5,998 research outputs found

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    Get PDF
    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning’ paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and Body Mass Index (-0.002 kg/m2/year, 95%CI -0.009 to 0.005). Meta-analysis of short- term randomized controlled trials (RCTs, 129 comparisons) showed reduced total EI for LES- versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95%CI -122 to -66), with no difference versus water (-2 kcal, 95%CI -30 to 26). This was consistent with EI results from sustained intervention RCTs (10 comparisons). Meta-analysis of sustained intervention RCTs (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95%CI –2.28 to - 0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95%CI –2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human RCTs indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (e.g., water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water

    Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    Full text link
    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd3+^{3+} in Al2_{2}O3_{3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10510^{5}. Using microwave absorption spectroscopy we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 11 MHz and spin linewidths of 506550 - 65 MHz.Comment: 4 pages, 2 Figure

    Clinical review of retinotopy

    Get PDF
    Two observations made 29 years apart are the cornerstones of this review on the contributions of Dr Gordon T. Plant to understanding pathology affecting the optic nerve. The first observation laid the anatomical basis in 1990 for the interpretation of optical coherence tomography (OCT) findings in 2009. Retinal OCT offers clinicians detailed in vivo structural imaging of individual retinal layers. This has led to novel observations which were impossible to make using ophthalmoscopy. The technique also helps to re-introduce the anatomically grounded concept of retinotopy to clinical practise. This review employs illustrations of the anatomical basis for retinotopy through detailed translational histological studies and multimodal brain-eye imaging studies. The paths of the prelaminar and postlaminar axons forming the optic nerve and their postsynaptic path from the dorsal lateral geniculate nucleus to the primary visual cortex in humans are described. With the mapped neuroanatomy in mind we use OCT-MRI pairings to discuss the patterns of neurodegeneration in eye and brain that are a consequence of the hard wired retinotopy: anterograde and retrograde axonal degeneration which can, within the visual system, propagate trans-synaptically. The technical advances of OCT and MRI for the first time enable us to trace axonal degeneration through the entire visual system at spectacular resolution. In conclusion, the neuroanatomical insights provided by the combination of OCT and MRI allows us to separate incidental findings from sinister pathology and provides new opportunities to tailor and monitor novel neuroprotective strategies

    Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations

    Get PDF
    This is the final version. Available from AIP Publishing via the DOI in this recordAbsorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ångström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.Netherlands Space Offic

    Modelling asset correlations: A nonparametric approach

    Get PDF
    This article proposes a time-varying nonparametric estimator and a time-varying semiparametric estimator of the correlation matrix. We discuss representation, estimation based on kernel smoothing and inference. An extensive Monte Carlo simulation study is performed to compare the semiparametric and nonparametric models with the DCC speci fication. Our bivariate simulation results show that the semiparametric and nonparametric models are best in DGPs with gradual changes or structural breaks in correlations. However, in DGPs with rapid changes or constancy in correlations the DCC delivers the best outcome. Moreover, in multivariate simulations the semiparametric and nonparametric models fare the best in DGPs with substantial time-variability in correlations, while when allowing for little variability in the correlations the DCC is the dominant speci fication. The methodologies are illustrated by estimating the correlations for two interesting portfolios. The rst portfolio consists of the equity sectors SPDRs and the S&P 500 composite, while the second one contains major currencies that are actively traded in the foreign exchange market. Portfolio evaluation results show that the nonparametric estimator generally dominates its competitors, with a statistically significant lower portfolio variance

    Slip length dependent propulsion speed of catalytic colloidal swimmers near walls

    Get PDF
    Catalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. We here report experimental measurements of significantly different velocities of such microswimmers in the vicinity of substrates made from different materials. We find that velocities scale with the solution contact angle θ\theta on the substrate, which in turn relates to the associated hydrodynamic substrate slip length, as V(cosθ+1)3/2V\propto(\cos\theta+1)^{-3/2}. We show that such dependence can be attributed to osmotic coupling between swimmers and substrate. Our work points out that hydrodynamic slip at the wall, though often unconsidered, can significantly impact the self-propulsion of catalytic swimmers
    corecore