount of chicken. Twenty-four men (age 24 ± 5 years; BMI 22·9 ± 2·6 kg·mâ2) participated in this parallel, double-blind, randomised controlled trial and consumed 40 g of protein as a lysine-enriched wheat and chickpea protein product (Plant, n 12) or chicken breast fillet (Chicken, n 12). Primed, continuous intravenous L-(ring-13C6)-phenylalanine infusions were applied while repeated blood and muscle samples were collected over a 5-h postprandial period to assess plasma amino acid responses, muscle protein synthesis rates and muscle anabolic signalling responses. Postprandial plasma leucine and essential amino acid concentrations were higher following Chicken (P < 0·001), while plasma lysine concentrations were higher throughout in Plant (P < 0·001). Total plasma amino acid concentrations did not differ between interventions (P = 0·181). Ingestion of both Plant and Chicken increased muscle protein synthesis rates from post-absorptive: 0·031 ± 0·011 and 0·031 ± 0·013 to postprandial: 0·046 ± 0·010 and 0·055 ± 0·015 % hâ1, respectively (P-time < 0·001), with no differences between Plant and Chicken (time x treatment P = 0·068). Ingestion of 40 g of protein in the form of a lysine-enriched plant-based protein product increases muscle protein synthesis rates to a similar extent as an isonitrogenous amount of chicken in healthy, young men. Plant-based protein products sold as meat replacers may be as effective as animal-based protein sources to stimulate postprandial muscle protein synthesis rates in healthy, young individuals
Vitamin B12 intake from animal foods, biomarkers, and health aspects
The EAT-Lancet commission recently suggested that transformation to healthy diets by 2050 will require a reduction of at least 50% in consumption of foods such as red meat and sugar, and a doubling in the global consumption of fruits, vegetables, nuts, and legumes. A diet rich in plant-based foods and with fewer animal source foods confers both improved health and environmental benefits. Notably, the risk of vitamin B12 deficiency increases when consuming a diet low in animal products. Humans are dependent on animal foods such as dairy products, meat, fish and eggs. Vitamin B12 deficiency is common worldwide, especially in populations with low consumption of animal foods because of low socioeconomic status, ethical reasons, or because of their lifestyle (i.e., vegans). According to the European Food Safety Authoroty, the recommended adequate intake of vitamin B12 is 4.0 ”g/d for adults, and vitamin B12 requirements are higher during pregnancy and lactation. Infants and children from deficient mothers and elderly people are at risk for vitamin B12 deficiency. Diagnosis of vitamin B12 deficiency is hampered by low specificity of available biomarkers, and there is no consensus yet regarding the optimal definition of low vitamin B12 status. In general, a combination of at least two biomarkers is recommended. Therefore, this review presents an overview of vitamin B12 biochemistry and its biomarkers. We further summarize current recommendations of vitamin B12 intake, and evidence on the a
Changes in Dietary Intake and Adherence to the NU-AGE Diet Following a One-Year Dietary Intervention among European Older AdultsâResults of the NU-AGE Randomized Trial
Background: The Mediterranean Diet has been proposed as an effective strategy to reduce inflammaging, a chronic low grade inflammatory status, and thus, to slow down the aging process. We evaluated whether a Mediterranean-like dietary pattern specifically targeting dietary recommendations of people aged over 65 years (NU-AGE diet) could be effective to shift dietary intake of older adults towards a healthful diet. Methods: Adults aged 65â80 years across five EU-centers were randomly assigned to a NU-AGE diet group or control group. The diet group followed one year of NU-AGE dietary intervention specifying consumption of 15 food groups plus the use of a vitamin D supplement. Participants in the diet group received counselling and individually tailored dietary advice, food products and a vitamin D supplement. Dietary intake was assessed by means of seven-day food records at baseline and one-year follow-up. A continuous NU-AGE index (0â160 points) was developed to assess NU-AGE diet adherence. Results: In total 1296 participants were randomized and 1141 participants completed the intervention (571 intervention, 570 control). After one year, the diet group improved mean intake of 13 out of 16 NU-AGE dietary components (p < 0.05), with a significant increase in total NU-AGE index (difference in mean change = 21.3 ± 15.9 points, p < 0.01). Conclusions: The NU-AGE dietary intervention, based on dietary recommendations for older adults, consisting of individual dietary counselling, free healthy foods and a vitamin D supplement, may be a feasible strategy to improve dietary intake in an aging European population
The effect of exercise training on the course of cardiac troponin T and i levels: Three independent training studies
With the introduction of high-sensitive assays, cardiac troponins became potential biomarkers for risk stratification and prognostic medicine. Observational studies have reported an inverse association between physical activity and basal cardiac troponin levels. However, causality has never been demonstrated. This study investigated whether basal cardiac troponin concentrations are receptive to lifestyle interventions such as exercise training. Basal high-sensitive cardiac troponin T ( cTnT ) and I ( cTnI ) were monitored in two resistance-type exercise training programs ( 12-week ( study 1 ) and 24-week ( study 2 ) ) in older adults ( â„65 years ). In addition, a retrospective analysis for high sensitive troponin I in a 24-week exercise controlled trial in ( pre )frail older adults was performed ( study 3 ). In total, 91 subjects were included in the final data analyses. There were no significant changes in cardiac troponin levels over time in study 1 and 2 ( study 1: cTnT â0.13 ( â0.33â+0.08 )âng/L/12-weeks, cTnI â0.10 ( â0.33â+0.12 )âng/L/12-weeks; study 2: cTnT â1.99 ( â4.79â+0.81 )âng/L/24-weeks, cTnI â1.59 ( â5.70â+2.51 )âng/L/24-weeks ). Neither was there a significant interaction between training and the course of cardiac troponin in study 3 ( pâ=â0.27 ). In conclusion, this study provides no evidence that prolonged resistance-type exercise training can modulate basal cardiac troponin levels
- âŠ