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Abstract

This article proposes a time-varying nonparametric estimator and a time-varying semi-

parametric estimator of the correlation matrix. We discuss representation, estimation based

on kernel smoothing and inference. An extensive Monte Carlo simulation study is performed

to compare the semiparametric and nonparametric models with the DCC specification. Our

bivariate simulation results show that the semiparametric and nonparametric models are best

in DGPs with gradual changes or structural breaks in correlations. However, in DGPs with

rapid changes or constancy in correlations the DCC delivers the best outcome. Moreover, in

multivariate simulations the semiparametric and nonparametric models fare the best in DGPs

with substantial time-variability in correlations, while when allowing for little variability in

the correlations the DCC is the dominant specification. The methodologies are illustrated

by estimating the correlations for two interesting portfolios. The first portfolio consists of

the equity sectors SPDRs and the S&P 500 composite, while the second one contains ma-

jor currencies that are actively traded in the foreign exchange market. Portfolio evaluation

results show that the nonparametric estimator generally dominates its competitors, with a

statistically significant lower portfolio variance.
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Introduction

The financial crisis beginning in September 2008 rattled the whole world and left a big global

economical crisis which we are still feeling today. Given its recency, very little work has been

undertaken on the crisis.1 It is well known that in many crises the degree of co–movement

between assets returns changes rapidly, partly as a result of generally increased uncertainty.

Therefore, an accurate assessment of the correlation between assets during the crisis period is

of particular interest. For instance, rapid changes in correlation patterns call for an immediate

adjustment of portfolios. Furthermore, policy makers are also interested in these links because

of their implications for systemic risk.

Methodologically, this article proposes a nonparametric and a semiparametric correlation

approaches based on kernel smoothing techniques. These methods allow a great deal of flexibility

on the correlation matrix whose functional form must only satisfy certain regularity conditions.

In addition, the error term must be iid but not specific distribution is assumed. Therefore,

these methods are desirable alternatives to parametric models where a misspecification of the

functional form and distribution will result in inconsistent parameter estimators.

Hafner et al. (2006) and Long et al. (2010) present a semiparametric model that combines

a parametric estimation of the volatility with a subsequent nonparametric estimation of the

correlation of the returns. 2 The estimation consists of three steps. In the first step, the con-

ditional variance of each asset is estimated separately using a parametric model, for example

a GARCH(1,1). In the second step, the conditional covariance matrix estimator of the stan-

dardized returns is obtained with the nonparametric Nadaraya–Watson estimator. As noticed

by Long et al. (2010) the key point behind their semiparametric model is that if the parametric

estimation in the first step captures the main volatility features, the nonparametric estimation of

the correlation in the second step will be easier, compared to the estimator of the whole covari-

ance matrix. Finally, the resulting matrix is regularised to obtained a well–definted correlation

estimator.

The semiparametric model that we propose here (denoted by SPCC) differs from those of

Hafner et al. (2006) and Long et al. (2010) in Step 2. Both these studies assume that the cor-

relations depend on one or several exogenous (or predetermined) variables. For example, the

conditional correlation may depend on some sort of volatility proxy variable. This approach has

two main drawbacks: 1) the choice of the exogenous variables is not always clear and 2) kernel

smoothing methods are not feasible with many conditioning variables (e.g., ‘curse of dimension-
1Exceptions are Fry et al. (2010) that use contagion tests to identify the transmission channels of the recent

financial crisis, and Laurent et al. (2010) that compares several multivariate GARCH models in terms of forecasting
during the 2007-2008 period crisis.

2Notice, however, the model of Long et al. (2010) is a semiparametric model for the conditional covariance
matrix of raw returns where the nonparametric estimation serves as a correction for the parametric conditional
covariance estimator.
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ality’, difficulties of interpretation). Thus, while the Hafner et al. (2006) and Long et al. (2010)

estimators use information on the behaviour of the standardized returns around certain values of

some exogenous variables, our method assumes that the correlation is a deterministic function

of time and only information on the standardized returns in a neighbourhood of the interest

point of time is used. Moreover, time variable, is rescaled by the total number of observations

so the estimator depends on the sample size and therefore asymptotic results can be derived.

The same rescaling device is commonly used in non–stationary processes (see Robinson, 1989;

Drees and Stǎricǎ, 2002; Dahlaus and Rao, 2006, amongst others) to ensure the asymptotic

behaviour of the estimator. Another important difference with the aforementioned studies is

that they choose the Nadaraya–Watson (NW) as the kernel smoothing methodology, while we

adopt the Local Linear (LL) estimator. The latter has a smaller bias and behaves better at

the boundaries (Fan and Gijbels, 1992). The bandwidth is selected automatically through least

squares cross–validation.

Long et al. (2010) mentiones that if the volatility estimator in Step 1 is very far from reality,

then the correlation estimator might be inconsistent. This problem may be resolved with our

fully nonparametric approach (denoted by NPC). The NPC model consists of the same three

steps as the SPCC with the difference that the estimation of the volatility in Step 1 is also

done nonparametrically using the LL estimator. Therefore, the volatility is also assumed to be

a smooth function of time, and therefore the resulting volatility and correlation estimators are

consistent.

Note that a single step nonparametric model is possible using the returns series. The re-

sult is a nonparametric estimator of the covariance matrix which may be comparable with the

parametric BEKK–MGARCH (Baba et al., 1991). In our experience, however, this estimator is

worse than the three steps NPC because there is too much information to be estimated at once.

In fact, correlations are less persistent than volatilities and therefore, it is better to divide the

problem in two: first the volatility is estimated from the returns; and second, correlations are

estimated from the standarised returns.

The parametric benchmark used in this paper is the Dynamic Conditional Correlation (DCC)

model developed by Engle (2002). The DCC assumes that the correlation between assets evolves

according to a simple GARCH–type structure. An attractive feature of this model is the

so–called correlation targeting (substituting unconditional correlation by sample correlation),

which reduces the number of estimated parameters. Other parametric methods available are

the Smooth Transition Conditional Correlation (STCC) model proposed by Berben and Jansen

(2005) and Silvennoinen and Teräsvirta (2005, 2009) and the Regime Switching Dynamic Cor-

relation (RSDC) model of Pelletier (2006). The STCC method allows for the correlation of a

Constant Conditional Correlation (Bollerslev, 1990) model to change smoothly over time, while

in the Pelletier’s model the correlation regimes depend on an unobserved Markov-Switching
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process. Note, however, that correlation targeting is not possible with the last two models.

We follow a systematic procedure to compare the SPCC, NPC and DCC models by perform-

ing an extensive set of Monte Carlo simulations. In particular, we simulate bivariate processes

and test the robustness of the results to a variety of misspecifications in volatility such as when

the true variance is an asymmetric GARCH or when there are volatility spillovers. We find the

following interesting points. In terms of mean absolute error (MAE) the semiparametric and

nonparametric estimators are superior in DGPs with gradual changes or structural breaks in

correlations. However, in DGP with rapid changes or constancy in correlations the parametric

DCC model outperforms the NPC and SPCC models. This is observed throughout our simula-

tions and is generally robust to misspecifications in the volatility processes. Finally, simulations

based on calculating Value-at-Risk show that NPC and SPCC methods in general deliver more

accurate results than the DCC model.

In addition, we further perform a multivariate simulation experiment to show the perfor-

mance of the models in higher dimensions. To our knowledge, the current paper is the first

attempt on a multivariate simulation of this kind. Our results show that the SPCC and NPC

models are the best in DGPs with substantial time-variability in correlations, while when allow-

ing for little variability in the correlations the DCC is the dominant specification.

With regard to the application, this paper estimates the conditional correlations of two

interesting portfolios. The first portfolio, included in the Volatility Institute of the New York

University, consists of the nine equity sectors SPDRs and the S&P 500 composite during 2004–

2009. Although, there are considerable fluctuations in the correlation between the S&P 500

and the Materials, Utilities and Energy sectors, most correlations in this portfolio are high and

nearly constant.

The second portfolio is a well diversified portfolio consisting of five major currencies plus

two currencies from emerging economies that are actively traded in the foreign exchange mar-

ket. Some of these currencies like the Swiss franc are considered as safe haven currencies as they

offer investors the opportunity to protect wealth during adverse market conditions. A similar

picture holds for the yen and the euro, although to a smaller extent. Other currencies like the

Australian dollar and the Brazilian real have risen in recent years due to increased macroeco-

nomic performance and higher interest rates. In our estimation, correlations among the major

currencies shift to a higher level in the period 2002–2005 possibly reflecting the ”global savings

glut” phenomenon. On the other hand, the correlations of the Japanese yen dropped around

2006 and even became negative in the period afterwards. In general, the correlations of the

currencies show more variability over time which implies a more frequent rebalancing of portfo-

lios. We also perform a portfolio evaluation exercise to empirically compare the models by using

standard portfolio weighting methods (equally weighted, minimum variance portfolios) as well

as a carry trade weighting method for our application of currencies. Results show that the NPC
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generally dominates the SPCC and DCC models, particularly in minimum variance weighted

portfolios and to lesser extent for the carry trade portfolio. Also, the reduction in portfolio’s

variance obtained by the NPC is often statistically significant. All this information can be of

great use in the fields of asset allocation and portfolio diversification.

The outline of the paper is as follows. Section 2 presents the SPCC, NPC and the DCC

estimators. A detailed Monte Carlo experiment comparing their performance is shown in Section

3. Section 4 discusses the data and empirical results. Finally, in Section 5, we briefly summarize

the main findings and give our conclusions.

1 Time–Varying Conditional Correlations

Let rt denote an N–dimensional vector time series (zero–mean asset returns) with time–varying

conditional covariance matrix

V ar[rt|=t−1] = E[rtr′t|=t−1] = Ht (1)

where =t−1 is the information set at time t. The conditional covariance matrix can be decom-

posed as

Ht = DtRtDt (2)

where Dt = diag(
√
h1,t,

√
h2,t, ...,

√
hN,t) is a diagonal matrix with the square root of the

conditional variances hi,t for each asset i at time t on the diagonal. The matrix Rt, with the

(i,j)–th element denoted as ρij,t, is the possibly time–varying correlation matrix with ρii,t = 1,

i, j = 1, . . . , N and t = 1, . . . , T . The standardized residuals are denoted by εt = D−1
t rt. They

are independent and identically distributed with E(εi) = 0 and V ar(εi) = 1.

The Constant Conditional Correlation (CCC) model assumes that Rt is constant over time,

while the Semi–parametric Conditional Correlation (SPCC) and Dynamic Conditional Correla-

tion (DCC) models allow distinct patterns of time–variation in Rt.

This paper compares the performance of the Nonparametric Correlation model (NPC) and

the Semiparametric Conditional Correlation model (SPCC) with the Dynamic Conditional Cor-

relation (DCC) model. The following three subsections describe in detail the three different

methodologies.

1.1 Semiparametric Conditional Correlation Model

It is easy to show that E(εtεt′|=t−1) = Rt and therefore an estimator of the correlation can be

obtained using nonparametric kernel regression methods. For instance, Hafner et al. (2006) and

Long et al. (2010) use the classical Nadaraya–Watson estimator. Instead, we propose the Local
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Linear (LL) estimator, which has smaller bias and behaves better at the boundaries (Fan and

Gijbels (1996)). Another difference with the Hafner et al. (2006) and Long et al. (2010) is in

the choice of the conditioning variable. The aforementioned studies assume that the correlations

depend on a single exogenous (or predetermined) variable. Instead, we model the correlations

as a deterministic function of time. Time may capture several economic factors expressing

themselves mainly in the level of unconditional correlations. Thus, this paper proposes the

Local Linear (LL) estimator in Fan and Gijbels (1992) with time as the dependent variable.

Notice that the difference between using time as the “dependent ”variable instead of a

stochastic variable is that each point in time is visited only once and not previous information

is used. In addition, increasing T does not increase the density of information, and therefore

asymptotically speaking, it is the same to estimate the correlation using a large or a short T .

Therefore it is necessary, as in Robinson (1989), to assume the existence of a smooth function

ρij(t) on (0, 1) such that:

ρij,t = ρij

(
t

T

)
for t = 1, 2, . . . T.

This condition ensures that the amount of local information around a point t
T ∈ (0, 1) increases

as T increases and therefore the bias and variance of an estimator of ρij( tT ) will decrease. Thus,

ρ̂ij,t = ρ̂ij( tT ).

The SPCC estimator that we propose for a value τ ∈ (0, 1) is defined as:

Q̂SPCC
τ =

T∑
t=1

ε̂tε̂
′
tKb

(
t− Tτ
T

)
s2 − s1

(
t−Tτ
T

)
s0s2 − s21

(3)

where Kb(·) = (1/b)K(·/b), K is a symmetric kernel function heavily concentrated around the

origin, b is the bandwidth parameter and τ is the focal point. In addition, sj =
∑T

t=1( t−TτT )jKb( t−TτT )

for j = 0, 1, 2. Equation (3) displays the nonparametric point estimator of the covariance of {ε̂τ}.
Drees and Stǎricǎ (2002) and Dahlaus and Rao (2006) have used this rescaling device to estimate

the time–varying volatility.

The estimators of the volatility ĥi,t, although consistent, may not converge fast enough to

the true conditional standard deviation at time t for the finite sample. Then the diagonal of

Q̂SPCC
t will not be close to the unity vector 1. Therefore, the quantity Q̂SPCC

t is typically rescaled

using

RSPCC
t = (QSPCC∗

t )−1QSPCC
t (QSPCC∗

t )−1 (4)

where QSPCC∗
t is a diagonal matrix composed of the square roots of the diagonal elements of

QSPCC
t .

The bandwidth parameter b plays an essential role in nonparametric modelling. It is desir-

able to have a reliable data–driven and yet easily implemented bandwidth selection procedure.
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Hafner et al. (2006) adopt a local bandwidth estimate which has been obtained ad hoc for the

particular data set under study. On the other hand, Long et al. (2010) set b = cσ̂T−1/6 and

follow a grid search over c ∈ [0.5, 5] with σ̂ being the empirical standard deviation of the con-

ditioning variable. This choice aims at finding the bandwidth that ensures the optimal rate

of convergence which minimises the asymptotic mean integrated square error of the estimator.

However, although choosing the bandwidth amongst a grid of values is practical, it is not always

correct. For example, infinite is the appropriate bandwidth for a constant or linear correlation

and this value is not included in the grid. Therefore, we propose finding the global bandwidth

through least squares cross–validation as it is defined in (5). In practice, we use a Newton–type

minimization algorithm. As the Newton minimisers are susceptible to the starting point, we do

several numerical minimizations with different starting points and choose the most appropriate

bandwidth.

bSPCC = arg min
b

T∑
t=1

[vecl(ε̂tε̂′t)− vecl(Q̂SPCC
−t )]2 (5)

where Q̂SPCC
−t is the nonparametric estimator obtained when pair (t,ε̂t) is left out. The vecl of a

matrix takes the lower diagonal matrix, excluding the diagonal.

In summary, the SPCC estimator proposed here consists of three steps:

Step 1 Devolatilisation. In this step the data volatility of each return is estimated to obtain

the standarised returns. Basically, D̂t is obtained by assuming a certain parametric model

driving the volatility process, for example a GARCH(1,1). Therefore, ε̂t = D̂−1
t rt.

Step 2 Pseudo–correlation matrix. Q̂SPCC
t is obtained as in equation (3) for all t = 1, . . . , T .

Step 3 Matrix regularisation. To ensure that the estimators of the finite sample is between -1

and 1, R̂SPCC
t = (Q̂SPCC∗

t )−1Q̂SPCC
t (Q̂SPCC∗

t )−1.

1.2 Dynamic Conditional Correlation Model

Engle (2002) specifies the bivariate DCC model through the GARCH(1,1)–type process

QDCC
t = Ω + αεt−1ε

′
t−1 + βQDCC

t−1 (6)

where α is the news parameter and β is the decay parameter. A simple estimator for the

intercept parameter matrix Ω is available through what is called correlation targeting. That is,

using the estimator

Ω = (1− α− β)Q (7)

where Q is the sample unconditional correlation matrix between the standardized errors εt.
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Substituting (7) into (6) gives the basic form for the mean–reverting DCC model given by

QDCC
t = Q+ α(εt−1ε

′
t−1 −Q) + β(Qt−1 −Q) (8)

It is easy to see how this model behaves. The correlations evolve over time in response to new

information on the asset returns. When returns are moving in the same direction — either they

are both moving up or they are both moving down— the correlations will rise above the average

level and remain there for a while. Gradually this information will decay and correlations will fall

back to the long–run average. Similarly, when assets move in opposite directions, the correlations

will temporarily fall below the unconditional level. The two parameters (α, β) govern the speed

of this adjustment. As before, we scale Q̂DCC
t to obtain a proper correlation matrix R̂DCC

t .

In a multivariate framework, the basic DCC specification may be too restrictive. In particu-

lar, note that the DCC model implies that all correlations pairs have the same dynamic pattern

as implied by the parameters α and β. Cappiello et al. (2006) propose the Generalized DCC

(G–DCC), which allows for correlation–specific news and decay parameters. The generalized

DCC model is given by

QGDCC
t = (Q+A′QA−B′QB) +A′εt−1ε

′
t−1A+B′QGDCC

t−1 B (9)

where A and B are defined to be N × N parameter diagonal matrices. So, the basic DCC

is obtained as a special case of the G–DCC if the matrices A and B are replaced by scalars.

However, the number of parameters in the G–DCC increases rapidly with the dimension of the

model. In particular, for our portfolio application (consisting of 10 assets in total–nine equity

sectors SPDRs and the S&P 500) we propose the more parsimonious Semigeneralized DCC (SG–

DCC) initially studied by Hafner and Franses (2009). This model allows for correlation–specific

news parameter α and restricts only the decay parameter β to be the same across correlation

pairs. It is expected that the news parameters varies across correlation pairs more than the

decay parameter. The SG–DCC equation is given by

QSGDCC
t = (Q+A′QA− βQ) +A′εt−1ε

′
t−1A+ βQSGDCC

t−1 (10)

A sufficient condition for Qt to be positive definite for all possible realizations is that the inter-

cept, Q−A′QA− βQ, is positive semi–definite and the initial covariance matrix Q0 is positive

definite (Cappiello et al., 2006). As before, we rescale the quantity Qt to obtain a proper

correlation matrix.

In summary, the (SG)–DCC conditional correlation estimator R̂SGDCC
t is obtained in three

steps:

Step 1 Devolatilisation. The conditional variances ĥt are obtained in this step in the same way
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than for the SPCC model.

Step 2 The standarized returns ε̂t are then used to estimate the (SG)–DCC correlations by

Gaussian Maximum Likelihood (ML) obtaining Q̂SGDCC
t .

Step 3 Matrix regularisation. The Q̂SGDCC
t is in general not a correlation matrix. Engle (2009)

discusses how this is a technical problem that can be solved by rescaling as in equation

(4).

Correlations ρij,t in the DCC models are assumed to depend on certain parameters α and β

(A and β is the case of SG-DCC). These parameters do not change with time and therefore the

DCC models may be restrictive to describe time–varying correlations.

1.3 Nonparametric Correlation Model

It is inevitable to wonder how the nonparametric estimator performs in comparison with the

parametric and semiparametric estimators. As before, we estimate the model in three steps.

First, as in Drees and Stǎricǎ (2002), the (unconditional) volatility of each individual asset is

estimated using the LL:

ĥNPC
i,τ =

T∑
t=1

r2i,tKb

(
t− Tτ
T

)
s2 − s1

(
t−Tτ
T

)
s0s2 − s21

, i = 1, ..., N (11)

Here sj are defined as in the SPCC model. Basically, one must assume that h(t) is a smooth

deterministic function defined on the interval (0,1) such that hj,t = h
(
t
T

)
. The positive aspect

of this approach is that ĥi,τ is a consistent estimator of the volatility at point τ if τ is not a

boundary point and the volatility function is continuous there (see Robinson, 1989). This is not

always the case for the previous two models if the volatility is not well–modelled by the chosen

parametric specification.

The second step consists on finding the pseudo–correlation:

Q̂NPC
τ =

T∑
t=1

ε̂tε̂
′
tKb

(
t− Tτ
T

)
s2 − s1

(
t−Tτ
T

)
s0s2 − s21

. (12)

for τ ∈ (0, 1). Finally, the appropriate matrix scaling the unconditional correlation matrix

estimator is:

R̂NPC
t = (Q̂NPC∗

t )−1Q̂NPC
t (Q̂NPC∗

t )−1 (13)

The bandwidth is chosen by cross–validation as:
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bNPC = arg min
b

T∑
t=1

[vecl(ε̂tε̂′t)− vecl(Q̂NPC
−t )]2. (14)

2 Monte Carlo Simulations

In this section, we compare the sample performance of the three models by examining certain

characteristics of conditional correlations when the true correlation processes are observable.

We simulate bivariate processes of length T = 1000 corresponding to four financial years. The

parameter values for the DGPs are chosen from Engle (2002). In particular, we consider four

different scenarios (DGPs) for the correlations:

Scenario 1: constant correlation, ρt = 0.9,

Scenario 2: correlation with weak seasonality, ρt = 0.5 + 0.4 cos(2πt/200),

Scenario 3: correlation with strong seasonality, ρt = 0.5 + 0.4 cos(2πt/20), and,

Scenario 4: correlation with a structural break, ρt = 0.9− 0.5(t > 500).

2.1 Experiment 1

Two series of returns are simulated with volatility following a GARCH(1,1) and the innovations

are distributed as a bivariate normal with a vector zero as mean and a correlation matrix which

is the interest.

A total M = 200 experiments were conducted for each scenario with the same model speci-

fication as in Engle (2002) which is transcribed below:

r1,t =
√
h1,tε1,t, r2,t =

√
h2,tε2,t

h1,t = 0.01 + 0.05r21,t−1 + 0.94h1,t−1 h2,t = 0.5 + 0.2r22,t−1 + 0.5h2,t−1

 ε1,t

ε2,t

 ∼ N
 0

0

 ,

 1 ρt

ρt 0


(15)

The DGP h1,t is chosen such that the unconditional variance is lower but the persistence is

higher than in DGP h2,t. Each estimate’s performance is measured by the mean absolute error

which for each simulation N is defined by:

MAEM =
1
T

T∑
t=1

|ρt − ρ̂t| (16)
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where ρ̂t are the elements of R̂t.

Figure 1 shows the estimator from each model chosen as the typical sample whose MAE

is equal to the median of all the MAEM , while Figure 2 shows the boxplots of the MAEM
for the 200 simulations. The boxes represent the 25% and 75% quantiles (interquantile range,

IQR) of the MAEM . The line in the middle of the box represents the median of the MAEM and

therefore the error corresponding to the estimator in Figure 1. The end of the whiskers represent

the 1.5IQR of the lower quartile and upper quartiles. As seen, the DCC is the best model for

constant correlations (Figures 1-2 (a)). In this scenario, the SPCC also performs quite well

choosing a very large bandwidth which results in a very smooth estimator. On the other hand,

for Scenarios 2 and 4 the semiparametric and nonparametric estimators improve substantially

on the DCC. Also, their performance is quite similar in those two scenarios. For instance, the

NPC slightly outperforms the SPCC for periodic correlations with a yearly frequency (gradual

changes) such as in Figures 1-2 (b), while the SPCC is more accurate for correlations with a

regime switch (structural break) like in Scenario 4 (Figures 1-2 (d)). However, in Scenario 3

(periodic correlations with large frequencies–Figures 1-2 (c)) SPCC and NPC imply correlations

that are too smooth and, therefore, are less accurate than the DCC model.

It must be note that the correlation function of Scenario 4 is not continuous at t = 500.

Therefore the NPC and SPCC estimator of rhot−h, rhot−h+1, . . . , rhot+h are not consistent.

This could be improved using asymmetric kernels like in Qiu (2003).

2.2 VaR

Another performance measure that we use is the evaluation of models for calculating Value–at–

Risk. In particular, for a bivariate portfolio with weighted vector w′t = (w1,t, w2,t), the estimated

Value–at–Risk under normality and for each simulation M is given by:

V aRMt (α) = |Φ−1
α |
√

(wMt )′HM
t , wMt (17)

where Φ(·) is the probability function of εt and α is the probability that the portfolio will fall

in value.

We follow Engle (2002) and define a dichotomous variable called hit:

hitMt = 1
(
(wMt )′rMt < V aRMt (α)

)
− α (18)

where 1(·) is the indicator function and α=0.05 is the level of significance. If the model is

correct the hit variable should be unpredictable. To test this we perform the dynamic quantile

test (Engle and Manganelli, 2004)– this is an F–test with null hypothesis “all coefficients as

well as the intercept are zero” in a regression of the hit variable on its past (we use five lags)

and lagged VaR. The number of rejections using a 5% critical value is a measure of model
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Figure 1: Correlation estimators for the different scenarios of Experiment 1.

performance. We report results are for an equally weighted portfolio (EWP) and a minimum

variance portfolio (MVP).

Table ?? shows the results for the dynamic quantile test using the data from Experiment 1

(with standard GARCH (1,1) processes3). As seen, for the equally weighted portfolio (EWP)

and for Scenarios 1–3, the NPC delivers the most accurate results. That is, the number of
3Note that the data from experiments 2–3 deliver qualitatively similar results.
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(c) Scenario 3
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Figure 2: Distribution of MAE for the different scenarios of Experiement 1.

5% rejections is close to the 5% nominal level. On the other hand, for the minimum variance

portfolio (MVP) the NPC generally over–rejects being the best only in Scenario 1. For this

portfolio and for Scenarios 3–4 the SPCC is the most accurate with the DCC doing well in

Scenario 2.
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Equal weights
DCC SPCC NPC

Scenario 1 0.0653 0.0553 0.0503
Scenario 2 0.0704 0.0201 0.0503
Scenario 3 0.0905 0.1005 0.0553
Scenario 4 0.0503 0.0352 0.0302

Minimum variance weights
DCC SPCC NPC

Scenario 1 0.0653 0.0653 0.0603
Scenario 2 0.0603 0.0352 0.0101
Scenario 3 0.0704 0.0553 0.0402
Scenario 4 0.0754 0.0553 0.0302

Table 1: Hit results for Experiment 1 with α = 0.05 and normal probability function.

2.3 Experiment 2

Typically, for stock returns negative shocks have a larger impact on volatility than positive

shocks of the same magnitude (so–called leverage effect). In this experiment, we simulate DGPs

from the following asymmetric GARCH(1,1) (Glosten et al., 1993) models:

h1,t = 0.01 + 0.025r21,t−1(1− 1{r1,t−1<0}) + 0.075r21,t−11{r1,t−1<0} + 0.94h1,t−1

h2,t = 0.5 + 0.1r22,t−1(1− 1{r2,t−1<0}) + 0.3r22,t−11{r2,t−1<0} + 0.5h1,t−1

(19)

We choose the parameter values such that the effect of a negative lagged return on current

volatility is three times larger than the effect of a positive lagged return. In practice, we test

the robustness of the previous results by estimating symmetric GARCH(1,1) processes. As for

the the correlation, we assume the same four scenarios described previously.

Figures 3–4 show that for Scenarios 1–3 the results are qualitative similar to the ones reported

for symmetric GARCH(1,1). The DCC is the best model for constant (Scenario 1) and rapid

changes in correlations (Scenario 3), while the NPC is the dominant specification for gradual

changes in correlations (Scenario 2). In contrast, the results for Scenario 4 show that the SPCC

becomes sensitive to misspecification in the conditional variance and performs the worst. In this

scenario, the NPC outperforms its two competitors being in overall the best model in two out

of four scenarios.

2.4 Experiment 3

The main drawback of the univariate (asymmetric) GARCH(1,1) processes simulated in Sec-

tions 2.1–2.3 is that they rule out potential feedback effects between the volatilities. In this
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experiment, we simulate DGPs from the following bivariate unrestricted GARCH(1,1) system

(Conrad and Karanasos, 2009):

h1,t = 0.1 + 0.03r21,t−1 + 0.02r22,t−1 + 0.3h1,t−1 + 0.1h2,t−1

h2,t = 0.2 + 0.2r21,t−1 + 0.05r22,t−1 − 0.15h1,t−1 + 0.8h2,t−1

(20)

Notice that sign of the volatility feedback is different across the two equations. The second

asset has a positive volatility effect on the first asset, while the first asset has a negative volatility

effect on the second asset (for volatility spilLovers see (Baele, 2005; Diebold and K., 2010). The

parameter values for these DGPs are chosen from Conrad and Karanasos (2009).

Results in Figures 5 and 6 are very much in line with the results when the volatility is

generated with a univariate symmetric GARCH(1,1) process. For instance, the NPC continues

to outperform the DCC and only slightly the SPCC in Scenario 2 (gradual changes) while in

Scenario 4 (structural break) the SPCC delivers the best outcome (again the performance of

SPCC and NPC is very similar). The DCC, however, is the best specification in Scenario 1

(constant correlation) and Scenario 3 (rapid changes).

2.5 Experiment 4

In this part, we perform a multivariate simulation experiment to show the performance of the

models in higher dimensions. Higher-dimensional models are of particular interest as portfolios

are typically designed to include many assets. We decided to do an experiment with the returns

of four assets that follow standard GARCH(1,1) processes. As before, the series have a length

of T = 1000 and the number of simulations is M = 200.

A fundamental issue for any multivariate model is how to guarantee positive definiteness of

the conditional covariance matrix. The solution we adopt here is choosing a seed matrix Σ1/2
t

as in (21). The true correlation matrix is then generated as Rt = (Σ∗t )
−1Σt(Σ∗t )

−1, where Σ∗t is

a diagonal matrix composed of the square roots of the diagonal elements of Σt. This way we

can ensure that we have a positive definite matrix to generate the innovations εt ∼ N (0, Rt) for

εt = (ε1,t, ε2,t, ε3,t, ε4,t)′.
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Σ1/2
t =



0.7 0.4 0 −0.1

0.4 1 −0.15 0

0 −0.15 1.15 −0.2

−0.1 0 −0.2 0.9


1{1≤t<300}

+



0.7 0.4 0.15 0

0.4 1 −0.15 0.1

0.15 −0.15 1.15 −0.1

0 0.1 −0.1 0.9


1{300≤t<600}

+



0.7 0.4 0.15 0

0.4 1 −0.15 0.2

0.15 −0.15 1.15 0.1

0 0.2 0.1 0.9


1{600≤t≤T}

(21)

Here, we allow for little time-variability in the correlations every 300 observations. In addition

all pairwise correlations are discontinuous at t = 300 and 600 where the SPCC and the NPCC

are not consistent.

As for the performance measure, we use an overall mean absolute error which for each

simulation M is defined by:

MAEM =
1
T

T∑
t=1

|vecl(Rt)− vecl(R̂t)|. (22)

Figure 7 plots the correlation pairs obtained from each model chosen as the typical sample

whose MAE is equal to the median of all the MAEM , while Figure 8 shows the boxplot of the

MAEM for the 200 simulations. As seen, the DCC model delivers the best results being slightly

better than the SPCC. On the other hand, the NPC performs the worst. However, there is little

variability in the correlations over time and in this sense it is not surprising that the DCC is the

dominant specification. In fact, this result is consistent with the bivariate simulations where in

all cases the DCC model is the best choice for the constant correlation scenario.
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2.6 Experiment 5

In this experiment, we investigate the performance of the different multivariate (four assets)

models when there is substantial time–variability in correlations. We use real data to estimate

conditional correlations and then consider these correlations as the true DGP. In practice, the

correlations are obtained from a DCC specification. Thus, this way we can ensure that we have

a positive definite matrix to generate the innovations εt ∼ N (0, Rt) for εt = (ε1,t, ε2,t, ε3,t, ε4,t)′.

As previously, for performance measure is the mean absolute error which for each simulation

M is defined in (22).

Figure 9 plots the correlation pairs obtained from each model chosen as the typical sample

whose MAE is equal to the median of all the MAEM , while Figure 10 shows the boxplot of the

MAEM for the 200 simulations. As seen, the SPCC and NPC models outperform substantially

the DCC specification. Thus, while in bivariate models there are occasions where the DCC

can perform well, at a multivariate framework with substantial time–variability in correlations

the semiparametric and nonparametric models clearly deliver the best results. Once again, the

performances of the SPCC and the NPC are quite similar. Figure 10 also shows that for all

three models there is very little dispersion in MAE values.

3 Empirical Results

Empirical examples of the above three correlation models are presented for two interesting

portfolios. The first, referred to as SPDR, consists of the nine Select Sector SPDRs Exchange

Traded Funds (ETF) that divide the S&P 500 index into sector index funds. The second portfolio

consists of five major currencies plus two from emerging economies that are actively traded in

the foreign exchange market. These portfolios have been studied by the Volatility Institute of

the New York University.

Sector Index

Materials Select Sector SPDR Fund XLB
Energy Select Sector SPDR Fund XLE
Financial Select Sector SPDR Fund XLF
Industrial Select Sector SPDR Fund XLI
Technology Select Sector SPDR Fund XLK
Consumer Staples Select Sector SPDR Fund XLP
Utilities Select Sector SPDR Fund XLU
Health Care Select Sector SPDR Fund XLV
Consumer Discretionary Select Sector SPDR Fund XLY

Table 2: List of the nine sector indexes within the S&P 500.
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3.1 Portfolio of Equity SPDRs and the S&P 500

We estimate the cross–correlation of a portfolio containing nine equity SPDRs and the S&P

500. The data of interest is daily from January 5, 2004 until December 21, 2009 (T=1504

observations). This period includes some years of market stability followed by the last financial

crisis years. We expect a high correlation between the SPDRs and the S&P 500 which is built

with the most representative companies of each sector. Table 2 summarises the sectors and their

market index.

Figure 11 shows the correlation estimates obtained from the three correlation models. In

practice, we estimate 45 correlation pairs but for presentation purposes, we only plot the cor-

relation between the S&P 500 and the sectors. The volatility is assumed to be driven by a

GARCH(1,1) process.

It can be seen that for most of the sample period the Financial, the Industrial, the Technology,

the Consumer Staples, the Health Care and the Consumer Discretionary sectors show a stable

as well as high correlation with the S&P 500. High correlation, however, means that there are

little diversification opportunities in a portfolio including the S&P 500 and the sector indexes

mentioned above. It is interesting to see though that the Utilities, Energy and, to a lesser extent,

Materials sectors display a different behaviour. Their correlation with the S&P 500 experiences

notable drops. For instance in the fourth quarter of 2006 and in the third quarter of 2008,

correlations for these sectors decrease to values close to 0.3. The first period might be linked to

the background of the financial crisis. In particular, one of the main causes of the crisis was the

bursting of the housing bubble which peaked in approximately 2006. On the other hand, the

second period corresponds to the time when the crisis hits its most critical stage. This distinct

behaviour of the aforementioned correlations may be expected given than energy and utilities

are considered noncyclical sectors.

Let us investigate the changes in the behaviour of the correlation of the Financial sector with

the rest. This is of interest given that the current economic crisis was initiated by irregularities

in the financial sector. The Financial index has a similar behaviour to the S&P 500. Figure 12

shows how the decay in the Financial index at the beginning of 2007 was followed closely by a

decay in the S&P 500 only a few weeks later. The correlations of the Financial index with the

other indexes are plotted in Figure 13. We observe that when the financial crisis hit its peak in

September and October 20084, we observe that there was a strong drop in the correlation with

the Energy, Materials and Utilities sectors. This pattern is the same as the one for the S&P500

vs. the sectors. Indeed, the correlation between Financials and S&P 500 is quite stable and

around 0.9 during the whole period. Also, it is interesting to notice that the correlation between
4During September–October 2008 several major financial institutions either failed, were acquired under duress,

or were subject to government takeover. These included Lehman Brothers, Merill Lynch, Fannie Mae, Freddie
Mac, Washington Mutual, Wachovia and AIG.
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the financial sector and health care decreases later on in the sample during the second and third

quarters of 2009.

3.2 Portfolio of Currencies

We consider daily US dollar exchange rates of the Australian dollar (AUS), Swiss franc (CHF),

euro (EUR), British pound (GBP), South African rand (RAND), Brazilian real (REALB), and

Japanese yen (YEN) over the period from January 1, 1999 until May 7, 2010 (T=2856 observa-

tions).

This portfolio is a well diversified portfolio. In particular, the Swiss franc and to a smaller

extent the Japanese yen are considered safe haven currencies. The National Bank of Switzerland

used to back up grand part of the CHF value with gold and now investors are accustomed to

invest in francs when uncertainty increases. The interest yield curve of the Japanese yen is very

low and therefore it responds quickly to big drops in value. Therefore, these two currencies

perform well during high risk financial times. On the other hand, the Australian dollar, the

Brazilian real and the South African rand tend to drop during times of crisis. However, they

recover the investors attention when their national banks set high interest rates. The euro-

US exchange rate is the most active and liquid bilateral rate in the foreign exchange market.

Although declining in importance, the pound sterling is still a key international currency and

one of the most heavily traded one. On the other hand, the Brazilian real and the South African

rand tend to drop during times of crisis. However, they recover investors’ attention when their

national banks set high interest rates.

The whole correlation matrix was estimated using the SG–DCC, the SPCC and the NPC

for each time t. Figures 14–16 plot these correlation estimates two by two. As seen, correlations

among the Australian dollar, Swiss franc, euro and British pound shift to a higher level in the

period 2002–2005. This may be related to the “global savings glut”a situation where during the

first half of the decade industrial countries received large amounts of excess savings created in

other parts of the world (e.g., South–East Asia).5 Notice also that the correlation of the Japanese

yen with the other currencies started to decrease around 2006 and became even negative in the

period afterwards. This may reflect the severe financial problems of the Japanese economy. We

further observe that the correlations of the South African rand experience pronounced shifts,

presumably linked to the efforts of the South African Reserve Bank to keep inflation within the

target range. On the other hand, the correlation of the Brazilian real against the other currencies

steadily increases (with the exception of the yen). This may reflect the improved macroeconomic

stability of the Brazilian economy during this decade. Finally, we remark that the chf–eur pair

is the most stable correlation typically approaching one, except for drops during the crisis period
5“Global savings glut”is a term coined by Ben Bernanke in his speech in 2005.
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of 2008. Compared to the portfolio of the SPDRs, the correlations of the currencies show more

variability over time implying also more frequent rebalancing of portfolios.

3.3 Evaluation of Models

We consider two types of criterion functions to evaluate the models in terms of portfolio’s certain

characteristics. The first one is the mean square error (MSE) loss function and second one is

based on the portfolio’s Value–at–Risk (VaR). Define the weighted in–sample portfolio’s returns

and variance as follows:

rp,t = ω′trt (23)

hp,t = ω′tHtωt (24)

where ωt is a (possibly) time–varying weight vector and Ht is the in–sample covariance matrix.

We consider the following portfolio weighting methods. First, the benchmark equally weighted

portfolio (EWP) where the weights are constant and equal to ωt = ω = A−1i and i is a (A× 1)

vector of ones and A is the number of elements in the portfolio. Second, the minimum variance

portfolio (MVP) where the weights are given by ωt = H−1
t i/(i′H−1

t i). Note that the MVP

weights are time-varying as they depend on the conditional covariance matrix. In practice, we

allow the weight vector ωt to change only after every 20 observations, so that the portfolios are

rebalanced approximately every month.

The MSE loss functions for the EWP and MVP are defined respectively as:

MSEj,EWP = T−1
T∑
t=1

(
ω′Ĥj

t ω − ω′rtr′tω
)2

(25)

MSEj,MV P = T−1
T∑
t=1

(
ω′t20Ĥ

j
t ωt20 − ω′t20rtr

′
tωt20

)2
(26)

where Ĥj
t is the covariance matrix estimate obtained from model j and rtr

′
t is the matrix of

the cross-product of the returns. The second loss functions is defined in terms of VaR. More

specifically, the VaR values of the EWP and MVP for model j at the confidence level α are

given by:

V aRj,EWP
t (α) = Φ−1

α

√
ω′Ĥj

t ω (27)

V aRj,MV P
t (α) = Φ−1

α

√
ω′t20Ĥ

j
t ωt20 (28)

where Φα is the standard normal probability function at tail probability α ∈ (0, 1). The cor-
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responding VaR loss functions for model j from Koenker and Bassett (1978) is calculated as

follows:

Qj,EWP (α) = T−1
T∑
t=1

(
α− 1{rp,t<V aR

j,EWP
t (α)}

)(
rp,t − V aRj,EWP

t (α)
)

(29)

Qj,MV P (α) = T−1
T∑
t=1

(
α− 1{rp,t<V aR

j,MV P
t (α)}

)(
rp,t − V aRj,MV P

t (α)
)
. (30)

In practice, we use α = 5%.

For the portfolio of currencies we also consider a popular portfolio weighting method called

’currency carry trade’. The idea is to borrow from low interest rate currencies and invest in high

interest rate currencies. The carry trade portfolio is at odds with the Uncovered Interest Parity

(UIP) theory which states that exchange rate changes will eliminate any gain arising from the

differential in interest rates across countries. However, there is overwhelming empirical evidence

against the UIP (e.g. Burnside et al., 2007). Actually, the opposite is found to be true–high

interest rate currencies tend to appreciate while low interest currencies tend to depreciate.

In our study, we adopt a carry trade portfolio similar to the one used by Christiansen et al.

(2011). This is composed of a short position in the three currencies associated with the lowest

interest rates and a long position in the four currencies with the highest interest rates. This

portfolio is rebalanced every month though in practice we found that the weights are very stable.

For instance, the carry trade portfolio is usually short in the CHF, EUR and YEN and long in

the AUS, GBP, RAND and REALB. The portfolio is such that the weights add up to zero, which

means that short positions have to be compensated by equivalent long positions. In particular,

according to the ordering of currencies (AUS, CHF, EUR, GBP, RAND, REALB, YEN) the

carry trade portfolio weight vector is given by, w = (1
4 ,−

1
3 ,−

1
3 ,

1
4 ,

1
4 ,

1
4 ,−

1
3)′.

Menkhoff et al. (2010) argue that carry trade portfolios are negatively related to foreign

exchange (FX) volatility. In particular, they find that high interest rate currencies are negatively

related to innovations in FX volatility while low interest rate currencies provide a hedge. In this

light, we also used a flexible carry trade portfolio where during periods of high FX volatility

the weight vector switches sign. In particular, short positions in the three currencies with the

lowest interest rates become long positions in the new portfolio. Similarly, long positions in the

four currencies with the highest interest rates become short positions in the new portfolio. More

specifically, our time-varying (carry trade) weight vector is given by:

wt = [1− 2I(FX innovations
volt−1

)]w (31)
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for

I(FX innovations
volt−1

) =

 1 FX innovations
volt−1

≥ 0

0 FX innovations
volt−1

< 0

As seen, the weight vector changes over time depending on FX volatility. For instance, during

tranquil times FX volatility is low (thus negative innovations) and the weight vector is w. As

before, this weight vector consists of short positions in the three currencies with the lowest

interest rates and long positions in the four currencies with the highest interest rates. On the

other hand, during times of financial distress FX volatility is high (thus positive innovations),

investors hedge and the weight vector now becomes −w – long positions in the three currencies

with the lowest interest rates (”safe haven” currencies) and short positions in the four currencies

with the highest interest rates (”risky” currencies).

As for the measure of FX volatility innovations, we follow Menkhoff et al. (2010) and use

a simple average of absolute exchange rates (log–returns) of the five major currencies in our

portfolio (AUS, CHF, EUR, GBP, YEN). We then calculate FX volatility innovations (denoted

by FX innovations
volt−1

) by estimating a simple AR(1) for the FX volatility level and take the residuals

as a proxy for innovations. 6

Table 3 shows the criterion functions of the estimated conditional correlation models. We also

check the robustness of the results to the inclusion of the crisis period (with its macroeconomic

context) in the sample. In particular, we split the overall sample into two sub-samples, one

before and another one after 2007. Overall, the results show that the NPC dominates the

SPCC and SG–DCC models. For instance, for the portfolio of currencies the MSE values of the

NPC indicate substantial improvement particularly for the MVP and to lesser extent for two

carry trade portfolios. However, these improvements are less marked in the case of the VaR

loss values. On the other hand. For the portfolio of the SPDRs, however, the values of the

criterion functions as well as the differences across models are small. Notice also that although

the NPC generally outperforms the other two models, the SPCC model appears now to be the

most accurate specification in quite a few cases (e.g., in the two sub–samples).

Defining V arNPC =
∑

t h
NPC
p,t as the sum of the NPC portfolio variances during the whole

period. If the ratio of two different model variances is close to 1 then the two models have

statistically equal variance. Otherwise, they are different. We next perform a comparison of

covariance matrix estimators by employing the methodology proposed by Engle and Colacito

(2006). Suppose that we have two alternative estimators of the covariance matrix, one produced

by the SPCC model and one produced by the SG-DCC model. In each period, a set of minimum

variance portfolio weights and therefore portfolio returns (eg. rSPCC
p,t and rSG–DCC

p,t ) is constructed

6Menkhoff et al. (2010) also experimented with different weight vectors. For example, they weighted the volatil-
ity contribution of different currencies by their share in international currency reserves but found qualitatively
similar results.
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based on each model. Let the difference between the squared portfolios returns be denoted by

ut = (rSG–DCC
p,t )2 − (rSPCC

p,t )2.

The null hypothesis of interest is that the portfolio variances are equal. This can be tested by

running an OLS regression and testing whether the mean of ut is zero.

Table 4 reports the portfolio variance ratios for the three models as well as the p-values of

the Engle–Colacito test for MVP. We evaluate the models two by two. Results are summarized

as follows. Regarding the SPDR application and over the full sample the smallest portfolio

variance is obtained by the SG–DCC model. Moreover, according to the Engle–Colacito test

the improvement of the SG–DCC over the NPC model is statistically significant at 7%. On the

other hand, compared to the SPCC model there is no statistically significant reduction in the

portfolio’s variance obtained by the SG–DCC (p-value=0.144). Looking at the two sub-samples,

however, the most accurate model is now the SPCC with the SG–DCC continuing to outperform

the NPC. These differences are also supported by the Engle–Colacito test particularly during

the crisis period (Subsample 2). The poor performance of the NPC was not unexpected as there

is little variability in the correlations of the SPDRs. This result is in line with the simulation

exercise where in all cases with constant correlation scenario the NPC was not performing well.

As for the portfolio of currencies, the picture now is very different. Both NPC and SPCC

outperform the SG–DCC model and the reduction in variance is highly significantly (p-values

are 0) for the full sample and subsample 1. During the crisis period (subsample 2), the SPCC

is the best model though.

4 Conclusion

In this paper, we compare three promising methodologies of time-varying asset correlations. The

popular parametric DCC model, a semiparametric model and a fully nonparametric approach. In

terms of Monte Carlo simulations and bivariate processes the semiparametric and nonparametric

models perform well when correlations experience gradual changes or a structural break. On the

other hand, the DCC model is the best in DGPs with rapid changes or constancy in correlations.

Moreover, in a multivariate framework the semiparametric and nonparametric models are

the best in DGPs with substantial time-variability in correlations, while when allowing for little

variability in the correlations the DCC is the dominant specification. With regard to the ap-

plication we consider two asset portfolios during the recent financial crisis. The first portfolio

consists of equity sectors and the S&P 500, while the second one contains major currencies that

are actively traded in the foreign exchange market. We carry out a portfolio evaluation exercise

and show that the nonparametric model generally dominates its competitors, particularly in
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minimum variance weighted portfolios and to lesser extent for the carry trade portfolio. How-

ever, our application considers portfolios based only on in-sample results. As a future research,

we feel this can be improved by considering out–of–sample forecasts of the conditional correla-

tion/covariance matrix. Also, it would be interesting to look at other applications of the above

models including bonds, international stock markets and commodities prices.
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Figure 3: Correlation estimators for the different scenarios of Experiment 2.
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Figure 4: Distribution of MAE for the different scenarios of Experiement 2.
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Figure 5: Correlation estimators for the different scenarios of Experiment 3.
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Figure 6: Distribution of MAE for the different scenarios of Experiment 3.
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Figure 7: Correlation estimators for Experiment 4.
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Figure 8: Distribution of MAE for Experiment 4.
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Figure 9: Correlation estimators for Experiment 5.
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Figure 11: Correlations of S&P500 with the rest of the sectors when the volatility process is estimated
with a GARCH(1,1) process.
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Figure 12: Comparison of the S&P 500 and the Financial sector index. The left axis displays the values
of the S&P 500 and the right axis displays the values of the XLF.
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Figure 13: Correlations of XLF with the rest of the sectors when the volatility is estimated with a
GARCH(1,1) process.
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Figure 14: Correlations of AUS and GBP with the rest of currencies when the volatility is estimated with
a GARCH(1,1) process.
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Figure 15: Correlations of EUR and CHF with the rest of currencies when the volatility is estimated
with a GARCH(1,1) process.
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Figure 16: Correlations of RAND, REALB and YEN with the rest of currencies when the volatility is
estimated with a GARCH(1,1) process.
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Panel A: MSE loss
SPDR Currencies

SG–DCC SPCC NPC SG–DCC SPCC NPC
Full Sample Jan 04 – Dec 09 Jan 99 – May 10
Equal weight 3.46e-07 3.44e-07 2.87e-07 0.4300 0.4276 0.3856
Minimum variance 9.13e-08 1.09e-07 2.71e-08 0.1975 0.1724 0.0826
Hedging/Carry trade 3.49e-08 3e-08 2.1e-08 3.0935 3.0675 2.4594
Carry trade given FX volatility 3.0935 3.0675 2.4594
Subsample 1 Jan 04 – Dec 06 Jan 99 – Dec 06
Equal weight 5.03e-09 4.94e-09 4.22e-09 0.1384 0.1360 0.1244
Minimum variance 6.15e-09 6.56e-09 4.93e-09 0.0899 0.0705 0.0375
Hedging/Carry trade 6.47e-09 6.45e-09 5.29e-09 0.4075 0.4 0.3393
Carry trade given FX volatility 0.4075 0.4 0.3393
Subsample 2 Jan 07 – Dec 09 Jan 07 – May 10
Equal weight 9.39e-07 9.36e-07 5.72e-07 1.4855 1.4739 1.006
Minimum variance 6.29e-07 6.70e-07 5.57e-08 1.384 1.0217 0.3342
Hedging/Carry trade 6.37e-08 6.33e-08 3.67e-08 12.625 12.707 7.494
Carry trade given FX volatility 12.625 12.707 7.494

Panel B: VaR loss at 5%
SPDR Currencies

SG–DCC SPCC NPC SG–DCC SPCC NPC
Full Sample Jan 04 – Dec 09 Jan 99 – May 10
Equal weight 0.0173 0.0173 0.0170 0.8005 0.7993 0.7789
Minimum variance weight 0.0106 0.0106 0.0118 0.6286 0.6159 0.5530
Hedging/Carry trade 0.0150 0.0143 0.0135 1.0106 1.0035 0.9802
Carry trade given FX volatility 1.0042 0.9972 0.9701
Subsample 1 Jan 04 – Dec 06 Jan 99 – Dec 06
Equal weight 0.0111 0.0107 0.0100 0.7414 0.7351 0.7070
Minimum variance 0.0083 0.0081 0.0091 0.5973 0.5846 0.5162
Hedging/Carry trade 0.0117 0.0122 0.0116 0.8842 0.8602 0.8216
Carry trade given FX volatility 0.8702 0.8466 0.8051
Subsample 2 Jan 07 – Dec 09 Jan 07 – May 10
Equal weight 0.0139 0.0141 0.0242 0.7976 0.7984 0.9498
Minimum variance 0.0102 0.0098 0.0146 0.5761 0.5505 0.6408
Hedging/Carry trade 0.0118 0.0110 0.0155 1.1163 1.1486 1.3569
Carry trade given FX volatility 1.1012 1.1322 1.3414

Table 3: Evaluation of empirical results of both portfolios.
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V arSPCC/V arSG–DCC V arNPC/V arSG–DCC V arNPC/V arSPCC

SPDR minimum variance portfolio
Full sample 1.0192 1.3515 1.326

(0.1440) (0.0704) (0.0483)
Subsample 1 0.9457 1.4025 1.4830

(0.0132) (0.0558) (0.0026)
Subsample 2 0.8341 3.9867 4.7794

(0.0019) (0.0003) (1.98e-05)

Currencies minimum variance portfolio
Full sample 0.9699 0.8377 0.8637

(6.92e-12) (1.18e-14) (1.26e-09)
Subsample 1 0.9665 0.8038 0.8317

(7.62e-10) (1.84e-09) (1.40e-06)
Subsample 2 0.9297 1.9050 2.0491

(1.30e-07) (6.90e-10) (3.08e-09)

Table 4: Portfolio variance ratios. P–values of the Engle and Colacito (2006) test are displayed in
brackets.
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H. Drees and C. Stǎricǎ. A simple non–stationary model for stock returns. In print, 2002.

R.F. Engle. Dynamic conditional correlation – a simple class of multivariate garch models.

Journal of Business and Economic Statistics, pages 339–350, 2002.

R.F. Engle. Anticipating correlations. Princeton University Press, 2009.

R.F Engle and R. Colacito. Testing and valuing dynamic correlations for asset allocation. Journal

of Business and Economic Statistics, pages 238–253, 2006.

R.F Engle and S. Manganelli. Caviar: Conditional autoregressive value at risk by regression

quantiles. Journal of Business and Economic Statistics, pages 367–381, 2004.

41



J. Fan and I. Gijbels. Variable bandwidth and local linear regression smoothers. The Annals of

Statistics, pages 2008–2036, 1992.

J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chapman and Hall/CRC,

1996.

R. Fry, V.L. Martin, and C. Tang. A new class of tests of contagion with applications. Journal

of Business and Economic Statistics, pages 423–437, 2010.

L.R. Glosten, R. Jagannathan, and Runkle D.E. On the relation between the expected value and

the volatility of the nominal excess return on stocks. Journal of Finance, pages 1779–1801,

1993.

C.M. Hafner and P.H. Franses. A generalized dynamic conditional correlation model for many

assets. Econometric Reviews, pages 612–631, 2009.

C.M. Hafner, D.J.C. Van Dijk, and P.H. Franses. Semi–parametric modelling of correlation

dynamics. Advances in Econometrics, pages 59–103, 2006.

R. Koenker and G. Bassett. Regression quantiles. Econometrica, pages 33–50, 1978.

S. Laurent, J.V.K Rombouts, and F. Violante. On the forecasting accuracy of multivariate garch

models. Discussion paper no. 25, 2010, Center for Operations Research and Econometrics

(CORE), 2010.

X.D. Long, L.J. Sun, and A. Ullah. Estimation of dynamic conditional covariance: A semipara-

metric multivariate model. Journal of Business Economics and Statistics, 2010. Forthcoming.

L. Menkhoff, L. Sarno, M. Schmeling, and A. Schrimpf. Carry trades and global foreign exchange

volatility. 2010. Mimeo.

D. Pelletier. Regime switching for dynamic correlations. Journal of Econometrics, pages 445–

473, 2006.

P. Qiu. A jump–preserving curve fitting procedure based on local piecewise–linear kernel esti-

mation. Nonparametric Statistics, pages 437–453, 2003.

P.M. Robinson. Nonparametric estimation of time–varying parameters. Statistics analysis and

forecasting of economic structural change, pages 253–264, 1989.
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