6,135 research outputs found

    A Triangular Tessellation Scheme for the Adsorption Free Energy at the Liquid-Liquid Interface: Towards Non-Convex Patterned Colloids

    Full text link
    We introduce a new numerical technique, namely triangular tessellation, to calculate the free energy associated with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here are sufficiently general to handle non-convex patchy colloids with arbitrary surface patterns characterized by a wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravitational forces, but the method can be extended to take such effects into account. It is verified that the numerical method presented is accurate and sufficiently stable to be applied to more general situations than presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used semi-analytic approaches, especially when it comes to generality and applicability.Comment: 21 pages, 11 figures, 0 table

    Single-chip CMOS optical microspectrometer

    Get PDF
    Numerous applications, e.g., systems for chemical analysis by optical absorption and emission line characterization, will benefit from the availability of low-cost single-chip spectrometers. A single-chip CMOS optical microspectrometer containing an array of 16 addressable Fabry–Perot etalons (each one with different resonance cavity length), photodetectors and circuits for read-out, multiplexing and driving a serial bus interface has been fabricated. The result is a chip that can operate using only four external connections (including Vdd and Vss). covering the visible spectral range of the spectrum with FWHM = 18 nm. Frequency output and serial bus interface allow easy multi-sensor, multi-chip interfacing using a microcontroller or a personal computer. Power consumption is 1250 µW for a clock frequency of 1 MHzFundação para a Ciência e a Tecnologia (FCT

    Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system

    Full text link
    We experimentally and theoretically study the frequency shift of a driven cavity coupled to a superconducting charge qubit. In addition to previous studies, we here also consider drive strengths large enough to energetically allow for quasiparticle creation. Quasiparticle tunneling leads to the inclusion of more than two charge states in the dynamics. To explain the observed effects, we develop a master equation for the microwave dressed charge states, including quasiparticle tunneling. A bimodal behavior of the frequency shift as a function of gate voltage can be used for sensitive charge detection. However, at weak drives the charge sensitivity is significantly reduced by non-equilibrium quasiparticles, which induce transitions to a non-sensitive state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a very fast relaxation channel to the sensitive state. In this regime, the charge sensitivity is thus robust against externally injected quasiparticles and the desired dynamics prevail over a broad range of temperatures. We find very good agreement between theory and experiment over a wide range of drive strengths and temperatures.Comment: 25 pages, 7 figure

    Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    Full text link
    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd3+^{3+} in Al2_{2}O3_{3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10510^{5}. Using microwave absorption spectroscopy we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 11 MHz and spin linewidths of 50−6550 - 65 MHz.Comment: 4 pages, 2 Figure

    Caudal cervical vertebral morphological variation is not associated with clinical signs in Warmblood horses

    Get PDF
    Background Variation in equine caudal cervical spine morphology at C6 and C7 has high prevalence in Warmblood horses and is suspected to be associated with pain in a large mixed-breed group of horses. At present no data exist on the relationship between radiographic phenotype and clinical presentation in Warmblood horses in a case-control study. Objectives To establish the frequency of radiographically visible morphologic variation in a large group of Warmblood horses with clinical signs and compare this with a group without clinical signs. We hypothesised that occurrence of morphologic variation in the case group would not differ from the control group, indicating there is no association between clinical signs and morphologic variation. Study design Retrospective case-control. Methods Radiographic presence or absence of morphologic variation of cervical vertebrae C6 and C7 was recorded in case (n = 245) and control horses (n = 132). Case and control groups were compared by univariable Pearson's Chi-square and multivariable logistic regression for measurement variables age, sex, breed, degenerative joint disease and morphologic variation at C6 and C7. Odds ratio and confidence intervals were obtained. A P <= 0.05 was considered statistically significant. Results Morphologic variation at C6 and C7 (n = 108/377 = 28.6%; Cases 58/245 = 23.7%; Control 50/132 = 38%) was less frequent in horses with clinical signs in univariable testing (OR 0.48, 95% CI 0.3-0.8, P = 0.001). Age, sex, breed and degenerative joint disease were not retained in the final multivariable logistic regression step whereas morphologic variation remained significantly less present in horses with clinical signs. Main limitations Possible demographic differences between equine clinics. Conclusions Morphologic variation in the caudal cervical spine was detected more frequently in horses without clinical signs. Therefore, radiographic presence of such variation does not necessarily implicate the presence of clinical signs

    Dynamic parity recovery in a strongly driven Cooper-pair box

    Get PDF
    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stuckelberg (LZS) interference structure of a longitudinally driven two-level system. For even stronger drives we observe a significant change in the LZS pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.Comment: 5 pages, 4 figure

    Estimation of individual beneficial and adverse effects of intensive glucose control for patients with type 2 diabetes

    Get PDF
    AIMS/HYPOTHESIS: Intensive glucose control reduces the risk of vascular complications while increasing the risk of severe hypoglycaemia at a group level. We sought to estimate individual beneficial and adverse effects of intensive glucose control in patients with type 2 diabetes. METHODS: We performed a post hoc analysis of the Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) trial, a randomised controlled trial evaluating standard vs intensive glucose control (HbA1c target ≤6.5% [48 mmol/mol]). In 11,140 participants, we estimated the individual 5 year absolute risk reduction (ARR) for the composite outcome of major micro- and macrovascular events and absolute risk increase (ARI) for severe hypoglycaemia for intensive vs standard glucose control. Predictions were based on competing risks models including clinical characteristics and randomised treatment. RESULTS: Based on these models, 76% of patients had a substantial estimated 5 year ARR for major vascular events (>1%, 5 year number-needed-to-benefit [NNTB5] 200). Similarly, 36% of patients had a substantial estimated ARI for severe hypoglycaemia (5 year number-needed-to-harm [NNTH5] 200). When assigning similar or half the weight to severe hypoglycaemia compared with a major vascular event, net benefit was positive in 85% or 99% of patients, respectively. Limiting intensive treatment to the 85% patient subgroup had no significant effect on the overall incidence of major vascular events and severe hypoglycaemia compared with treating all patients. CONCLUSIONS/INTERPRETATION: Taking account of the effects of intensive glucose control on major micro- and macrovascular events and severe hypoglycaemia for individual patients, the estimated net benefit was positive in the majority of the participants in the ADVANCE trial. The estimated individual effects can inform treatment decisions once individual weights assigned to positive and adverse effects have been specified. TRIAL REGISTRATION: ClinicalTrials.gov NCT00145925

    Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    Get PDF
    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning’ paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and Body Mass Index (-0.002 kg/m2/year, 95%CI -0.009 to 0.005). Meta-analysis of short- term randomized controlled trials (RCTs, 129 comparisons) showed reduced total EI for LES- versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95%CI -122 to -66), with no difference versus water (-2 kcal, 95%CI -30 to 26). This was consistent with EI results from sustained intervention RCTs (10 comparisons). Meta-analysis of sustained intervention RCTs (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95%CI –2.28 to - 0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95%CI –2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human RCTs indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (e.g., water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Superfluid vortex front at T -> 0: Decoupling from the reference frame

    Full text link
    Steady-state turbulent motion is created in superfluid 3He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.Comment: 4 pages, 4 figure
    • …
    corecore