15 research outputs found

    Sustainable Nanotechnology and Education: a series of videos to promote nanoscale science and the Safer-By-Design approach to students.

    No full text
    International audienceSustainable Nanotechnology and Education: a series of videos to promote nanoscale science and the Safer-By-Design approach to students. How this work promotes sustainable nanotechnology (1 or 2 sentences) Short videos recently arose as a fundamental tool to share scientific knowledge. The SERENADE LABEX's videos will inform high school and university students on nanotechnology scientific questions but also on societal aspects such as laws (regulation), public health and social (ethical) issues

    Sustainable Nanotechnology and Education: a series of videos to promote nanoscale science and the Safer-By-Design approach to students.

    No full text
    International audienceSustainable Nanotechnology and Education: a series of videos to promote nanoscale science and the Safer-By-Design approach to students. How this work promotes sustainable nanotechnology (1 or 2 sentences) Short videos recently arose as a fundamental tool to share scientific knowledge. The SERENADE LABEX's videos will inform high school and university students on nanotechnology scientific questions but also on societal aspects such as laws (regulation), public health and social (ethical) issues

    MESOCOSM: A mesocosm database management system for environmental nanosafety

    No full text
    International audienceEngineered nanomaterials (ENMs) are intentionally designed and produced by humans to revolutionize the manufacturing sector, such as electronic goods, paints, tires, clothes, cosmetic products, and biomedicine. With the spread of these ENMs in our daily lives, scientific research have generated a huge amount of data related to their potential impacts on human and environment health. To date, these data are gathered in databases mainly focused on the (eco)toxicity and occupational exposure to ENMs. These databases are therefore not suitable to build well-informed environmental exposure scenarios covering the life cycle of ENMs. In this paper, we report the construction of one of the first centralized mesocosm database management system for environmental nanosafety (called MESOCOSM) containing experimental data collected from mesocosm experiments suited for understanding and quantifying both the environmental hazard and exposure. The database, which is publicly available through https://aliayadi.github.io/MESOCOSM-database/, contains 5200 entities covering tens of unique experiments investigating Ag, CeO 2 , CuO, TiO 2-based ENMs as well as nano-enabled products. These entities are divided into different groups i.e. physicochemical properties of ENMS, environmental, exposure and hazard endpoints, and other general information about the mesocosm testing, resulting in more than forty parameters in the database. The MESOCOSM database is equipped with a powerful application, consisting of a graphical user interface (GUI), allowing users to manage and search data using complex queries without relying on programmers. MESOCOSM aims to predict and explain ENMs behavior and fate in different ecosystems as well as their potential impacts on the environment at different stages of the nanoproducts lifecycle. MESOCOSM is expected to benefit the nanosafety community by providing a continuous source of critical information and additional characterization factors for predicting ENMs interactions with the environment and their risks

    Evaluation of environmental exposure to nanoparticulate TiO2 UV-filters used in sunscreens

    No full text
    International audienceThe impacts of sunscreens on both human and environmental health remain of concern as widespread use continues and new formulations are developed. While titanium dioxide (TiO2) nanoparticle UV-filters may offer a safer alternative to organic filters, their fate and impact are not fully understood and resulting regulation is still under consideration due to their potential risk to consumers and the environment.After leaving the skin either through swimming or everyday use and subsequent washing, the TiO2 nanomaterials contained in the sunscreen can be released into rivers, lakes, sea shores, and/or sewage treatment plants. Their fate and impact in these different systems is largely determined by their surface properties (e.g., coating type and life-time). Consequently, every stage of the sunscreen life-cycle must be considered, from manufacturing and consumer use to end-of-life and impact on the exposed environment. In this work, both field and laboratory studies were developed to assess environmental exposure to UV-filters from sunscreen.For the field campaign, sea water samples were collected from three French beaches before and during the height of summer recreational activities. The quantity of sunscreen used at each beach was estimated using attendance numbers and responses from a social survey, while the actual concentrations of UV filters (organic and mineral) recovered in the waters were determined at different depths and distances from the shore. In this way, both UV-filter release and exposure in a littoral zone could be evaluated.Additionally, sunscreens were formulated in the laboratory and studies conducted to investigate risk to the direct aquatic environment as well as risk related to product end-of-life. These insights will help guide regulations, provide better information for consumers, and assist manufacturers in incorporating an eco-design approach in consumer product development

    Evaluation of environmental exposure to nanoparticulate TiO2 UV-filters used in sunscreens

    No full text
    International audienceThe impacts of sunscreens on both human and environmental health remain of concern as widespread use continues and new formulations are developed. While titanium dioxide (TiO2) nanoparticle UV-filters may offer a safer alternative to organic filters, their fate and impact are not fully understood and resulting regulation is still under consideration due to their potential risk to consumers and the environment.After leaving the skin either through swimming or everyday use and subsequent washing, the TiO2 nanomaterials contained in the sunscreen can be released into rivers, lakes, sea shores, and/or sewage treatment plants. Their fate and impact in these different systems is largely determined by their surface properties (e.g., coating type and life-time). Consequently, every stage of the sunscreen life-cycle must be considered, from manufacturing and consumer use to end-of-life and impact on the exposed environment. In this work, both field and laboratory studies were developed to assess environmental exposure to UV-filters from sunscreen.For the field campaign, sea water samples were collected from three French beaches before and during the height of summer recreational activities. The quantity of sunscreen used at each beach was estimated using attendance numbers and responses from a social survey, while the actual concentrations of UV filters (organic and mineral) recovered in the waters were determined at different depths and distances from the shore. In this way, both UV-filter release and exposure in a littoral zone could be evaluated.Additionally, sunscreens were formulated in the laboratory and studies conducted to investigate risk to the direct aquatic environment as well as risk related to product end-of-life. These insights will help guide regulations, provide better information for consumers, and assist manufacturers in incorporating an eco-design approach in consumer product development

    The SERENADE project – A step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach

    No full text
    International audienceRecent research efforts have gone into formalizing and standardizing the Safe by Design process of nanomaterials. This usually results in a structured and (most often) sequential approach deliberately putting the focus on hazard and exposure issues regarding the nanomaterial itself in a bottom-up progression of material development. However, this general strategy lacks flexibility. Within the project SERENADE, a case study examining photocatalytic paint failed to validate the generally accepted Safe by Design scheme. This example examined the product (paint in this case) rather than the nanomaterials it contains. It was found that the essential parameters, namely product specification and functionality, failed to fit into a rigid bottom-up approach and indicated the need for alternative Safe by Design strategies

    Classification automatique des diatomées par apprentissage profond pour l’amélioration du diagnostic écologique des milieux aquatiques

    No full text
    National audienceLes diatomées sont des microalgues présentes dans tous les milieux aquatiques. Ces organismes sont utilisés en routine comme bioindicateur de la qualité écologique des eaux douces dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE). Les indices biologiques actuels basés sur les diatomées reposent sur des critères morphologiques (forme et ornementation de l’exosquellette siliceux, le frustule) pas toujours faciles à caractériser en routine (i.e. à l’aide de méthodes optiques conventionnelles). L’identification est donc chronophage, souvent sujette à de multiples biais (expérience de l'opérateur, qualité de l'image) et nécessite un niveau élevé d’expertise.Ceci justifie le développement d'un outil plus robuste, basé sur une classification automatique des diatomées. Cet objectif est toujours un défi d’actualité, depuis les premières tentatives datant des années 90. Dans ce contexte, le développement récent des approches d’apprentissage profond pour identifier et quantifier les traits des organismes à partir d’images semble prometteur pour résoudre les problèmes rencontrés jusqu’à présent. Notre objectif est donc de proposer un nouvel outil d’identification des diatomées basé sur des algorithmes de reconnaissance automatique de formes à partir d’images individuelles. Par rapport à l’approche classique d’identification des diatomées, cet outil se veut notamment plus robuste car indépendant de l’opérateur et permettra d’améliorer (gain de temps, coût) ceux actuellement disponibles dans le cadre du suivi réglementaire de l’état écologique des cours d’eau.Le développement de cet outil implique 1/l’acquisition d’une base de données représentative du milieu naturel (banques d’images de diatomées) qui permette 2) le développement des algorithmes d’identification des diatomées. En première approche, une banque simplifiée d’images représentatives de 209 espèces de diatomées (environ 9 000 images au total) a été créée à partir de guides d’identification en libre accès. Cette base d’images a permis de générer environ 30 000 images composites simulant des images d’échantillons naturels. Ceci a permis le développement de premiers algorithmes de détection (diatomées vs. débris) et de classification (espèces présentes). Les premiers résultats obtenus montrent que l’outil de reconnaissance permet de distinguer les diatomées présentes sur un échantillon (précision de 90%) ainsi que les débris (précision de 99%). L’outil a également été testé sur quelques images réelles avec une précision pouvant atteindre 86% pour les débris et 73% pour les diatomées présentes. Ces résultats encourageants démontrent la faisabilité de notre approche (preuve de concept). La banque d’images sera donc consolidée afin de la rendre plus représentative de l’ensemble des espèces indicatrices de diatomées retrouvées dans une zone géographique donnée (e.g. bassin de la Moselle, bassin Rhin-Meuse) et ainsi d’améliorer la performance des algorithmes de reconnaissance

    Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials

    No full text
    International audienceEnvironmental risk assessment of nanomaterials generally relies on a decision-tree based strategy which provides guidance and protocols for the determination of a collection of hazard end-points. Mesocosm testing is based on a different approach. This method consists in monitoring the evolution of a recreated miniature ecosystem subsequent to a nanomaterial contamination. The only decision in this risk assessment strategy is the definition of an environmentally relevant exposure scenario (incl. dose), which, given current analytical capabilities, may unfavorably affect the nature and precision of parameters and end points to be determined. Despite these limitations, mesocosm testing bears clear advantages for the determination of both exposure and hazard in a single experiment, and for producing dependable and intercomparable data
    corecore